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Impact of statistics and 
detector characteristics 

on data analysis  

theory 

experiment 

Alberto Rotondi,   Pavia University and INFN Sezione di Pavia 

• statistics 

• efficiency 

• resolution 

 

• counting 

• pile-up effects 

• unfolding 

• signal to background ratio 



There are 7 types of 
measurements 

2 












00

X

x
M

8-M(x,0,0)=7 



There are 7 types of 
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3 Unfolding techniques 

->  f(x) 

Counting, Pile-up 

(CL=100%) 

(CL=68%) 

(CL~68%) 

(CL~68%) 



Detector Efficiency     Binomial distribution 
 
 
 

Counts   Poisson distribution 
 
 
 

Arrival times  exponential 
 
 

Resolution effects    Gaussian distribution 
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Some important facts (I) 
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Conclusion: a binomial counter with efficiency  that  

sees a Poisson source   of intensity ,  counts in a  

poissonian   way with mean   
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Some important facts (II) 
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important: the time distribution remains the same if  
the clock starts at any time or if it starts at the  
arrival of the last event. 
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NEYMAN  
Theorem (1937) 
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Statistics 



1.645  
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The 95% decision level... 

Decision  
level  

95% area 
5% area 

Meaning: if we consider the signal as detected, we will be  
wrong in 5% of the cases when the signal is absent 

x=10.2 

2.1010645.15 

=0 

Background=5 events 
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The 95% CL gaussian  upper limit.. 

Observed 
value 

95% area 

5% area 

Meaning: this upper  limit should give values less than the 
observed one in less than 5% of the experiments    

1.645  

x=10 

8.120102645.1645.1
2
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Counting experiments 

CLt
x

x
P 












2/
][

||






CL=1- is the asymptotic  probability the interval will contain the true 
value 
 
COVERAGE is the probability  that the specific experiment does  contain 
the   true value irrespective of what the true value is 
 
On the infinite ensemble of experiments, for a continuous variable 
Coverage and CL tend to coincide 
 
In counting  experiments  the variables are discrete and CL and Coverage  
do not coincide 
 
What is requested is the minimum overcoverage 
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Wald 
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t  is the quantile of the  normal distribution 

t 

 

t=1, area 84% 
Quantile =0.84 
P[|f-p|<t ]= 68% 
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Counting experiments: Binomial case 

Wilson interval 
 (1934) 

Wald   (1950) 
Standard in Physics 
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A further improvement: 
The continuity correction is equivalent to  
The Clopper-Pearson formula 
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This should  become the standard  
formula also for physicists 



 20 events have been generated and 5 passed the cut  
What is the estimation of the efficiency with CL=90%? 

Frequentist result: 

  =[0.104, 0.455] 

x=5, n=20, CL=90% 

1, 2 
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Elementary example  

x=5 

PDG  

n
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tf
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    =[0.090, 0.410] 



 20 events have been generated and 5 passed the cut  
What is the estimation of the efficiency with CL=90%? 

Frequentist result: 

  =[0.104, 0.455] 

x=5, n=20, CL=90% 

1, 2 
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Elementary example  

x=5 

PDG  

  =[0.145, 0.405] 
,
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Coverage simulation 
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x =  gRandom  → Binomial(p,N)            → x 
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p 

p1 
p2 

TMath:: BinomialI(p,N,x) 

k++ f=k/n 

p2 
p1 

0ne expects f~ CL   

x/n x/n 
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N=50   
CL=0.90 

Simulate many x  with a true p and check when the intervals contain 
the true value p . Compare this frequency with the stated CL 
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n=10 

PDG 

NEW 

STD 
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n=80 

STD 

PDG 

NEW 
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N=20  CL=0.90   Interval amplitude 

likelihood 

frequentist 

Wilson cc 

Wilson 

x 
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Wald 

t  is the quantile of the  normal distribution 

t 

 

t=1, area 84% 
Quantile =0.84 
P[|f-p|<t ]= 68% 
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Counting experiments: Poisson case 

Not used (why?) 

Standard in Physics 

42
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Counting experiments: new formula for the 
Poisson case 

Wilson interval with  Continuity correction 
gives the same results as …  

Exact frequentist 
Clopper Pearson (1934)  (PDG) 
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PDG 

NEW 

STD 
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n=20 

Accurate at 2% for  n>300 
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Accurate at 2% for  n>10 
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n=10 



Accurate at 2% for x>80 
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Accurate at 2% for x>0 
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See    A. Rotondi                     NIM A 614(2010)105 
        S. Costanza, A. Rotondi NIM A  669(2012)85 



Pile-up 
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(“dynamic”  efficiency) 
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…..from textbooks 

Dead time= minimum amount of time between two 
 pulses so that they are recorded as separate pulses 
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….. from textbooks 
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a) Paralyzable (extending) dead time   
a count is possible only after a dead time 
from the last arrival 
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b) Non-Paralyzable dead time   
A count is possible after a dead time 
from the last count 

Fraction dead = 
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Loss rate =  
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….. from textbooks 

r=1/     r/robs=1/e=0.368 
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Extended            non extended 
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Pile-up 
spectrum 
distortion 

Count loss 

Beam (trigger) 
 pile-up 

Interaction 
(detector) 
 pile-up 
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An example of a Xilinx Spartan 6 FPGA 
programming/evaluation board 

http://en.wikipedia.org/wiki/Xilinx


Ho to deal with pile-up? 

   -  to measure dead time and live time 

    - with the Time-To-Count  technique, the 
detector is armed at the same time a counter is 
started. When a strike occurs, the counter is 
stopped for a time longer than the supposed dead 
time.The  rate r is thus measured, not 
estimated:<t>=1/r. 

