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Introduction

We present our calculation for the nucleon axial, scalar and tensor
charges at the continuum limit using Lattice Quantum Chromo-
dynamics simulations.

• We analyze three Nf = 2+ 1 + 1 twisted mass fermion ensem-
bles with all quark masses tuned to approximately their physical
values.

• We also include preliminary results for the isovector quantities
with a fourth, finer lattice spacing ensemble.

Motivation

• The nucleon axial, tensor, and scalar charges, together with
the σ-terms, are fundamental quantities that reveal the internal
structure of the nucleon within the Standard Model.

• The axial charge, g u−d
A , governs neutron β-decay and probes

chiral symmetry breaking, CKM unitarity, and neutrinoless
double-β decay.

• Flavor-diagonal axial charges, g f
A, describe the intrinsic quark

spin contribution to the nucleon spin, measured in polarized
deep inelastic scattering experiments and planned for further
study at the Electron-Ion Collider (EIC).

• The isovector scalar charge g u−d
S links the neutron–proton mass

difference to quark mass splitting, while the tensor charge gT
encodes the first moment of the transversity PDF.

• Flavor-diagonal tensor charges connect quark electric dipole mo-
ments to the neutron EDM, probing CP violation.

• The tensor and scalar charges are important for constraining
possible Beyond Standard Model interactions and interpreting
results from neutrino and dark matter experiments.

• The nucleon σ-terms quantify the contribution of quark masses
to the nucleon mass and are essential for predicting dark mat-
ter–nucleon scattering cross sections.

Methodology

• The nucleon charges for each quark flavor f , denoted as g f
A,T,S,

are extracted from the matrix elements of the corresponding
axial, tensor, and scalar operators at zero momentum transfer:

⟨N |ψ̄f ΓA,S,Tψ
f |N⟩ = g f

A,T,SūNΓA,S,TuN , (1)

• The renormalization group invariant σf -term is given by

σf = mf ⟨ N |ψ̄fψf |N⟩, (2)

with mf the mass of the quark with flavor f .

• Nucleon charges are extracted by combining two- and three-
point nucleon correlation functions.

• There are both connected and disconnected contributions to the
nucleon three-point function. These are illustrated in Fig.1.

Figure 1: Connected (left) and disconnected (right) contributions of a baryon
three-point function.

• The axial case, for example, is given as the ratio of the axial
current three- to two-point function for p⃗ = q⃗ = 0:

RA
µ (ts, tins) =

C 3pt
µ (Γk; ts, tins)

C 2pt(ts)

ts−tins→∞−−−−−−→
tins→∞

gA. (3)

• In the large time separation limit, the ratio converges to the
corresponding charge, e.g., gA.

• All quantities are computed at the physical point, eliminating
the need for chiral extrapolation.
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Results

• The calculated nucleon matrix elements are renormalized nonperturbatively by employing the RI′/MOM scheme followed
by perturbative conversion to the MS scheme at the reference scale of 2 GeV.

• We obtain final results via a model-averaged continuum extrapolation (a → 0), combining linear and constant fits
in a2 with weights reflecting lattice spacing dependence. For the isovector quantities, we perform a continuum limit
extrapolation using four ensembles. The extrapolation for g u−d

A is shown in Fig. 2.

• In Fig. 3 we compare our preliminary results for the isovector charges with other lattice QCD determinations, observing
good overall agreement.
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Figure 2: Continuum limit extrapolation of the nucleon isovector axial charge using four ensembles (left) and the corresponding fit weights (right).
The dashed line represents the experimental value.
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Figure 3: Comparison of our results with other lattice QCD works for the isovector charges. Our results are shown with the red squares. The gray
bands show the FLAG24 averages for Nf = 2 + 1 + 1 and Nf = 2 + 1. The dashed line in g u−d

A represents the experimental value.

• In this work, we also calculate the nucleon σ-terms, using the three coarser ensembles. The value of σu+d , also referred
to as σπN, is determined from phenomenological analyses using experimental inputs.

• In Fig. 4, we compare our results for the nucleon σ-terms with other lattice and phenomenological determinations. Most
lattice results show good agreement, while our values, like others, remain lower than phenomenological estimates, which
tend to give larger values.
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Figure 4: Comparison of our results for the nucleon σ-terms with other lattice calculations and phenomenological estimates for σπN . Our results
are shown with red squares. The gray bands show the FLAG24 averages. Results from phenomenology are shown with gray crosses.

Conclusions and Future outlook

• In this work we calculate the nucleon axial, scalar and tensor charges, as well as the nucleon σ-terms at the continuum
limit using only physical point ensembles, thus avoiding chiral extrapolations.

• Our results are in agreement with results by other collaborations. The value we get for the isovector axial charge also
agrees with the experimental value.

• Our value for σπN is in agreement with most lattice results, but phenomenological results tend to give larger values.

• These results provide benchmark values for nucleon structure parameters directly at the physical point.

• Our future goal is to include the fourth ensemble with a finer lattice spacing of a ≈ 0.05 fm at full statistics, for all
quantities in the analysis.

• This finer ensemble will further refine our continuum limit extrapolations and increase the accuracy of our final values.
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