Nucleon axial, tensor, and scalar charges and σ -terms in lattice QCD

16th European Research Conference on Electromagnetic Interactions with Nucleons and Nuclei

Constantia Alexandrou^{a,b}, Simone Bacchio^b, Jacob Finkenrath^c, Christos Iona^{a,b}, Giannis Koutsou^b, Yan Li^a, Gregoris Spanoudes^a

^aDepartment of Physics, University of Cyprus, Nicosia, Cyprus

^bComputation-based Science and Technology Research Center, The Cyprus Institute, Nicosia, Cyprus

^cTheoretische Teilchenphysik, Bergische Universität Wuppertal, Germany

Introduction

We present our calculation for the nucleon axial, scalar and tensor charges at the continuum limit using Lattice Quantum Chromodynamics simulations.

- We analyze three $N_f = 2 + 1 + 1$ twisted mass fermion ensembles with all quark masses tuned to approximately their physical values.
- We also include preliminary results for the isovector quantities with a fourth, finer lattice spacing ensemble.

Motivation

- The nucleon axial, tensor, and scalar charges, together with the σ -terms, are fundamental quantities that reveal the internal structure of the nucleon within the Standard Model.
- The axial charge, g_A^{u-d} , governs neutron β -decay and probes chiral symmetry breaking, CKM unitarity, and neutrinoless double- β decay.
- Flavor-diagonal axial charges, g_A^f , describe the intrinsic quark spin contribution to the nucleon spin, measured in polarized deep inelastic scattering experiments and planned for further study at the Electron-Ion Collider (EIC).
- The isovector scalar charge g_S^{u-d} links the neutron–proton mass difference to quark mass splitting, while the tensor charge g_T encodes the first moment of the transversity PDF.
- Flavor-diagonal tensor charges connect quark electric dipole moments to the neutron EDM, probing CP violation.
- The tensor and scalar charges are important for constraining possible Beyond Standard Model interactions and interpreting results from neutrino and dark matter experiments.
- ullet The nucleon σ -terms quantify the contribution of quark masses to the nucleon mass and are essential for predicting dark matter–nucleon scattering cross sections.

Methodology

• The nucleon charges for each quark flavor f, denoted as $g_{A,T,S}^f$, are extracted from the matrix elements of the corresponding axial, tensor, and scalar operators at zero momentum transfer:

$$\langle N | \bar{\psi}^f \Gamma_{A,S,T} \psi^f | N \rangle = g_{A,T,S}^f \bar{u}_N \Gamma_{A,S,T} u_N , \qquad (1)$$

• The renormalization group invariant σ^f -term is given by

$$\sigma^f = m_f \langle N | \bar{\psi}^f \psi^f | N \rangle, \qquad (2)$$

with m_f the mass of the quark with flavor f.

- Nucleon charges are extracted by combining two- and three-point nucleon correlation functions.
- There are both connected and disconnected contributions to the nucleon three-point function. These are illustrated in Fig.1.

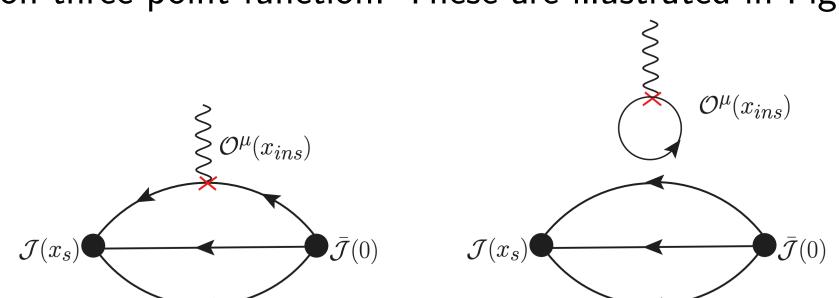


Figure 1: Connected (left) and disconnected (right) contributions of a baryon three-point function.

