Impact of statistics and detector characteristics on data analysis

Alberto Rotondi, Pavia University and INFN Sezione di Pavia

- statistics
- efficiency
- resolution
- counting
- pile-up effects
- unfolding

- signal to background ratio

There are 7 types of measurements

$$
8-M(x, 0,0)=7
$$

There are 7 types of measurements

$1 \quad M(x, 0, \Delta) \rightarrow x \pm \frac{\Delta}{2} \quad(C L=100 \%)$
$1 \quad M(x, \sigma, 0) \rightarrow x \pm \frac{s}{\sqrt{N}} \quad(C L=68 \%)$
$1 M(x, \sigma, \Delta) \rightarrow x \pm \frac{s}{\sqrt{N}}($ stat $) \pm \frac{\Delta}{2}($ sys $) \Rightarrow x \pm \sqrt{\frac{s^{2}}{N}+\frac{\Delta^{2}}{12}} \quad(C L \sim 68 \%)$
$1 M(X, 0,0) \rightarrow x \pm \sqrt{x}, x \pm \sqrt{x\left(1-\frac{x}{N}\right)} \quad$ Counting, Pile-up (CL~68\%)
$3 M(X, \sigma, \Delta) \rightarrow g(y)=\int f(x) \delta(x, y) \mathrm{d} y \underset{\substack{\text { Unfolding techniques } \\ \rightarrow f(x)}}{\substack{\text { Un }}}$

Detector statistcs

Detector Efficiency \rightarrow Binomial distribution

$$
B(x ; n, \varepsilon)=\frac{n!}{x!(n-x)!} \varepsilon^{x}(1-\varepsilon)^{n-x}
$$

Counts \rightarrow Poisson distribution

$$
P(x ; \mu)=\frac{\mu^{x}}{x!} \mathrm{e}^{-\mu}
$$

Arrival times \rightarrow exponential

$$
e(t ; \tau)=\frac{1}{\tau} \mathrm{e}^{-t / \tau}, \quad \mu=\frac{\Delta t}{\tau}
$$

Resolution effects \rightarrow Gaussian distribution

$$
G(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}}
$$

Some important facts (I)

$$
\varepsilon
$$

$$
y=n-x, \quad e^{-\mu}=e^{-\mu \varepsilon} e^{-\mu(1-\varepsilon)}, \quad \mu^{n}=\mu^{n-x} \mu^{x}=\mu^{y} \mu^{x}
$$

$B(x ; \varepsilon, n) P(n ; \mu)=\frac{(\varepsilon \mu)^{x}}{x!} e^{-\varepsilon \mu} \frac{[(1-\varepsilon) \mu]^{y}}{y!} e^{-(1-\varepsilon) \mu}=P(x ; \varepsilon \mu) P(n-x ;(1-\varepsilon) \mu)$
Conclusion: a binomial counter with efficiency ε that sees a Poisson source of intensity μ, counts in a poissonian way with mean $\varepsilon \mu$

Some important facts (II)

$$
\begin{array}{cc}
P(x ; \mu)=\frac{\mu^{x}}{x!} \mathrm{e}^{-\mu} \longleftrightarrow e(t ; \tau)=\frac{1}{\tau} \mathrm{e}^{-t / \tau}, \mu=\frac{t}{\tau} \\
\text { Frequency domain } & \text { Time domain }
\end{array}
$$

$$
e^{-\mu} \quad \frac{d t}{\tau}=r d t
$$

important: the time distribution remains the same if the clock starts at any time or if it starts at the arrival of the last event.

The 95\% decision level...

Meaning: if we consider the signal as detected, we will be wrong in 5% of the cases when the signal is absent

The 95% CL gaussian upper limit..

$$
\frac{\mu+b-10}{\sqrt{\mu+2 b}}=1.645 \Rightarrow \mu+b-1.645 \sqrt{\mu+2 b}-10=0 \xrightarrow{b=5} \mu=12.8
$$

Meaning: this upper limit should give values less than the observed one in less than 5% of the experiments

Counting experiments

$$
\begin{aligned}
& \sum_{k=x}^{\infty}\binom{n}{k} \theta_{1}^{k}\left(1-\theta_{1}\right)^{n-k}=\frac{(1-C L)}{2} \\
& \sum_{k=0}^{x}\binom{n}{k} \theta_{2}^{k}\left(1-\theta_{2}\right)^{n-k}=\frac{(1-C L)}{2}
\end{aligned}
$$

$$
P\left\{\frac{|x-\mu|}{\sigma[x]} \leq t_{\alpha / 2}\right\} \geq C L
$$

$C L=1-\alpha$ is the asymptotic probability the interval will contain the true value

COVERAGE is the probability that the specific experiment does contain the true value irrespective of what the true value is

On the infinite ensemble of experiments, for a continuous variable Coverage and CL tend to coincide

In counting experiments the variables are discrete and CL and Coverage do not coincide

What is requested is the minimum overcoverage

Counting experiments: Binomial case

$$
\xrightarrow{n \gg 1} p=f \pm t_{\alpha} \sqrt{\frac{f(1-f)}{n}} \quad \begin{aligned}
& \text { Wald (1950) } \\
& \text { Standard in Physics }
\end{aligned} 1
$$

