Contribution ID: 109 Type: Poster

## **Low-Mode Averaging for Precision Lattice QCD Correlation Functions**

Precision calculations from lattice Quantum Chromodynamics (QCD) play a crucial role in connecting the theory of strong interactions to experimental measurements. A central challenge is controlling statistical uncertainties in correlation functions. We explore the use of Low Mode Averaging (LMA), a noise reduction technique that exploits the low-lying eigenmodes of the Dirac operator to capture the dominant long-distance physics efficiently. LMA enables precision improvements in two- and three-point correlation functions that would otherwise be out of reach. These gains are particularly relevant for quantities like nucleon charges and the hadronic contributions to the muon anomalous magnetic moment (g-2), where they allow for more robust comparisons between theoretical predictions and experimental measurements.

Author: SCHNEIDER, Christian (University of Cyprus)

Presenter: SCHNEIDER, Christian (University of Cyprus)

Session Classification: Poster session