Computing amplitudes in QFT Challenges in precision calculations

Jonathan Ronca

Workshop sul Calcolo nell'INFN

La Biodola - Isola d'Elba 26-30 Maggio 2025

Istituto Nazionale di Fisica Nucleare Sezione di Padova

26 May 2025

Introduction

- Scattering processes are an ubiquitous phenomena in Nature
- Quantitative way to describe interactions
- Interdisciplinary topic: Physics, Mathematics, Computer Science...
- Link between several fields in physics

[Feynman (1950)]

Introduction

Collider physics

- And and	\searrow	X	\searrow	Just ($\rightarrow \checkmark$	Jorg marge)
33	34	35	36	37	38	39	40
Contraction of the second	a contraction of the second se	5-55-20 525 ³⁰ 21210	DR.		X	anna K	
41	42	43	44	45	46	47	48
	3810 230	100	101111 1000		IX		
49	50	51	52	53	54	55	56
X	E	and the	\mathbb{Z}			23.200	
57	58	59	60	61	62	63	64

Classical General Relativity

the integral. [...]

Of course this is a joke, physics is not a part of mathematics. However, it is true that the main mathematical problem of physics is the calculation of integrals of the form

I(g)

Cosmology

Definition. Physics is a part of mathematics devoted to the calculation of integrals of the form $\int g(x)e^{f(x)}dx$. Different branches of physics are distinguished by the range of the variable x and by the names used for f(x), g(x) and for

$$= \int g(x) e^{-f(x)} dx$$

[Schwarz, Shapiro (2018)]

Scattering Amplitudes: Basics

Observables related to a quantum probability density

Probability density

Integrating density via Monte Carlo methods

- Event generators
- Energy distributions
- Angular distributions
- Grids

Needs for fast numerical evaluations

Scattering Amplitudes: Perturbative expansion

Precision increases with the higher perturbative orders:

- More precision:
 - More loops → numbers of integrations
 - More legs \rightarrow more variables
- **Complexity grows quickly** (graph combinatorics involved)
- Complicated analytic structures (poles, branch cuts...)

Computing amplitudes

		0	1	2	3	
	5	17	20			
S	4	' <u></u>	90	'10	'20	
Indirect O searches O	3		' 90		'10	
	2		′ 80		19)(
	1		15	50		
	0			' 50		

Computing amplitudes: Feynman Integrals

$$-ig_s\gamma_{\mu}T^a)\frac{i(\not\!k-\not\!p+m_t)}{(k-p)^2-m_t^2}\left(-i\frac{m_t}{v}Y_j\right)\frac{i(\not\!k+\not\!q+m_t)}{(k+q)^2-m_t^2}(-ig_s\gamma_{\nu}T^b)\frac{i(\not\!k+m_t)}{k^2-m_t^2}\right]$$

Computing amplitudes: Feynman Integrals

Feynman integrals are the core of an amplitude:

- D_i are (usually) linear or quadratic functions of k'_i 's
- Space-time **dimension** *d* is kept as a **variable**
- \bar{x} are the scales of the process (i.e. external legs + internal states)
- Very few cases where a primitive can be found
- We are interested in an **expansion** around d = 4

Computing amplitudes: Feynman Integrals

Nowadays experimental precision requires:

- Theoretical precision of the **per-mille level**
- 2nd and 3rd perturbative order amplitudes
- Diagrammatically:
 - 2- and 3- loop amplitudes
 - 4 and 5 external legs
 - >5 kinematical variables and parameters
- Theoretical precision \iff efficient loop computations

Large symbolical expression:

- $O(10^3)$ diagrams for 2- and 3- loop amplitudes
- Multivariate polynomials
- Typically subexpressions of $O(10^2)$ MBytes
- Cutting-edge amplitudes of O(10) GBytes

Need for fast evaluations:

- Key-element for **physical observables**
- Included in Monte Carlo integrators
- Employed in **phenomenological studies**

Public codes:

- QGraf
- FeynArts
- FeynCalc
- AIDA
- Tapir
- MadGraph

 LoopIn [Bigazzi,Mandal,Mastrolia,Torres Bobadilla (WIP)]

Languages:

- Mathematica
- FORM
- Symbolica
- Python
- Fortran
- C/C++

Computing Integrals: Reduction

Many: *O*(10⁶)

Few: $O(10^2)$

Computing Integrals: Reduction

Algorithm:

- Lots of **linearly dependent** rows
- Gauss elimination
- IBPs system rank ≪ #equations
- Choice of independent integrals: Master Integrals
- Back-substitution \implies integral relations

Computing Integrals: Reduction

Very large sparse system of equations:

- $O(10^6) O(10^8)$ equations for 3-loop amplitudes
- **Symbolic** solutions of IBP system
- Finite field reconstruction methods
- GPU support

Smart choices of "seed" integrals reduces the #equations:

- Syzygy equations
- Block triangular form
- Improved seedings
- ML and Genetic Algorithms

Alternative methods:

- Adaptive Integrand Reduction
- Intersection theory
- Groebner basis

Public Codes:

- Reduze
- Air
- Kira
- FIRE
- Rational Tracer NeatIBPs
- FinRed
- CAS:
 - Mathematica
 - GiNaC
 - Fermat
 - Singular

- Rational Tracer
- FiniteFlow
- LiteRed
- Blade

- Firefly
- Flint
- Symbolica
- Maple

Computing Integrals: Reduction

It is very time-consuming process. For cutting-edge calculation:

- O(1) month of running time, even on clusters
- *O*(10) **GBytes** of identities
- Dramatically **increasing the size** of the amplitudes
- **Rational reconstruction** methods need **lot** of RAM
- 16GB RAM/CPU appears to be an ideal ratio
- *O*(1) TByte RAM required for **Mathematica** packages