A further improvement:

The continuity correction is equivalent to

 The Clopper-Pearson formula$$
\left\{\begin{array}{l}
\varepsilon=\frac{f_{ \pm}+\frac{t_{\alpha / 2}^{2}}{2 n}}{\frac{t_{\alpha / 2}^{2}}{n}+1} \pm \frac{t_{\alpha / 2} \sqrt{\frac{t_{\alpha / 2}^{2}}{4 n^{2}}+\frac{f_{ \pm}\left(1-f_{ \pm}\right)}{n}}}{\frac{t_{\alpha / 2}^{2}}{n}+1}, \quad x=n,\left[p_{1}, 1\right], p_{1}=(1-C L)^{1 / n} \\
f_{+}=(x+0.5) / n, f_{-}=(x-0.5) / n, \\
t_{\alpha / 2} \text { gaussian, } 1-C L=\alpha, \quad t=1 \text { is } 1 \sigma
\end{array}\right.
$$

This should become the standard formula also for physicists

Elementary example

20 events have been generated and 5 passed the cut What is the estimation of the efficiency with $C L=90 \%$?

Frequentist result: $\quad x=5, n=20, C L=90 \%$

$$
\begin{aligned}
& \sum_{k=5}^{20}\binom{n}{k} \varepsilon_{1}^{k}\left(1-\varepsilon_{1}\right)^{n-k}=0.05 \\
& \text { PDG } \\
& \sum_{k=0}^{5}\binom{n}{k} \varepsilon_{2}^{k}\left(1-\varepsilon_{2}\right)^{n-k}=0.05
\end{aligned}
$$

$$
f \pm t_{\alpha} \sqrt{\frac{f(1-f)}{n}}
$$

$$
\varepsilon=[0.090,0.410]
$$

Elementary example

20 events have been generated and 5 passed the cut What is the estimation of the efficiency with $C L=90 \%$?

Frequentist result: $\quad x=5, n=20, C L=90 \%$

$$
\begin{aligned}
& \sum_{k=5}^{20}\binom{n}{k} \varepsilon_{1}^{k}\left(1-\varepsilon_{1}\right)^{n-k}=0.05 \\
& \text { PDG } \\
& \sum_{k=0}^{5}\binom{n}{k} \varepsilon_{2}^{k}\left(1-\varepsilon_{2}\right)^{n-k}=0.05
\end{aligned}
$$

$$
\varepsilon=\frac{f_{ \pm}+\frac{t_{\alpha / 2}{ }^{2}}{2 n}}{\frac{t_{\alpha / 2}{ }^{2}}{n}+1} \pm \frac{t_{\alpha / 2} \sqrt{\frac{t_{\alpha / 2}{ }^{2}}{4 n^{2}}+\frac{f_{ \pm}\left(1-f_{ \pm}\right)}{n}}}{\frac{t_{\alpha / 2}{ }^{2}}{n}+1},
$$

$$
\varepsilon=[0.145,0.405]
$$

Coverage simulation

$$
\mathrm{x}=\operatorname{gRandom} \rightarrow \operatorname{Binomial}(p, N)
$$

$$
\begin{aligned}
& \quad 1-C L=\alpha \\
& \sum_{k=x}^{n}\binom{n}{k} p_{1}^{k}\left(1-p_{1}\right)^{n-k}=\alpha / 2 \\
& \sum_{k=0}^{x}\binom{n}{k} p_{2}^{k}\left(1-p_{2}\right)^{n-k}=\alpha / 2
\end{aligned}
$$

$$
\int_{x}^{\infty} p\left(x ; \theta_{1}\right) \mathrm{d} x=c_{1} \quad \int_{-\infty}^{x} p\left(x ; \theta_{2}\right) \mathrm{d} x=c_{2}
$$

where

$$
\theta \in\left[\theta_{1}, \theta_{2}\right], \quad 1-\left(c_{1}+c_{2}\right)=C L
$$

MC techniques can be used: grid over θ to find the values θ_{1} and θ_{2} satisfying these integrals

TMath:: BinomialI (p, N, x)

Simulate many x with a true p and check when the intervals contain the true value p. Compare this frequency with the stated $C L$

Correct frequentist

Wilson CC not random

$\mathrm{N}=50$
$C L=0.90$

ε

ε

ε
NEW

ε

ε

Fig. 12. Coverage of various estimation intervals for the efficiency s in a binomial experiment with $n=10$. The curves refer to a C of 95% (left) and 99% (right). From top to bottom the coverages of the following intervals are reported: standard with $C C$ of Eq. (50), classical frequentist of Eq. (39), Bayesian with uniform prior of Eq. (45), unified or likelihood ratio of Eq. (42), pivotal with CC of Eqs. (48) and (49).

ε

Fig. 14. As Fig. 12 for $n=80, C L=68.27 \%$ (left) and $C L=95 \%$ (right). From top to bottom the coverages of the following intervals are reported: standard with CC values $c_{-}=c_{+}=0.5$ (full line) and without CC (short dashed line) of Eq. (50); unified or likelihood ratio of Eq. (42); pivotal from Eqs. (48) and (49) with CC values from Table 3; pivotal from Eqs. (48) and (49) without CC.

