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Why Electromagnetic Form Factors?
➢ Gives us insight into the structure of hadrons.

➢ Several experimental results for protons, as it is 
a stable hadronic bound state. Earliest 1956.

➢ Experimentally, it is essentially elastic 
scattering of protons with electrons.

➢ Proton radius puzzle: A longstanding 
discrepancy between different experimental 
results for proton radii.
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Electromagnetic form factors
➢ Interested in theoretically probing the 

structure of nucleons using lattice QCD.

 2



Electromagnetic form factors
➢ Interested in theoretically probing the 

structure of nucleons using lattice QCD.

➢ The nucleon matrix element of for the 
electromagnetic current is given by: 

 2



Electromagnetic form factors

 2

➢ Interested in theoretically probing the 
structure of nucleons using lattice QCD.

➢ The nucleon matrix element of for the 
electromagnetic current is given by: 



Lattice gauge theories: Introduction
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Elements of the 
gauge group: 

SU(3), U(1)

A lattice with N = 6 lattice sites in each direction.



Lattice gauge theories: Introduction
➢ Continuum field theories: Infinite 

DOF, numerically intractable.

➢ Discretize the space-time: Replace 
continuum with a grid.

➢ Numerically accessible.

 3

a

Uμ(x) : Gauge Fields

𝝍 : Fermions

Elements of the 
gauge group: 

SU(3), U(1)

A lattice with N = 6 lattice sites in each direction.

In this formulation the expectation value of an observable (without fermions) is given by:



Lattice gauge theories: Introduction
➢ Continuum field theories: Infinite 

DOF, numerically intractable.

➢ Discretize the space-time: Replace 
continuum with a grid.

➢ Numerically accessible.

 3

a

Uμ(x) : Gauge Fields

𝝍 : Fermions

Elements of the 
gauge group: 

SU(3), U(1)

A lattice with N = 6 lattice sites in each direction.

In this formulation the expectation value of an observable (without fermions) is given by:



Continuum limit and lattice setup
➢ Continuum limit needed to 

extract physical values. 

 4



Continuum limit and lattice setup
➢ Continuum limit needed to 

extract physical values. 
Extrapolate 

to the 
continuum

a → 0

Keep physical volume (aN)D constant (D=2 above).

 4



Continuum limit and lattice setup
➢ Continuum limit needed to 

extract physical values. 
Extrapolate 

to the 
continuum

a → 0

Keep physical volume (aN)D constant (D=2 above).
➢ We use three ensembles with 

Nf=2+1+1 from ETMC.

 4



Continuum limit and lattice setup
Extrapolate 

to the 
continuum

a → 0

Keep physical volume (aN)D constant (D=2 above).

➢ We use clover improved, twisted-mass fermions (O(a) improved).

 

 4

➢ Continuum limit needed to 
extract physical values. 

➢ We use three ensembles with 
Nf=2+1+1 from ETMC.



Continuum limit and lattice setup
Extrapolate 

to the 
continuum

a → 0

Keep physical volume (aN)D constant (D=2 above).

➢ We use clover improved, twisted-mass fermions (O(a) improved).

➢ At physical point, no chiral extrapolation needed.
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➢ Continuum limit needed to 
extract physical values. 

➢ We use three ensembles with 
Nf=2+1+1 from ETMC.



Correlators in lattice QCD
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➢ Two point correlator: 
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➢ Two point correlator: 

➢ Relative Error increases 
exponentially



Fitting correlators
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Nucleon matrix element on lattice
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➢ We take the two-point and three-point 
functions to momentum space.



Nucleon matrix element on lattice

➢ We take the two-point and three-point 
functions to momentum space.

➢ We construct the following ratio to get rid of 
exponentials and overlaps.
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Connected contributions

➢ For connected contribution, the sink 
momenta is set to 0.

➢ The number of source positions are 
increased for increasing ts, to counter 
increase in noise.

➢ Lattice conserved current used, no 
renormalization needed.
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Disconnected contributions

➢ Disconnected contribution is obtained 
from correlating high statistics 
two-point function with disconnected 
quark loop. Alexandrou et. al 
[1812.10311]

➢ Disconnected loop computed using 
deflation, hierarchical probing, 
dilution.

➢ Local current used, renormalization 
required.
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Excited state contamination

10

➢ We are interested in the ground state matrix element of nucleons.

➢ For connected and disconnected, we do a multi-state fit using spectral decomposition.

➢ Excited state energies are kept separate between two and three-point fns [2104.00329].



Extraction of Form Factors and Model Averaging
➢ This is done for each Q2 value.
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Extraction of Form Factors and Model Averaging
➢ This is done for each Q2 value.

➢ We vary the ranges for two-point function ts,min and three-point function ts,min and tins,min 
.

