IN FN L

INO-CNR

Silicon On DIAmond CHIP concept (CHIPSODIA)

Silvio Sciortino, Giuliano Parrini, Stefano Lagomarsino
for the CHIPSODIA experiment

Firenze, June 4-8 2012 INFN

CHIPSODIA aims at two prototypes Proof of concept within 2012

a) Chip-On-Diamond Sensor: diamond connected to the readout electronics by Through Silicon Vias (TSV).
b) SOD Micro-Electrode Array (MEA): diamond hosting neural tissue connected to the R/W electronics by conductive channels and TSVs

Feasibility of a 3D structure is also investigated

3D detector

Main issues

Silicon to Diamond Bonding and Characterization

Chip bonding to diamond plates
Connection of the die electronics to the diamond surface

Growing ohmic contacts by laser graphitization on the diamond surface

Growing grathitic channels through the diamond bias

Functionalization of the diamond surface and implantation of neural cells for MEA applications

Silicon On Diamond Fabrication: Si \& D samples

Si wafer cut in
$5 \times 5 \mathrm{~mm}^{2}$ plates
Thickness from 390 to $50 \mu \mathrm{~m}$
$\rho=1 \mathrm{k} \Omega \mathrm{cm} \rightarrow 10 \Omega \mathrm{~cm}$
Roughness $\sim 1 \mathrm{~nm}$

Diamond polyCVD $5 \times 5 \mathrm{~mm}^{2}$ plates from DDL Itd
Thickness from 500 to $50 \mu \mathrm{~m}$
Roughness 5 nm at best
Some scCVD plates recently available
bad aspect ratio on the nucleation side for optical grade samples

Silicon On Diamond Fabrication: Cleaning and mounting

Si \& D plates are cleaned in a white chamber in ultrasonic bath assembled in a laminar flow hood

Diamond $5 \times 5 \mathrm{~mm}^{2}$ plate over silicon seen through the fused silica viewport

ASSEMBLY IMPLEMENTED BY IIT (3rd version just released)

Ease to manipulate and assemble pieces
Particular care in ensuring uniaxial stress-uniform pressure on the plates to bond

Silicon On Diamond Fabrication: Laser bonding

The diamond silicon interface is irradiated by UV laser pulses
$\lambda=355 \mathrm{~nm}$
$\tau=20 \mathrm{ps}$
Energy density $=2-0.5 \mathrm{~J} / \mathrm{cm}^{2}$
*Stefano Lagomarsino Ph,D Thesis
http://hep.fi.infn.it/sciortino/ Research/dissertation_Lagom arsino.pdf

Growth side of diamond mounted in contact with the silicon surface

Silicon On Diamond Fabrication: Laser bonding

- Automated continuous scanning of the laser beam

Silicon On Diamond Fabrication: scanning the laser beam on the interface

- More uniform illumination of the sample with continuous scanning

Spot on target 0.9 mm
16 shots per mm on a row Row separated by 0.7 mm Energy density $0.5 \mathrm{~J} / \mathrm{cm}^{2}$

We can decrease energy density/pulse to threshold at 20 ps about $0.22 \mathrm{~J} / \mathrm{cm}^{2}$, expected interface thickness 40 nm
Or even lower the pulse width to lower the interface thickness to about 10 nm

S. Lagomarsino, Diamond \& Related Materials 20 (2011) 1010-1015

RAPS on DIAMOND: succesfully tested

Small n-well, Low C

Large n-well, High FF

CMOS Active Pixel Sensors 256×256 matrix

RAPS bonded on diamond (SOD_34) successfully tested

LASER graphitization: sources

Inserted a line for a $\mathrm{Ti}: \mathrm{Sa}$ $800 \mathrm{~nm}, 30$ fs laser beam $<3 \mathrm{~J} / \mathrm{pulse}$

Channels bulk fabrication Sample is moved across the focus and columnar growth occurs above a threshold energy

Graphitic superficial dots or stripes can also be fabricated

The superficial channels are graphitic as assessed by
Raman spectroscopy

$$
\rho=4.5 \mathrm{~m} \Omega \mathrm{~cm}
$$

in agreement with the amorphous graphite value

$10 \mu \mathrm{~m}$

each point: 10 shots
$\mathrm{R}=6 \mathrm{k} \Omega / \mathrm{mm}$
Deduced thickness ~ $1 \mu \mathrm{~m}$

We can modulate thickness (and hence resistance) varying the number of shots per point.