$\mathrm{N}=20 \mathrm{CL}=0.90$ Interval amplitude

Counting experiments: Poisson case

t is the quantile of the normal distribution

$$
t=1 \text {, area } 84 \%
$$ Quantile $\alpha=0.84$ $P[|f-p|<\dagger \sigma]=68 \%$

$\frac{(x-\mu)}{\sqrt{\mu}}=t_{\alpha} \rightarrow \mu=x+\frac{t_{\alpha}^{2}}{2} \pm t_{\alpha} \sqrt{x+\frac{t_{\alpha}^{2}}{4}}$
Not used (why?)
$\xrightarrow{\mu \approx x} \mu=x \pm t_{\alpha} \sqrt{x} \quad$ Standard in Physics

Counting experiments: new formula for the

 Poisson case$$
\frac{(x-\mu)}{\sqrt{\mu}}=t_{\alpha} \rightarrow \mu=x_{ \pm}+\frac{t_{\alpha}^{2}}{2} \pm t_{\alpha} \sqrt{x_{ \pm}+\frac{t_{\alpha}^{2}}{4}} \quad x_{ \pm}=x \pm 0.5
$$

Wilson interval with Continuity correction gives the same results as ...

$$
\sum_{k=0}^{x} \frac{\mu_{2}^{x}}{x!} e^{-\mu_{2}}=\alpha / 2
$$

Exact frequentist
 Clopper Pearson (1934) (PDG)

$\sum_{k=x}^{\infty} \frac{\mu_{1}{ }^{x}}{x!} e^{-\mu_{1}}=\alpha / 2$

PDG

NEW

Fig 1. Coverage of various estimation intervals in the case of Poisson distribution as a function of the true mean value μ. The curves refer to a $C L$ of 68.27% (left) and 95% (right) marked with the horizontal full line. From top to bottom the coverages of the following intervals are reported:standard of Eq. (11) with CC (full line) and without CC

Accurate at 2% for $n>300$

$\xrightarrow{n \gg 1} \varepsilon=f \pm t_{\alpha} \sqrt{\frac{f(1-f)}{n}}$
naif standard

$n=20$

Accurate at 2% for $n>10$

$$
\frac{f_{ \pm}+\frac{t^{2}}{2 n}}{\frac{t^{2}}{n}+1} \pm \frac{t_{\alpha} \sqrt{\frac{t^{2}}{4 n^{2}}+\frac{f_{ \pm}\left(1-f_{ \pm}\right)}{n}}}{\frac{t^{2}}{n}+1}, \quad f_{ \pm}=\frac{x \pm 0.5}{n}
$$

Accurate at 2% for $x>80$

$$
\mu=x \pm t_{\alpha} \sqrt{x}
$$

naif standard

Accurate at 2% for $x>0$

$$
\mu=x_{ \pm}+\frac{t_{\alpha}^{2}}{2} \pm t_{\alpha} \sqrt{x_{ \pm}+\frac{t_{\alpha}^{2}}{4}} \quad x_{ \pm}=x \pm 0.5
$$

See A. Rotondi NIM A 614(2010)105 S. Costanza, A. Rotondi NIM A 669(2012)85

Pile-up

("dynamic" efficiency)

.....from textbooks

Dead time $=$ minimum amount of time between two pulses so that they are recorded as separate pulses

The efficiency of a system to measure and record pulses depends on the time taken up by all components of the signal processing. There are two classes of systems, those that require a fixed recovery time and those that don't.
Dead Time Models:
a) Paralyzable - detector system is affected by the radiation even if the signal is not processed. (a "slow" detector or electronics)
b) Nonparalyzable - fixed dead-time

True rate: r or n (in text) rr m (in text) Dead-time: τ

.... . from textbooks

a) Paralyzable (extending) dead time τ a count is possible only after a dead time from the last arrival

$$
r_{\text {obs }}=r_{\text {true }} e^{-r_{\text {tue }} \tau} \xrightarrow{r_{\text {tue }} \tau \ll 1} r_{\text {true }}=\frac{r_{\text {obs }}}{1-r_{\text {obs }} \tau}
$$

b) Non-Paralyzable dead time τ

A count is possible after a dead time from the last count

$$
\begin{array}{cl}
\text { Fraction dead }= & R_{\mathrm{obs}} \tau / T=r_{\mathrm{obs}} \tau \\
\text { Loss rate }= & r_{\text {true }}\left(r_{\mathrm{obs}} \tau\right) \rightarrow r_{\mathrm{obs}}=r_{\text {tue }}\left(1-r_{\mathrm{ob}}\right. \\
& \rightarrow r_{\text {true }}=\frac{r_{\mathrm{obs}} T}{T-r_{\mathrm{obs}} \tau T}=r_{\mathrm{obs}} \frac{T}{T_{L}}
\end{array}
$$

from textbooks

Dead Time Models:

a) Paralyzable $-\mathrm{r}_{\text {obs }}=\mathrm{r} \mathrm{e}^{-\mathrm{rt}}$
b) Nonparalyzable $-r=r_{\text {obs }} /\left(1-r_{\text {obs }} \tau\right)$

Fig. 4.8 Knoll, $3^{\text {rd }}$ Ed.

$$
\begin{aligned}
& I=I_{0} e^{-\tau I_{0}} \\
& \xrightarrow{I_{0} \tau=P_{t_{d}} t_{t}} \frac{I_{0}}{I}=e^{P t_{d} / t_{t}} \\
& \Rightarrow \ln I=\ln I_{0}-P \frac{t_{d}}{t_{l}}
\end{aligned}
$$

Beam (trigger) pile-up

Count loss

Pile-up

Interaction (detector) pile-up

spectrum distortion

Fig. 1. Block diagram of the overall pulse pileup correction algorithm. Note that number of stages is dependent on the expected rate of pileup.