➢ Results from all fits are then model averaged[2309.05774].

➢ For each fit we have 𝝌2,i and the Ni
dof= (Ndata- Nparams). Assign weight wi = (-0.5𝝌2,i + Ni

dof).

➢ Probability = ewi/∑ie
wi
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➢ The strange moment is obtained simply by taking the value at Q2 = 0:

Determination of radius and magnetic moment
➢ Once we have the parameterization of Q2 and a2, the radius can be obtained by:
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Parameterization of Q2 Dependance and continuum limit
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Parameterization of Q2 Dependance and continuum limit

z-expansion
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Parameterization of Q2 Dependance and continuum limit

Dipole Galster-like
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z-expansion



Example fits: Proton magnetic form factors
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Results on Proton and Neutron
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[2507.20910]



Comparison of results
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Final results:
[2507.20910]



Why Strange Electromagnetic Form Factors?

➢ Gives us insight into the sea quark dynamics and has a very small contribution to 
proton and neutron results.

➢ Experimentally measured through parity violating electron-proton elastic scattering.

➢ The difference in 𝞼L and 𝞼R comes from the interference of photon exchange amplitude  
with the amplitude of Z0 boson exchange.

➢ Experimental results do not exclude zero value.

➢ Want to calculate it from first principle lattice calculation.
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Strange electromagnetic matrix element
➢ Interested in theoretically probing the 

structure of nucleons using lattice QCD.

➢ The nucleon matrix element of for the 
electromagnetic current is given by: 
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Nucleon strange matrix element on lattice

➢ We take the two-point and three-point 
functions to momentum space.
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Nucleon strange matrix element on lattice

➢ We take the two-point and three-point 
functions to momentum space.
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Matrix element in terms of correlators

➢ We take an appropriate ratio of the two-point 
and three-point functions.

➢ This gives the ground state matrix element in 
large time separation limit upto kinematics.
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Disconnected contributions

➢ Disconnected contribution is obtained 
from correlating high statistics 
two-point function with disconnected 
quark loop (Alexandrou et. al 
[1812.10311, 1909.10744]).

➢ Disconnected loop computed using 
hierarchical probing, dilution.

➢ Local current used, renormalization 
required.
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Additional sink momenta
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➢ Once we obtain the quark loop and two-point functions we can correlate them using 
additional sink momenta at no additional cost.

➢ We thus use p’2=2.

➢ This increases the Q2 value to O(300) for each ensemble.

➢ We make use of Singular Value decomposition in obtaining results for each Q2.



Excited state contamination

➢ We are interested in the ground state matrix element of nucleons.
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Excited state contamination

➢ We are interested in the ground state matrix element of nucleons.

➢ Given no indication of excited state with the current statistical accuracy we opt 
to do a plateau fit to the optimized ratio. Example for E ensemble.
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Strange electric form factors
➢ The procedure is repeated for all Q2 values for electric case resulting in the following.

➢ Results are binned into 23 bins.
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Strange magnetic form factors
➢ The procedure is repeated for all Q2 values for magnetic case resulting in the following.

➢ Results are binned into 23 bins.
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Strange magnetic form factors
➢ The procedure is repeated for all Q2 values for magnetic case resulting in the following.

➢ Results are binned into 23 bins.

➢ Example of convergence in source-sink separation, ts on right for E ensemble.
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Strange electric form factors with an example fit

➢ Strange electric form factor with 
z-expansion fit.

➢ The bottom band shows the 
convergence with kmax and prior width 
as in [2507.20910].

➢ The blue band is result from one step 
Galster-like only for comparison.
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Strange magnetic form factors with an example fit

➢ Strange magnetic form factor with 
z-expansion fit.

➢ The bottom band shows the 
convergence with kmax and prior width.

➢ The blue band is result from one step 
dipole ansaetz only for comparison.
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Q2 variation

➢ We perform a model average using AIC over 
the following:

➢ We vary the cut in Q2 used in fit.

➢ We vary over the different ansaetz.
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Results with experimental comparison

➢ Strange electric form factor at Q2=0.1 GeV2 compared through 95% confidence curves.
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Comparison with previous lattice works

➢ We present a comparison of our preliminary results with previous lattice works.
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Summary

➢ We have results for proton, neutron and nucleon strange electromagnetic form 
factors at continuum limit, at physical point.

➢ Results include disconnected contributions with additional sink momenta.

➢ Multi-state fits used to ensure ground state convergence.

➢ Ongoing efforts to increase E ensemble statistics. We acknowledge early access 
to jupiter for this.

This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Marie Skłodowska-Curie grant agreement No 101034267.

This work was also supported by the project PulseQCD co-funded by the EU within the 
framework of the Cohesion Policy Programme “THALIA 2021-2027".

Thank you!
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