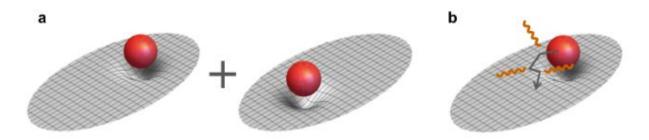
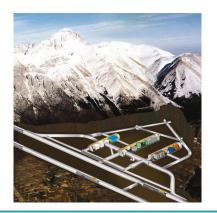


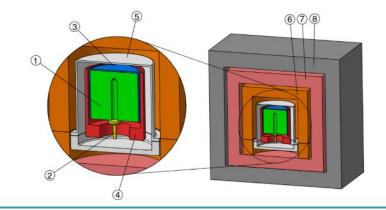
- Testing Collapse Models through Spontaneous Emission
- Emission Rate in the Low-Energy Regime:
 - Rate Calculations and Cancelation Effects


- Testing Collapse Models through Spontaneous Emission
- Emission Rate in the Low-Energy Regime:
 - Rate Calculations and Cancelation Effects

The Measurement Problem and Collapse Models

- Quantum Mechanics: Allows precise predictions, but superposition principle is not observed in macroscopic systems.
- Collapse Models: Propose that quantum mechanics' linearity breaks down at a certain scale to solve the measurement problem (GRW,DP,CSL,Károlyházy,...)
 - Continuous Spontaneous Localization (CSL)
 - Diósi-Penrose (DP)

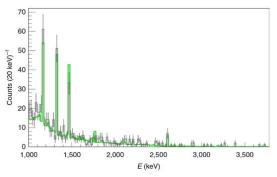


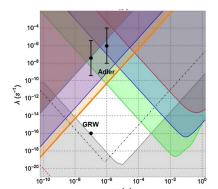


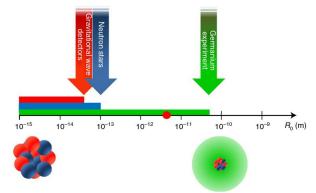
How to test Collapse Models?

- Unavoidable side effect of the Stochastic Collapse Dynamics: Brownian-like diffusion of the system in space
- Charged particles emit spontaneous radiation. We search for spontaneous radiation emission from a germanium crystal and the surrounding materials in the experimental apparatus.

Gran Sasso environment (LNGS) low-background enhanced sensitivity 3600 m w.e.

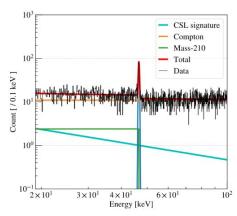




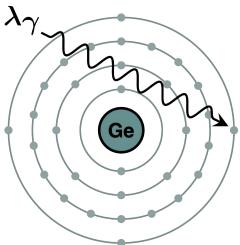

How to test Collapse Models?

Strategy:

- Simulate the background from all the known emission processes
- Perform a Bayesian inference of the residual spectrum with the theoretical prediction
- Extract the PDF of the Model Parameters
- Bound the Parameters


Donadi, Sandro, et al. "Underground test of gravity-related wave function collapse." Nature Physics 17.1 (2021): 74-78.

EINN2025



Testing Emission Rate at Low-Energy

- Theoretical spectrum follows a ~1 / E dependence, implying a diverging rate at low energies
- **Low-Energy Region** is the most promising to observe or constrain collapse-induced radiation and discriminate different models

- Testing Collapse Models through Spontaneous Emission
- Emission Rate in the Low-Energy Regime:
 - Rate Calculations and Cancelation Effects

- Testing Collapse Models through Spontaneous Emission
- Emission Rate in the Low-Energy Regime:
 - Rate Calculations and Cancelation Effects

Atomic Structure Effects on the Emission Rate at Low-Energy

 Dissipative dynamics of collapse models is described by a master equation:

$$rac{d\hat{
ho}}{dt} = -rac{i}{\hbar}[\hat{H},\hat{
ho}] - rac{1}{2\hbar^2}\int d^3r d^3r' \mathcal{D}(m{r}-m{r}')[\hat{arrho}(m{r}),[\hat{arrho}(m{r}'),\hat{
ho}]] \quad \hat{arrho}(r) = \sum_{l=1}^n m_l \; \sum_s a_l^\dagger \left(r,s
ight) a_l \left(r,s
ight)$$