Ho to deal with pile-up?

- to measure dead time and live time
- with the Time-To-Count technique, the detector is armed at the same time a counter is started. When a strike occurs, the counter is stopped for a time longer than the supposed dead time. The rate r is thus measured, not estimated: $\langle\dagger\rangle=1 / r$.
- to use a pile-up rejection system
- to use digital methods in ADC signal processing

Unfolding Methods

$$
g=f^{*} \delta
$$

Folding is a common process in physics
signal

Apparatus response

Observed signal

$$
\begin{aligned}
& \delta(x, y) \\
& g(y)=\int f(x) \delta(x, y) \mathrm{d} x \\
& g_{i}=\sum_{j} \Delta_{i j} f_{j}
\end{aligned}
$$

Convolution is a linear folding

$$
g(y)=\int f(x) \delta(y-x) \mathrm{d} x
$$

Fourier Techniques

$$
f(x)=\int F(t) \mathrm{e}^{2 \pi i x t} \mathrm{~d} t
$$

Convolution:

$$
\begin{gathered}
f(x)=\int g(y) \delta(x-y) \mathrm{d} y \\
\int F(t) \mathrm{e}^{2 \pi i x t} \mathrm{~d} t=\int G(t) \mathrm{e}^{2 \pi i y t} \Delta(t) \mathrm{e}^{2 \pi i(x-y) t} \mathrm{~d} t \\
\int F(t) \mathrm{e}^{2 \pi i x t} \mathrm{~d} t=\int G(t) \Delta(t) \mathrm{e}^{2 \pi i x t} \mathrm{~d} t \rightarrow F(t)=G(t) \Delta(t)
\end{gathered}
$$

Figure 11: Lena restored by FFT: The original image (top left) is sampled with Poisson statistics (top right) and smeared with a 2D 10-bins Gaussian PSF (bottom left): the Fourier restored image (bottom right) is similar to the Poisson sampled image. In this case the noise term N is neglected.

Figure 12: Lena not restored by FFT: In this case the noise term N is not ignored: the original image (top left) is smeared with a 2D 10-bins Gaussian PSF (top right) and the result is sampled with Poisson statistics (bottom left): the Fourier restored image (bottom right) cannot recover the information lost in the noise. Another approach, statistical in nature, is required.

The problem with fluctuations

Inverting the response motrix

Fig. 11.1 (a) A hypothetical true histogram an. (b) the hestogram of expectation values $v=$ Ras. (c) the histograms of obserred data \mathbf{n}. and (d) the estimators $\boldsymbol{\beta}$ obained from ionersion of the respones matrix.

A reminder..... (Bayes theorem)

$$
\left.\begin{array}{rl}
P(A \mid B)= & \frac{P(A \cap B)}{P(B)} \\
P(B \mid A)= & \frac{P(A \cap B)}{P(A)}
\end{array}\right\} \Rightarrow P(A \mid B) P(B)=P(B \mid A) P(A), ~ \begin{aligned}
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{\sum P(B \mid A) P(A)}
\end{aligned}
$$

1D Unfolding: Bayesian iterative algorithm Alice, Atlas,(Roofit), PHYSTAT2011

$$
P\left(m_{i}\right)=\sum_{j} P\left(m_{i} \mid t_{j}\right) P\left(t_{j}\right)
$$

$$
P\left(t_{i}\right)=\sum_{j} P\left(t_{i} \mid m_{j}\right) P\left(m_{j}\right)
$$

$t=$ true, $\quad \boldsymbol{m}=$ measured

$$
P\left(t_{i} \mid m_{j}\right)=\frac{P\left(m_{j} \mid t_{i}\right) P\left(t_{i}\right)}{\sum_{k} P\left(m_{j} \mid t_{k}\right) P\left(t_{k}\right)}
$$

resolution

$$
P^{(k+1)}\left(t_{i}\right)=\sum_{j} P\left(t_{i} \mid m_{j}\right) P\left(m_{j}\right)=\sum_{j} \frac{P\left(m_{j} \mid t_{i}\right) P^{(k)}\left(t_{i}\right) P\left(m_{j}\right)}{\sum_{n} P\left(m_{j} \mid t_{n}\right) P^{(k)}\left(t_{n}\right)}
$$

$$
P^{(k+1)}\left(t_{i}\right)=\sum_{j} P\left(m_{j} \mid t_{i}\right) P^{(k)}\left(t_{i}\right) \frac{P\left(m_{j}\right)}{P^{(k)}\left(m_{j}\right)}
$$