• The axial case, for example, is given as the ratio of the axial current three- to two-point function for $\vec{p} = \vec{q} = 0$:

$$R_{\mu}^{A}(t_s, t_{ins}) = \frac{C_{\mu}^{3pt}(\Gamma_k; t_s, t_{ins})}{C^{2pt}(t_s)} \xrightarrow[t_{ins} \to \infty]{} t_{ins} \to \infty$$
 $g_A.$ (3)

- In the large time separation limit, the ratio converges to the corresponding charge, e.g., g_A .
- All quantities are computed at the physical point, eliminating the need for chiral extrapolation.

Reference

C. Alexandrou, S. Bacchio, J. Finkenrath, C. Iona, G. Koutsou, Y. Li, and G. Spanoudes, Nucleon charges and σ -terms in lattice QCD, Phys. Rev. D 111, 054505 (2025), arXiv:2412.01535 [hep-lat].

Results

- The calculated nucleon matrix elements are renormalized nonperturbatively by employing the RI'/MOM scheme followed by perturbative conversion to the $\overline{\rm MS}$ scheme at the reference scale of 2 GeV.
- We obtain final results via a model-averaged continuum extrapolation $(a \to 0)$, combining linear and constant fits in a^2 with weights reflecting lattice spacing dependence. For the isovector quantities, we perform a continuum limit extrapolation using four ensembles. The extrapolation for g_A^{u-d} is shown in Fig. 2.
- In Fig. 3 we compare our preliminary results for the isovector charges with other lattice QCD determinations, observing good overall agreement.

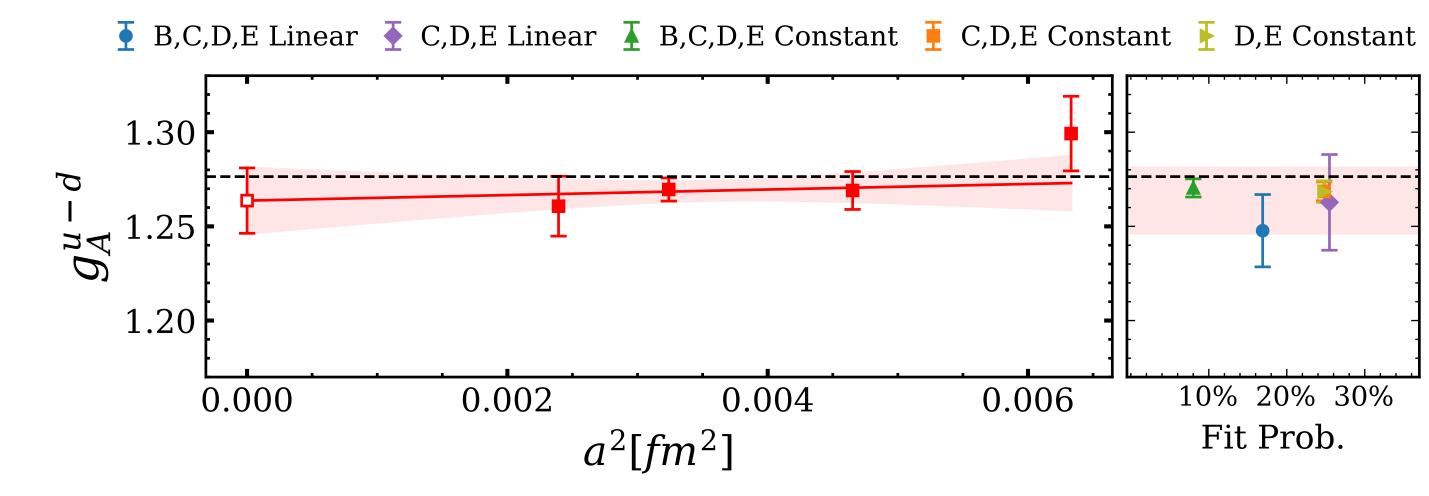


Figure 2: Continuum limit extrapolation of the nucleon isovector axial charge using four ensembles (left) and the corresponding fit weights (right). The dashed line represents the experimental value.