• The **spontaneous emission rate** is given by:

$$rac{d\Gamma}{dE} \sim rac{1}{E} \sum_{ij} q_i q_j rac{\sin(k r_{ij})}{k r_{ij}} (-
abla^2 D(r,\omega)) \qquad \qquad -
abla^2 D(r,\omega) = egin{cases} rac{n G}{2\sqrt{\pi} \sigma^3} e^{-r_{ij}^2/4\sigma^2} & ext{(DP)} \ rac{6\hbar^2 \lambda}{4m_0^2 \sigma^3} \Big(1 - rac{r_{ij}^2}{6\sigma^2}\Big) e^{-r_{ij}^2/4\sigma^2} & ext{(CSL)} \end{cases}$$

• For **Radiation Wavelengths** larger than **Interatomic Distances**, the rate simplifies to:

$$rac{d\Gamma}{dE} \sim rac{1}{E}(N_p^2 + N_e)$$

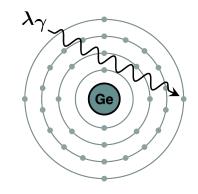
70 60 1,000 1,500 2,000 2,500 3,000 3,500

<u>Donadi, Sandro, et al.</u>
<u>"Underground test of gravity-related wave function collapse." *Nature Physics*17.1 (2021): 74-78.</u>

Low energy limit: Semiclassical Approximation

$$rac{d\Gamma}{dE} \sim rac{1}{E} \sum_{ij} q_i q_j rac{\sin(k r_{ij})}{k r_{ij}} (-
abla^2 D(r,\omega))$$

Proton-Proton term:

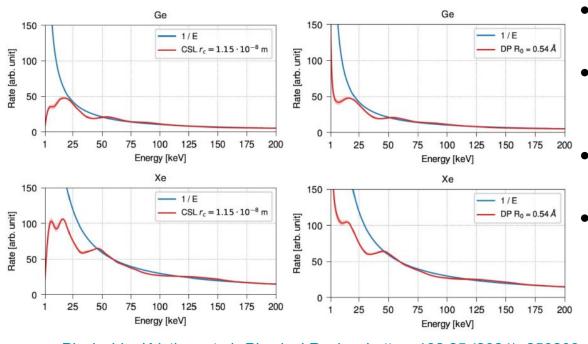

$$|\mathbf{r}_{ip} - \mathbf{r}_{jp}|/\lambda_{\gamma} \ll 1$$
 $(\mathbf{r}_{ip} - \mathbf{r}_{jp})^2/r_C^2 \ll 1$

Proton-Electron term:

$$|\mathbf{r}_{ip} - \mathbf{r}_{je}^{(o)}| = \langle \mathbf{r}_{je}^{(o)} \rangle = \rho_o$$

Electron-Electron term:

$$\begin{cases} |\mathbf{r}_{ie}^{(o)} - \mathbf{r}_{je}^{(o')}| = \langle \mathbf{r}_{ie}^{(o)} - \mathbf{r}_{je}^{(o)} \rangle = \alpha \rho_o & if \quad o = o' \\ |\mathbf{r}_{ie}^{(o)} - \mathbf{r}_{je}^{(o')}| = \langle \mathbf{r}_{ie}^{(o)} - \mathbf{r}_{je}^{(o')} \rangle = (1 - \beta)|\rho_o - \rho_{o'}| & if \quad o \neq o' \end{cases}$$



state nl	occupation	eigenvalue		<r>></r>
		[Hartree]	[eV]	[Bohr]
1s	2.000	-396.251380	-10782.54926	0.048
2s	2.000	-49.051315	-1334.75427	0.214
2р	6.000	-43.720357	-1189.69150	0.185
3s	2.000	-5.960689	-162.19862	0.636
3р	6.000	-4.194670	-114.14278	0.653
3d	10.000	-1.117153	-30.39929	0.733
4s	2.000	-0.426445	-11.60415	2.142
4p	2.000	-0.149906	-4.07915	2.883

Piscicchia, Kristian, et al. Physical Review Letters 132.25 (2024): 250203.

Low energy limit: Semiclassical Approximation

- Differences compared to the ~1/E behaviour!
- Different model (CSL and DP) exhibits different behaviour as function of the energy
- Atomic Cancellation effect in CSL at low energies
- Scheme recently used by XENON experiment

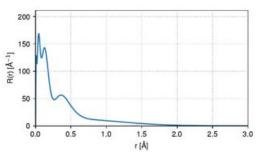
Aprile, E., et al. "Challenging Spontaneous Quantum Collapse with XENONnT." arXiv preprint arXiv:2506.05507 (2025).

Piscicchia, Kristian, et al. Physical Review Letters 132.25 (2024): 250203.