1D Unfolding: Bayesian algorithm

$$
\sum_{j} P\left(m_{j} \mid t_{i}\right)=\left\{\begin{array}{l}
1 \\
o r \\
\varepsilon_{i}
\end{array}\right.
$$

$$
t_{i}^{(k+1)}=t_{i}^{(k)} \sum_{j} P\left(m_{j} \mid t_{i}\right) \frac{m_{j}}{m_{j}^{(k)}} \frac{1}{\varepsilon_{i}}
$$

Unfolding matrix

$$
M_{i j}=\frac{1}{\varepsilon_{i}} P\left(m_{j} \mid t_{i}\right) \frac{t_{i}^{(k)}}{m_{j}^{(k)}}
$$

$$
m_{j}^{(k)}=\sum_{p} P\left(m_{j} \mid t_{p}\right) t_{p}^{(k)}
$$

Efficiency and resolution

Fig. 1: Illustration of ingredients for unfolding: (a) a 'true histogram' $\boldsymbol{\mu}$, (b) a possible set of efficiencies ε, and (c) the observed histogram n (dashed) and the corresponding expectation values ν (solid).

$$
\sum_{j} P\left(m_{j} \mid t_{i}\right)=\left\{\begin{array}{l}
1 \\
\text { or } \\
\varepsilon_{i}
\end{array}\right.
$$

Bayesian algorithm- starting solution: the data

Gaussian spread $\sigma= \pm 4$ channels

true

+ unfolded

Folded with the solution data

Bayesian algorithm- starting solution: uniform

true
H unfolded

Gaussian spread $\sigma= \pm 4$ channels

Folded with the solution data

Why these oscillations?:

The smeared

spike solution
HIGLY PROBABLE

distributions of two input distributions cannot be distinguished if they agree on a large scale of x but differ by oscillations on a "microscopic" scale much smaller than the experimental resolution

$$
F * \Delta=F *(\Delta+N) \quad i f \quad F * N=0
$$

many solutions give a good χ^{2}
the spike ones are more probable!
Cure: to add to χ^{2} an empirical regularization term $C[p]$.

$$
\chi^{2} \rightarrow \alpha \chi^{2}+C[P(\text { true })]
$$

Or

$$
\chi^{2} \rightarrow \chi^{2}+\alpha C[P(\text { true })]
$$

or
to increase the DoF by using a parametric model

$$
P(\nu \mid \mu) P(\mu) \rightarrow P\left(\nu \mid \mu^{\prime}\right)
$$

Poisson likelihood fit with penalty regularization

for a single bin i with expectation d_{i} :

$$
\ln P(m ; \mu)=\ln \frac{\mu^{m}}{m!} \mathrm{e}^{-\mu}
$$

$\ln L_{i}=m_{i} \ln \mu_{i}-\mu_{i}=m_{i} \ln \sum_{j} P\left(m_{i} \mid t_{j}\right) t_{j}-\sum_{j} P\left(m_{i} \mid t_{j}\right) t_{j}$
for the histogram with penalty term R :

$$
\ln L=\sum_{k}\left[m_{k} \ln \sum_{j} P\left(m_{k} \mid t_{j}\right) t_{j}-\sum_{j} P\left(m_{k} \mid t_{j}\right) t_{j}\right]-R
$$

Frequently used penalty term

$$
R=\alpha \sum_{i=2}^{N-1}\left(2 t_{i}-t_{i-1}-t_{i+1}\right)^{2}
$$

Statistical effects

- background $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)$

$$
\nu_{i}=\sum_{j} R_{i j} \mu_{j}+\beta_{i} \longrightarrow \boldsymbol{v}=\boldsymbol{R}^{\boldsymbol{*}} \mu \boldsymbol{+} \boldsymbol{\beta}
$$

- The number of obseryed events in the case of random processes of detection:

$$
n_{i}=\frac{\nu_{i}^{n_{i}}}{n_{i}!} \mathrm{e}^{-\nu_{i}}
$$

Positron Emission Tomography
detector \#1

Positron Emission Tomography

Positron Emission Tomography

$$
\begin{equation*}
N_{i j}(\mathrm{th})=N P_{i j}(\mathrm{obs})=N \sum_{i^{\prime} j^{\prime}} P_{i^{\prime} j^{\prime}}(\text { true }) P_{v}\left(\mathrm{obs}_{i j} \mid \operatorname{true}_{i^{\prime} j^{\prime}}\right) \tag{25}
\end{equation*}
$$

We write this equation considering the operator R :

The iterave method (Van Cittert 1930) add with a weighta residual r_{k} to the current solution

$$
\begin{equation*}
\mu_{k+1}=\mu_{k}+\beta\left[n-R * \mu_{k}\right] \tag{26}
\end{equation*}
$$

The method is based on the hown quation

$$
\begin{equation*}
\sum_{i=0}^{k} q^{n}=\frac{1-q^{k+1}}{1-q} \tag{27}
\end{equation*}
$$