Technical issues:

- Batch systems usually settled with cap wall time of *O*(day)
- Special need for **queues** with **longer runtime** allowed, like *O*(month)
- Public codes have only few checkpoints
- Checkpoints are ofter not reliable

	Kira 2.3	Kira dev	Kira dev + RATRAG
# of generated equations	16 872 564	76 045	_
# of selected equations	1 157 381	41 998	-
# of terms	23 053 485	734 833	-
Time to generate and select	1 259 s	14 s	-
Memory to generate and select	30 GiB	1.9 GiB	-
Probe time	38 s	1.2 s	0.12 s

[Lange,Usovitsch,Wu (2024)]

Computing Integrals: Evaluation

Computing Integrals: Evaluation

Differential Equations

Computing Integrals: Evaluation

Evaluating Feynman Integrals is non-trivial:

- 2- and 3- loop amplitudes described by $O(10^2)$ Master Integrals
- **Curse of dimensionality**: *O*(10) integration variables
- Convoluted **integration regions**: branch cuts, poles...
- **Slow** Monte Carlo convergence
- Analytical integration often **not possible**
- Non-trivial symbolical manipulations:
 - Analytical continuation
 - Frobenius method
 - Fuchsian form
 - ...

Current investigations:

- Analytical solution:
 - dlog representation
 - classifying **function spaces**
 - Ansatz for **letters**
- Efficient **numerical solution of DEs** for Feynman Integrals
- Improving Monte Carlo sampling

[Dubovyk,Freitas,Gluza,Grzanka,Hidding,Usovitsch (2022)]

[Borinsky,Munch,Tellander (2023)]

Public Codes:

- SecDec
- pySecDec
- FeynTrop
- FIESTA
- Lotty
- HandyG

- DiffExp
- SeaSyde
- PolyLogTools
- AMFlow
- LINE

Languages:

- Python
- Mathematica
- C/C++

Computing Integrals: Evaluation

Numerical evaluation of Feynman Integrals:

- Many codes for solving DEs are written in **Mathematica**
- Not-suitable for clusters
- Licenses issues
- Recent development: C implementation LINE

[Prisco, JR, Tramontano (2025)]

Typical running time (2- or more- loop integrals)

- O(minute) to O(day)
- **prohibitive** time for **on-the-fly** evaluations
- Better suited for **grids** production

Improving the methods

- Better MIs basis choice
- Numerical evaluation of **iterated integrals**
- Getting **insights** from other research fields?

PZ	Maximum use of Mathemat A:@cern.ch	ln entrExchange ica Kernel licenses	19 gennaio 2022, 1

Dear user,

We have noticed you are using most of the 74 Mathematica Kernel licenses available, and thus other users are being block from running.

You have all these sessions opened, please limit the number of kernel licenses to a few, otherwise we will have to limit the usage in the license server. Thanks for your collaboration.

MathKernel	12.1	В	b7s11p2591.cern.ch	6:52:30
MathKernel	12.1	В	b7s14p7059.cern.ch	6:52:29
MathKernel	12.1	В	b7s14p7965.cern.ch	6:52:29
MathKernel	12.1	В	b7s13p2532.cern.ch	6:52:29
MathKernel	12.1	В	b7s13p3966.cern.ch	6:52:28
MathKernel	12.1	В	b7s02p8917.cern.ch	6:32:04

[Colleague (2022)]

Flagship Use Case [UC2.1.3]

Flagship Use Case [UC2.1.3]

What we are aiming for LoopIn to be?

- Mathematica front-end (user-friendly)
- Minimal number of inputs
- From the generation of the amplitude to its numerical evaluation
- Modular: LoopIn has to be able to be interfaced with any code
- Flexible: User can manipulate the IO of LoopIn (with care)
- Every module of LoopIn will produce its own output
- Parallelizable
- Designed for any number of loop

Conclusions

Current precision frontier requires

- Observables predictions at **per-mille level**
- 2- and 3- loop, 4+ legs amplitudes
- Being able to evaluate amplitudes efficiently

Amplitude as active field of research

- Mathematical understanding of Feynman Integrals
- **Physics** insights on amplitudes structure
- More **general integrands** can be treated with these techniques:
 - Fourier integrals
 - Generalized unitarity
- Study of **function spaces**
- **Bootstrapping** methods
- Help from algebraic geometry, cohomology...

On the computational side:

Heavy and time-consuming processes

- Need for **high-ratio** RAM/CPU
- **Special queues** with very large wall time

Many codes for our community are written in Mathematica

- Non-educational institutions have **limited amount of licenses**
- Using university (educational) licenses?

Codes are mostly written by PhDs and post-docs

- Their **maintenance** usually **ends** together with their contract
- Possibility of **IT task/position** devoted to code **optimization/maintenance**?

"The very advanced counting system used by elementary particle theorists for counting the loops is: 'One, two, many,'" — Ettore Remiddi

Thank you for your attention!

Backup: $gg \rightarrow HH$ cross section

In-house codes:

- Mathematica
- Fortran 90
- C++

bwForCluster NEMO:

- 900 Nodes
- Broadwell E5-2630 v4
- 128GByte RAM

Eur. Ph https:// Reg

Ful **2-H**

tir production in the
Published for SISSA by 2 Springer Received: March 12, 2020
REVISED: April 3, 2020 ACCEPTED: April 8, 2020 PUBLISHED: April 28, 2020
n fusion at hadron ns

Calculation size:

- ~million jobs to be run
- %-level precision achieved
- 1 years of running time