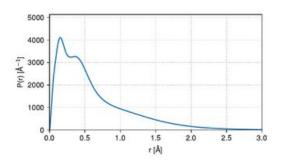
Low energy limit: Radial Distribution Functions (RDFs)

Including realistic Radial Distribution in the Emission Rate formula:

$$rac{d\Gamma}{dE} \sim rac{1}{E} \sum_{ij} q_i q_j rac{\sin(k r_{ij})}{k r_{ij}} (-
abla^2 D(r,\omega))$$

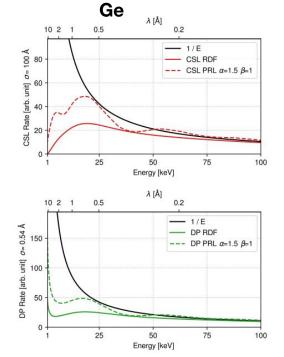

Evaluating the sum with:

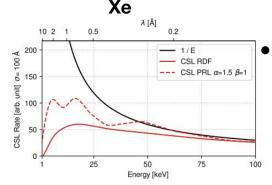
$$rac{d\Gamma}{dE} = rac{1}{E} \sum_{ij} q_i q_j \int_0^\infty dr \, P_{ij}(r) rac{\sin(kr)}{kr} f(r) (-
abla^2 D(r,\omega))$$

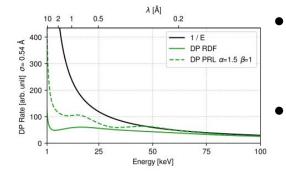

$$P_{ij}(r)dr$$

Probability to find emitters i and j at distance r!

Proton-Electron RDF

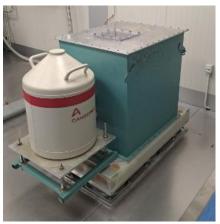


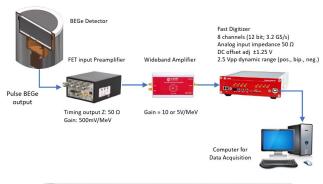

Electron-Electron RDF

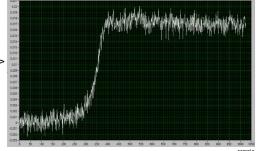


Low energy limit: Radial Distribution Functions

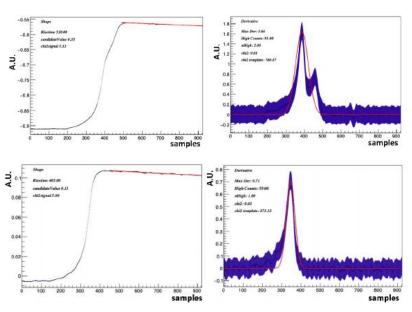
- Recovering former results with RDF:
 - Difference ~1/E
 - Model dependence
 - Cancelation effects
 - Smoother rates due to realistic emitters radial density
- Paper in preparation!


- Testing Collapse Models through Spontaneous Emission
- Emission Rate in the Low-Energy Regime:
 - Rate Calculations and Cancelation Effects




BEGe Detector Emission Rate Measurement at LNGS

- BEGe detector at the Laboratori Nazionali del Gran Sasso (LNGS)
- Spectrum obtained from Waveform acquisition optimized for Low-Energy (< 20 keV) events

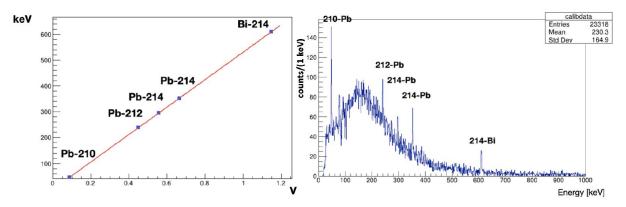


Piscicchia, Kristian, et al. "Optimization of a BEGe Detector Setup for Testing Quantum Foundations in the Underground LNGS Laboratory." Condensed Matter 9.2 (2024): 22.

Pulse Shape Analysis of BEGe 2021 Waveforms

Ad-Hoc **Pulse Shape Analysis (PSA)** on 2021 Data Acquisition

The **PSA** was performed using custom selection criteria:

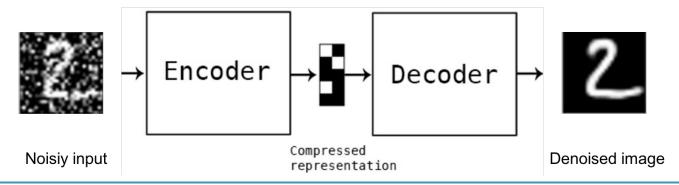

- χ²-score from a template-fit to quantify waveform shape agreement.
- Number of peaks identified in the pulse derivative to distinguish multi-site events.
- 3. **Mean amplitude** at the **start and end** of the waveform to detect slow-rise or flat-top events.