The iterative principle

for $k \rightarrow \infty$ the series converges if $|q<1|$.
By applying iteratively (26)

$$
\begin{aligned}
\mu_{k+1} & =\beta n+(1-\beta R) \mu_{k}=\beta n+(1-\beta R)\left(\beta n+(1-\beta R) \mu_{k-1}\right) \\
& =\beta n+\beta(1-\beta R) n+(1-\beta R)^{2} \mu_{k-1} \\
& =\beta n+\beta(1-\beta R) n+\beta(1-\beta R)^{2} n+(1-\beta R)^{3} \mu_{k-2} \ldots \\
& =\sum_{i=0}^{k} \beta(1-\beta R)^{i} n .
\end{aligned}
$$

From (27):

$$
\mu_{k+1}=\frac{I-(I-\beta R)^{k+1}}{\beta R} \beta n \rightarrow R^{-1} n=\mu, \quad \text { for } \quad k \rightarrow \infty .
$$

if $|I-\beta R|<1$

Residuals

Convolution

The iterative Principle without best fit

$$
\mu_{k+1}=\mu_{k}+\beta_{k}\left[R * n-\left[R * R * \mu_{k}+\alpha\left(\ln \mu_{k} / \mu_{T}+I\right)\right]\right.
$$

About 40 iterations, regularized with Maximum entropy

Bayesian algorithm

ATHENA apparatus

From the ATHENA detector

Si strip detectors

Distribution of annihilation vertices when antiprotons are mixed with ...
Pbar-only
(with electrons)
cold positrons
hot positrons

Annihilation vertex in the trap $x-y$ plane

Hbar (MC)

BCKG (HotMixData)

Pbar vertex XY projection (cm)
x Hbar

$$
+(1-x) \mathrm{BCKG}=
$$

Cold Mix data

ML Fit Result

Hbar percentage

$$
x=0.65 \pm 0.05
$$

Iteratve best fit (Bayesian) method

Conclusions on unfolding

- iterative algorithms are used in unfolding (ill posed) problems
- sometimes they need a Bayesian regularization term
- when there are degrees of freedom, one can use a best fit of a signal+background function to the data
- to find a reliable error for the solution is still an open problem

END

Errors

$$
\begin{aligned}
& t_{i}^{(k)}=\sum_{i} M_{i j} m_{j} \\
& \frac{\mathrm{~d} t_{i}^{(k)}}{\mathrm{d} m_{n}}=M_{i n}+\sum_{j} m_{j} \frac{\partial M_{i j}}{\partial m_{n}} \\
& V\left(t_{i}, t_{j}\right)=\sum_{l} \sum_{n} \frac{\partial t_{i}^{(F)}}{\partial m_{l}} V_{d}\left(m_{l}, m_{n}\right) \frac{\partial t_{j}^{(F)}}{\partial m_{n}} \\
& V_{d}\left(m_{l}, m_{n}\right)=\left\{\begin{array}{cc}
N_{m}\left(1-N_{m} / N_{\text {Tot }}\right) & n=l \\
-N_{\text {Tot }}\left(N_{m} / N_{\text {Tot }}\right)\left(N_{m} / N_{\text {Tot }}\right) & n \neq l
\end{array}\right.
\end{aligned}
$$

Efficiency calculation: an OPEN PROBLEM!!

$$
\begin{array}{ll}
\frac{f+\frac{t^{2}}{2 n}}{\frac{t^{2}}{n}+1} \pm \frac{t_{\alpha} \sqrt{\frac{t^{2}}{4 n^{2}}+\frac{f(1-f)}{n}}}{\frac{t^{2}}{n}+1} & \text { Wilson interval (1934) } \\
\xrightarrow[n \gg 1]{\longrightarrow} \varepsilon=f \pm t_{\alpha} \sqrt{\frac{f(1-f)}{n}} \quad \begin{array}{l}
\text { Wald (1950) } \\
\text { Standard in Physics }
\end{array} \\
\sum_{k=x}^{n}\binom{n}{k}_{\varepsilon_{1}^{k}\left(1-\varepsilon_{1}\right)^{n-k}=\alpha / 2} \quad \begin{array}{l}
\text { Exact frequentist } \\
V^{x}(n)_{k^{k}(1-s}
\end{array}
\end{array}
$$

Statistics of counting

Fixed n

$$
\begin{aligned}
& B(x ; n, \varepsilon)=\frac{n!}{x!(n-x)!} \varepsilon^{x}(1-\varepsilon)^{n-x} \quad \mu=n \varepsilon, \sigma=\sqrt{n \varepsilon(1-\varepsilon)} \\
& n=\frac{x}{\varepsilon} \pm \frac{1}{\varepsilon} \sqrt{x(1-\varepsilon)+\frac{x^{2}}{\varepsilon^{2}} \sigma_{\varepsilon}^{2}}, \quad \varepsilon=\frac{x}{n} \pm \sqrt{\frac{x}{n^{2}}\left(1-\frac{x}{n}\right)}=f \pm \sqrt{\frac{f(1-f)}{n}}
\end{aligned}
$$

Poissonian n

$$
P(x ; \mu)=\frac{\mu^{x}}{x!} \mathrm{e}^{-\mu}, \quad \sigma=\sqrt{\mu}, \quad \mu=x \pm \sqrt{x}
$$

times

$$
\begin{aligned}
& e(t ; \tau)=\frac{1}{\tau} \mathrm{e}^{-t / \tau}, \quad \mu=\frac{\Delta t}{\tau}, r=\frac{1}{\tau} \\
& \langle t\rangle=\sigma=\tau=\frac{1}{r},
\end{aligned}
$$

Iterative best fit (residual) method

The vertex algorithm resolution function is gaussian with
$\sigma \cong 3 \mathrm{~mm}$

Cold Mix

The 2D deconvolution reveals

antihydrogen !!!!!!!!!!