 

 - to use a pile-up rejection system 

 - to  use digital methods in  ADC signal processing  
  

34 



35 

Unfolding  Methods 

g=f* 



Folding is a common process in 
physics 

36 

signal Apparatus 
response 

Observed signal 

 xyxxfygyxxf d),()()(),()( 
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phyisics 

apparatus 

observer 

g=f* 

Convolution is a linear folding 
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Fourier Techniques 
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original Poisson 
statistics 

Gaussian 
smearing 

Fourier 
 restored 

g=*(fR) 

fR 
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original 

Poisson 
statistics 

Gaussian 
smearing 

Fourier 
(un)restored 

g=f* 

g=f*R 
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original 

Poisson 
statistics 

Gaussian 
smearing 

Fourier 
(un)restored 



A reminder….. 

(Bayes theorem) 
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1D Unfolding: Bayesian iterative algorithm 
Alice, Atlas,(RooFit), PHYSTAT2011 

resolution 

efficiency 
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1D Unfolding: Bayesian  
algorithm 
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Efficiency and resolution 
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Bayesian  algorithm- starting solution: the data 

Gaussian spread     ± 4 channels  

true 

unfolded 

Folded with the solution 

data 

=1.2 
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Bayesian  algorithm- starting solution: uniform 

Gaussian spread     ± 4 channels  

true 

unfolded 

Folded with the solution 

data 
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Why these oscillations?: 
The smeared 
distributions of two input 
distributions cannot be 
distinguished if they 
agree on a large scale of 
x but differ by 
oscillations on a 
“microscopic” scale much 
smaller than the 
experimental resolution 

or  

to increase the DoF by using 

a parametric model 
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 Poisson likelihood fit with penalty regularization 
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Statistical effects 
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The iterative  
principle 

) 

(26) 
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The  
iterative  
Principle 
without 
best fit 

Bad! 
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The iterative  
algorithm + 
best fit + 
MaxEnt 
regularization 
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Bayesian  
algorithm 
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ATHENA experimental set-up 
ATHENA apparatus 

Silicon micro

strips

CsI

crystals

511 keV 

511 keV 




 Charged tracks to reconstruct antiproton 

annihilation vertex. 

Identify 511 keV photons from e+-e- 

annihilations. 

Identify space and time coincidence of the 

two  with ± 5 mm and 5 s resolution  

(Probability of a random coincidence: 

 0.6% per pbar annihilation without  

considering detection efficiency) 
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From the ATHENA detector 

Pbar-only  
(with electrons) 

x 

y 

cm 
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Cold Mix data 
Hbar (MC)        BCKG 

(HotMixData) 

Pbar vertex XY projection (cm) 

x = 0.65 ± 0.05 

x  Hbar             +  (1-x) BCKG         =                      Cold Mix 

Hbar percentage 

Annihilation vertex in the  trap x-y plane 

ML  Fit Result 
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Iteratve best fit  
(Bayesian) method 
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Conclusions on unfolding 

• iterative algorithms are used in  
  unfolding (ill posed) problems  
 
• sometimes they need a Bayesian                              
 regularization term 
 
• when there are degrees of freedom, one 
  can use a best fit of a signal+background  
  function to the data  
 
• to find a reliable error for the solution is    
 still an open problem 



    

 

                      END 
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Errors 
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Efficiency calculation: an  OPEN PROBLEM!! 
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Wilson interval (1934) 

Bayes.This is not frequentist 
but can be tested   
in a frequentist way 

Wald   (1950) 
Standard in Physics 

Exact frequentist 
Clopper Pearson (1934)  (PDG) 
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Statistics of counting 
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The vertex algorithm resolution  
function is gaussian with 
         mm 3

The 2D deconvolution reveals 
two different annihilation modes 

Cold Mix 

exp background 

Cold Mix data 
Iterative best fit (residual) method 
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antihydrogen !!!!!!!!!! FIRST COLD ANTIHYDROGEN PRODUCTION & DETECTION (2002) 
M. Amoretti et al., Nature 419 (2002) 456 
M. Amoretti et al., Phys. Lett. B 578 (2004) 23 

SIGNAL ANALYSIS:  
 

opening angle 
xy vertex distribution 

radial vertex distribution 
 

 65 % +/- 10% of 
annihilations 

are due to antihydrogen 
 

between 2002 & 2004  
more than 2 millions  
antihydrogen atoms 
have been produced 

that’s  about 2 x 10-15 mg 
 .. or .. 1000 Giga years for a gram 
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The pile-up distributions 
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Simulate many x  with a true p 
and check when the intervals 
contain the true value p . Compare 
this frequency with the stated CL 

CL=0.95, n=50 



• With pile-up the time distribution deviates from the 
exponential 

 

• the property  ->                                                   in this case                      
                  does not hold 

 

• If one collects a sample of ti , subtracs a common time T, 

discard the differences (ti-T)<0 and calculates 

                  

      

 

     one sees that the property above is satisfied when 

     T>dead time 

Paralyzable Dead time determination 
Meeks and Siegel Am.J.Phys. 76(2008)659 
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To fold … 
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Initial 
parameter 
 set 

 

Compare  (c2) 
g(x,) with g(x) 

 

New  
Parameter    
set 

YES 
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The iterative  
algorithm + 
best fit + 
Tichonov 
regularization 
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The iterative  
Principle 
without 
best fit 

Good! 
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The iterative  
algorithm + 
best fit + 
Tichonov 
regularization 
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The  
iterative  
Principle 
without 
best fit + 
smoothing 
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original Poisson 
statistics 

Gaussian 
smearing 

Fourier 
 restored 
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original 

Poisson 
statistics 

Gaussian 
smearing 

Fourier 
(un)restored 
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Regularization 
terms 
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Deterministic algorithms 
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Image Deconvolution 
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signal Apparatus 
response 

Observed signal 
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g=f* 