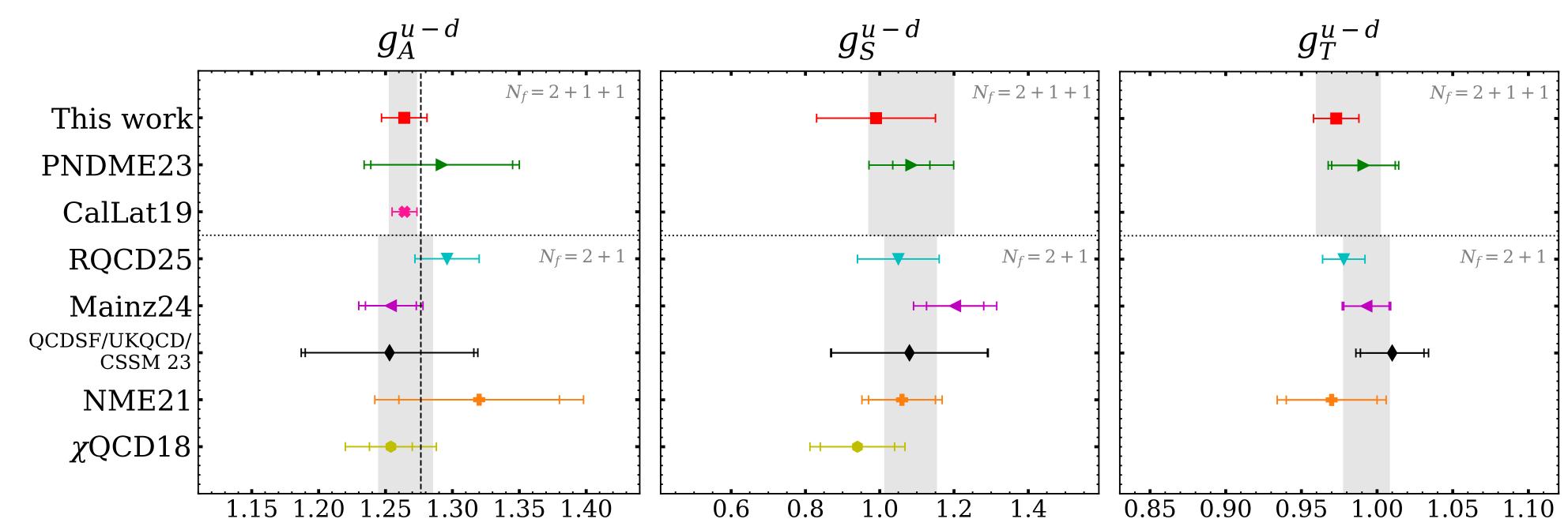


Figure 3: Comparison of our results with other lattice QCD works for the isovector charges. Our results are shown with the red squares. The gray bands show the FLAG24 averages for $N_f = 2 + 1 + 1$ and $N_f = 2 + 1$. The dashed line in g_A^{u-d} represents the experimental value.

- In this work, we also calculate the nucleon σ -terms, using the three coarser ensembles. The value of σ^{u+d} , also referred to as $\sigma^{\pi N}$, is determined from phenomenological analyses using experimental inputs.
- In Fig. 4, we compare our results for the nucleon σ -terms with other lattice and phenomenological determinations. Most lattice results show good agreement, while our values, like others, remain lower than phenomenological estimates, which tend to give larger values.