FIRST COLD ANTIHYDROGEN PRODUCTION \& DETECTION (2002)
M. Amoretti et al., Nature 419 (2002) 456
M. Amoretti et al., Phys. Lett. B 578 (2004) 23

Horizontal position (cm

SIGNAL ANALYSIS:
opening angle xy vertex distribution radial vertex distribution
$65 \%+/-10 \%$ of annihilations are due to antihydrogen
between 2002 \& 2004 more than 2 millions antihydrogen atoms have been produced
that's about $2 \times 10^{-15} \mathrm{mg}$
.. or .. 1000 Giga years for a gram

$$
\frac{80}{\sqrt{190+110}}=4.7 ; \quad \frac{80}{\sqrt{190}}=6.5 ; \quad \frac{80}{\sqrt{110}}=8
$$

The pile-up distributions

$$
\begin{aligned}
& e(t ; \tau)=\frac{1}{\tau} \mathrm{e}^{-t / \tau}, \quad \mu=\frac{\Delta t}{\tau}, \quad r=\frac{1}{\tau} \\
& \langle t\rangle=\sigma=\tau=\frac{1}{r}, \\
& e(t ; \tau)=\frac{r^{k} t^{k-1}}{} \mathrm{e}^{-r t}
\end{aligned}
$$

$$
e(t ; \tau)=\frac{r^{k} t^{k-1}}{(k-1)!} \mathrm{e}^{-r t}
$$

$$
\langle t\rangle=k \tau=\frac{k}{r}, \quad \sigma=\sqrt{k} r=\frac{\sqrt{k}}{\tau}
$$

Simulate many x with a true p

Interval Estimation for a Binomial Proportion

 and check when the intervals contain the true value p. Compare this frequency with the stated CLLawrence D. Brown, T. Tony Cai and Anirban DasGupta

Standard Intervai

Wilson interval

FIG. 5. Coverage probability for $n=50$.

$$
C L=0.95, n=50
$$

Paralyzable Dead time determination

 Meeks and Siegel Am.J.Phys. 76(2008)659- With pile-up the time distribution deviates from the exponential
- the property ->

$$
\frac{\int t^{m} r e^{-r t} \mathrm{~d} t}{\left(\int \operatorname{tr} e^{-r t} \mathrm{~d} t\right)^{m}}=\frac{\left\langle t^{m}\right\rangle}{\langle t\rangle^{m}}=m!
$$

in this case does not hold

- If one collects a sample of t_{i}, subtracs a common time T, discard the differences $\left(t_{i}-T\right)<0$ and calculates

$$
\frac{\sum_{i}\left(t_{i}-T\right)^{m} / N}{\left(\sum_{i}\left(t_{i}-T\right) / N\right)^{n}}
$$

one sees that the property above is satisfied when
$T>$ dead time

Table I. The moment ratios $\left\langle t^{m}\right\rangle /\langle t\rangle^{m}$ for $m=2,3$, and 4 for different delay times D for a series of 10000 Geiger counter intervals. The statistical uncertainties in the last row are approximately the same for each number in the column.

$D(\mu \mathrm{~s})$	$\left\langle t^{2}\right\rangle /\langle t\rangle^{2}$	$\left\langle t^{3}\right\rangle /\langle t\rangle^{3}$	$\left\langle t^{4}\right\rangle /\langle t\rangle^{4}$	Count rate $($ counts/s)	N
0	1.87	5.34	19.6	171.7	10000
100	1.90	5.42	20.6	174.7	10000
200	1.93	5.61	21.7	177.9	10000
300	1.96	5.81	22.9	181.1	10000
400	2.00	6.02	24.2	184.3	9996
500	2.01	6.07	24.4	185.0	9849
600	2.00	6.06	24.4	184.9	9660
800	2.00	6.05	24.3	184.8	9303
1000	2.01 ± 0.02	6.06 ± 0.19	24.4 ± 1.7	185 ± 2	8975

To fold

$$
g(y)=\int f(x) \delta(y-x) \mathrm{d} x
$$

$$
\mu_{k+1}=\mu_{k}+\beta_{k}\left[R * n-(R * R+\alpha I) * \mu_{k}\right]
$$

true-data

The iterative algorithm + best fit + Tichonov regularization

Without $\beta \quad \mu_{k+1}=\mu_{k}+\left[n-R * \mu_{k}\right]$

$$
\mu_{k+1}=\mu_{k}+\beta_{k}\left[R * n-(R * R+\alpha I) * \mu_{k}\right]
$$

Solution

The

iterative Principle without best fit + smoothing
original

Gaussian smearing

Figure 13: Einstein restored by FFT: explanation as in Figure 1.

Figure 14: Einstein not restored by FFT: explanation as in Figure 2.