Nanosecond columns through diamond bulk

Higher resistivity

$$
\rho=0.3-0.4 \Omega \mathrm{~cm}
$$

Only traces of graphite signature by graphite spectroscopy

High pressure gradient formed, up to 10 GPa

Fractures, non-uniformity

Femtosecond columns through diamond bulk

Annealing of the bulk nanosecond channels

After annealing at 1000 K for 1 h under Ar atmosphere, resistance of ns pulses-fabricated columns decrease of a factor 5
We have to assess possible modifications in the raman spectra We have to anneal also fs pulses-fabricated columns

TSV and graphitic channels are presently fabricated on the SOD samples

Looking into a TSV

Graphitic colomn

Diamond surface

Diamond detector with graphite contacts

Detector Characterization
 Charge Collection Efficiency Measurement

(A) beta source (B) collimator (C) DUT (D) power supply (E) GW load resistor)

(F) decoupling C (G) Amptek shaper (H) Trigger (I) PCI NI ADC Board (L) Scope

$C=2.4 \mathrm{pF}$

$R \sim 10^{15} \Omega$

Relaxation of the zero bias signal due to polarization

Charge Collection Efficiency vs. Mean Free Path

Mean Free Path (for

$$
\begin{gathered}
\lambda=v \tau \\
v=\frac{\mu E}{1+\mu E / v_{\mathrm{sat}}}
\end{gathered}
$$ each carrier)

Drift Velocity

For an homogeneous, i. e., single crystal diamond

$$
\frac{Q_{a v}}{Q_{g e n}}=\frac{\lambda}{L}\left[1-\frac{\lambda}{L}\left(1-e^{-\frac{L}{\lambda}}\right)\right]=z\left[1-z\left(1-e^{-\frac{1}{z}}\right)\right]
$$

L is the sample thickness, $z=\frac{\lambda}{L}$

Diamond with MFP linearly increasing with thickness

$$
\begin{aligned}
& \lambda=a x+\lambda_{\min }, \quad a=\frac{\lambda_{\max }-\lambda_{\min }}{L} \\
& \frac{Q_{a v}}{Q_{\text {gen }}}=\frac{1}{\zeta^{2}} \frac{B}{2 \cdot B-1}\left\{\zeta-\frac{1}{2} \zeta^{2} B\left[(1+\zeta)^{\frac{1}{B}}-1\right]\right\} \\
& \text { with: } z=a \frac{L}{\lambda_{\max }}=\frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }}, \quad B=\frac{a}{a-1}
\end{aligned}
$$

Numerical approximation within a percent:

$$
\begin{gathered}
\frac{Q_{a v}}{Q_{g e n}}=\frac{1}{2} \frac{\frac{\lambda_{\max }}{L}}{\frac{\lambda_{\max }}{L}+m\left(\frac{\lambda_{\min }}{\lambda_{\max }}\right)} \\
m=0.36-0.4 \text { for: } \frac{\lambda_{\min }}{\lambda_{\max }}=1-0.1
\end{gathered}
$$

Comparison between graphite and standard (Ti-Au) contacts

Agreement in the mesaurements considering that the graphite contacted sample has a slightly lower thickness

- <ADC_canale> DET13_auto_corretti con piedistallo (5 canali ADC) <ADC_canale> 2EL100_auto_corretti con piedistallo (5 canali ADC)

DET13 cfr 2EL100