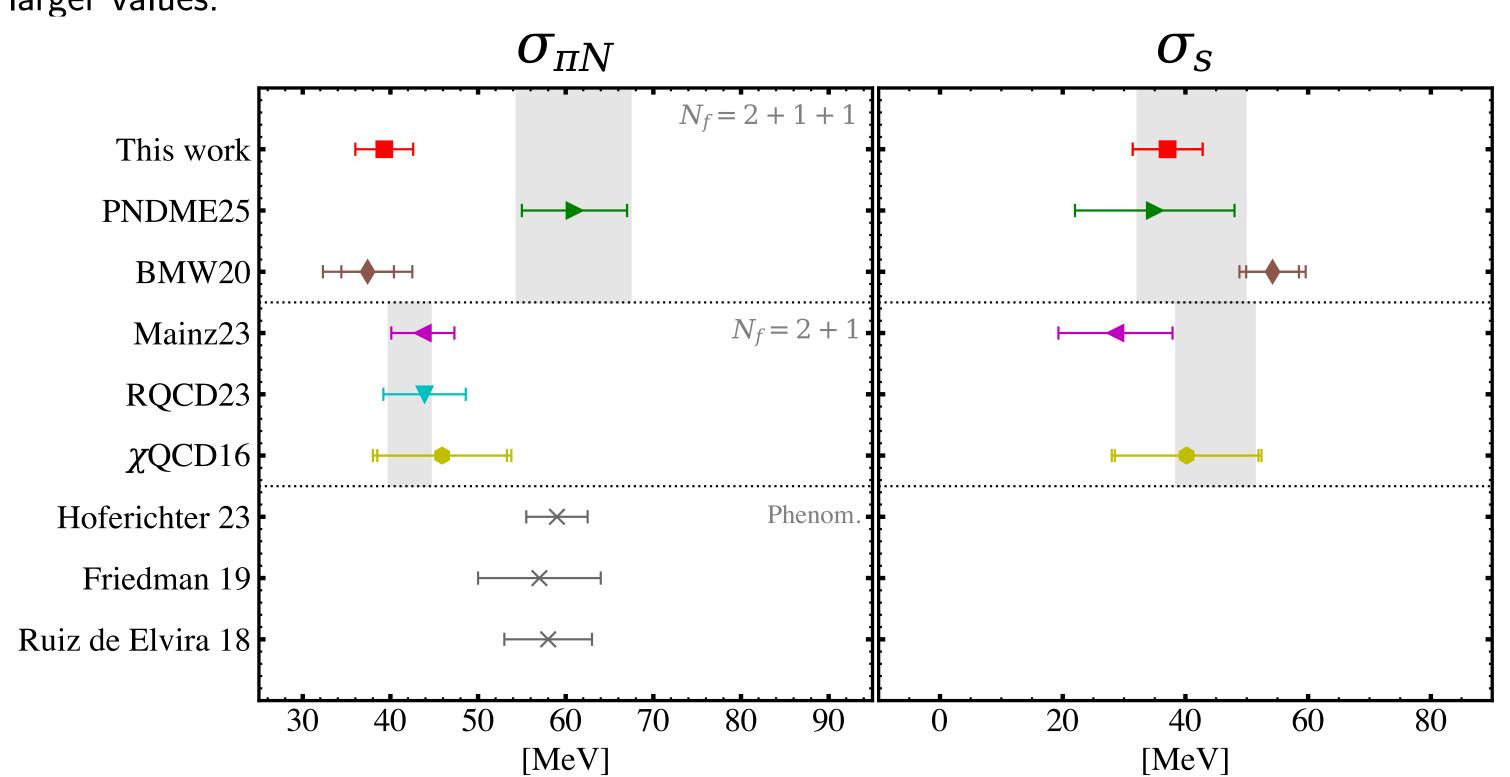


Figure 4: Comparison of our results for the nucleon σ -terms with other lattice calculations and phenomenological estimates for $\sigma_{\pi N}$. Our results are shown with red squares. The gray bands show the FLAG24 averages. Results from phenomenology are shown with gray crosses.

Conclusions and Future outlook

- In this work we calculate the nucleon axial, scalar and tensor charges, as well as the nucleon σ -terms at the continuum limit using only physical point ensembles, thus avoiding chiral extrapolations.
- Our results are in agreement with results by other collaborations. The value we get for the isovector axial charge also agrees with the experimental value.
- Our value for $\sigma_{\pi N}$ is in agreement with most lattice results, but phenomenological results tend to give larger values.
- These results provide benchmark values for nucleon structure parameters directly at the physical point.
- Our future goal is to include the fourth ensemble with a finer lattice spacing of $a \approx 0.05$ fm at full statistics, for all quantities in the analysis.
- This finer ensemble will further refine our continuum limit extrapolations and increase the accuracy of our final values.