The objective function to be minimized is

$$
\begin{gather*}
-F(\boldsymbol{\mu})=-2 \ln L(\boldsymbol{n} \mid \boldsymbol{\mu})-\alpha C(\boldsymbol{\mu})+\lambda\left(n_{T}-\sum_{i} \nu_{i}\right) \tag{23}\\
\mu_{j}=\mu_{\mathrm{tot}} p_{j}=\mu_{\mathrm{tot}} \int_{\mathrm{binj} \mathrm{j}} f_{t}(y) \mathrm{d} y
\end{gather*}
$$

where $\alpha>0$. Some regularization terms:

- minimum second derivative (Tichonov)

Regularization terms

$$
C(\boldsymbol{\mu})=-\int\left[f_{t}^{\prime \prime}(y)\right]^{2} \mathrm{~d} y \simeq-\sum_{i=1}^{M-2}\left[-\mu_{i}+2 \mu_{i+1}-\mu_{i+2}\right]^{2}
$$

- minimum variance:

$$
C(\boldsymbol{\mu})=-\operatorname{Var}[\boldsymbol{\mu}] \equiv\|C \boldsymbol{\mu}\|^{2}=-\sum_{i} \mu_{i}^{2}
$$

- maximum entropy (MaxEnt)

$$
C(\boldsymbol{\mu})=-\sum_{i} p_{i} \ln p_{i}=-\sum_{i} \frac{\mu_{i}}{\mu_{T}} \ln \frac{\mu_{i}}{\mu_{T}}
$$

- cross-entropy

$$
C(\boldsymbol{\mu})=-\sum_{i} p_{i} \ln \frac{p_{i}}{q_{i}}=-\sum_{i} \frac{\mu_{i}}{\mu_{T}} \ln \frac{\mu_{i}}{\mu_{T} q_{i}}
$$

where $\boldsymbol{q}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ is the most likely a priori shape for the true distribution μ_{i}.

Deterministic algorithms

The objective function to be minimized is

$$
\begin{gathered}
-F(\boldsymbol{\mu})=-2 \ln L(\boldsymbol{n} \mid \boldsymbol{\mu})-\alpha C(\boldsymbol{\mu})+\lambda\left(n_{T}-\sum_{i} \nu_{i}\right) \\
\mu_{j}=\mu_{\mathrm{tot}} p_{j}=\mu_{\mathrm{tot}} \int_{\mathrm{binj}} f_{t}(y) \mathrm{d} y
\end{gathered}
$$

where $\alpha>0$. Some regularization terms:

- minimum second derivative (Tichonov)

$$
C(\boldsymbol{\mu})=-\int\left[f_{t}^{\prime \prime}(y)\right]^{2} \mathrm{~d} y \simeq-\sum_{i=1}^{M-2}\left[-\mu_{i}+2 \mu_{i+1}-\mu_{i+2}\right]^{2}
$$

- minimum variance:

$$
C(\boldsymbol{\mu})=-\operatorname{Var}[\boldsymbol{\mu}] \equiv\|C \boldsymbol{\mu}\|^{2}=-\sum_{i} \mu_{i}^{2}
$$

- maximum entropy (MaxEnt)

$$
C(\boldsymbol{\mu})=-\sum_{i} p_{i} \ln p_{i}=-\sum_{i} \frac{\mu_{i}}{\mu_{T}} \ln \frac{\mu_{i}}{\mu_{T}}
$$

- cross-entropy

$$
C(\boldsymbol{\mu})=-\sum_{i} p_{i} \ln \frac{p_{i}}{q_{i}}=-\sum_{i} \frac{\mu_{i}}{\mu_{T}} \ln \frac{\mu_{i}}{\mu_{T} q_{i}}
$$

where $\boldsymbol{q}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ is the most likely a priori shape for the true distribution μ_{i}.

Image Deconvolution

$$
D(\boldsymbol{x})=\int \mathrm{d} \boldsymbol{y} I(\boldsymbol{y}) \delta(|\boldsymbol{x}-\boldsymbol{y}|)
$$

In the absence of noise

$$
I=F^{-1}\left[\frac{F(D)}{F(\delta)}\right]
$$

where F is the Fourier transform.

For a real image $I\left(n_{1}, n_{2}\right)$ the Fourier transform is:

$$
\begin{gathered}
F\left(k_{1}, k_{2}\right)=\sum_{n_{2}=0}^{N_{2}-1} \sum_{n_{1}=0}^{N_{1}-1} \mathrm{e}^{2 \pi i k_{2} n_{2} / N_{2}} \mathrm{e}^{2 \pi i k_{1} n_{1} / N_{1}} I\left(n_{1}, n_{2}\right) \\
F\left(k_{1}, k_{2}\right)=F F T_{2}\left[F F T_{1}\left[I\left(n_{1}, n_{2}\right)\right]\right]
\end{gathered}
$$

For the routines see for example Numerical Recipes
signal

Apparatus response

Observed signal

$f(x)$

$$
\begin{aligned}
& z=y-x \\
& \delta(y-x)
\end{aligned}
$$

$$
\begin{gathered}
y=z+x \\
g(y)=\int f(x) \delta(y-x) \mathrm{d} x
\end{gathered}
$$