Piscicchia, Kristian, et al. "Optimization of a BEGe Detector Setup for Testing Quantum Foundations in the Underground LNGS Laboratory." Condensed Matter 9.2 (2024): 22.

Minimum Energy Threshold for BEGe with PSA

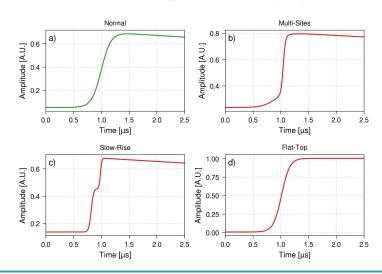
- Validation performed on 2021 spectrum in the 20–1000 keV range
- Energy calibration using Pb and Bi reference peaks (linear response)
 - → Low-energy sensitivity: ~20 keV
 - → High resolution: 2 keV @ 100 keV
 - → Linear calibration with Pb/Bi peaks

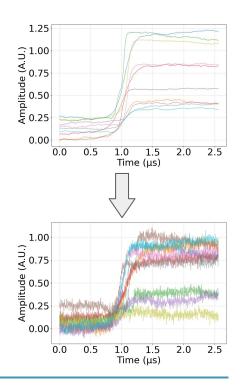
Piscicchia, Kristian, et al. "Optimization of a BEGe Detector Setup for Testing Quantum Foundations in the Underground LNGS Laboratory." Condensed Matter 9.2 (2024): 22.


Improving and Automating PSA with Machine Learning

Using a Denoising Autoencoder (DAE) for Pulse Shape Analysis

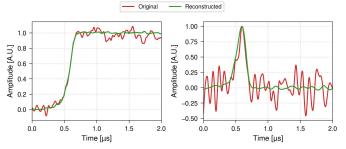
- Enhance waveform quality and automate feature extraction
- Approach:
 - Denoise waveforms using a trained Autoencoder
 - Extract features to build a Labeled Dataset for normal and anomalous events.

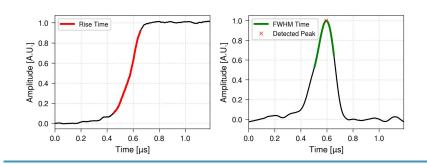

Jason Yip

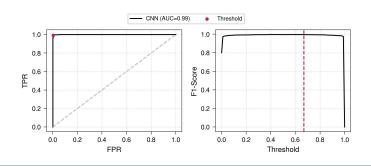


Training the DAE on a Synthetic Dataset

- Synthetic waveforms generated for Normal, Multi-site, Slow-rise, and Flat-top events
- Provide controlled inputs for DAE training and validation
- Enable robust feature learning before applying to real data

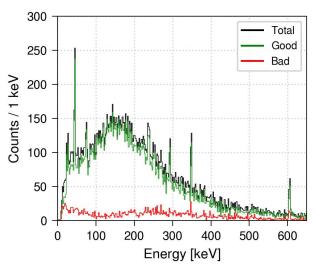


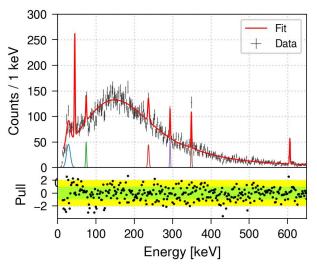



Using DAE on Real BEGe Waveforms

 Cleaning real BEGe waveforms with the Denoising Autoencoder (DAE), compared to a parameter-based filter (e.g., Savitzky–Golay).

- Extracting features from denoised signals to build a labeled waveform dataset.
- Attaching a classifier (e.g., CNN) to distinguish normal from anomalous events.





Building Spectrum from DAE Event Selection

- Spectrum reconstruction from waveform amplitudes using a trapezoidal filter
- Performance improvement compared to manual PSA

- E_{min} ~ 10 keV
- FWHM ~ 1 keV@100 keV
 - S / B improved by 20% over manual PSA

Conclusion

- Testing Collapse Models through Spontaneous Emission
- Emission Rate in the Low-Energy Regime:
 - Rate Calculations and Cancelation Effects

Conclusion

- Testing Collapse Models through Spontaneous Emission
- Emission Rate in the Low-Energy Regime:
 - Rate Calculations and Cancelation Effects

Al-assisted BEGe detector for low-energy analysis

Thank you for your Attention!