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Introduction

(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

1/8



Introduction

(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

𝝅+ meson
Rough sketch

1/8



Introduction

electrical spread out

𝝅+ meson

(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

Rough sketch

1/8



Introduction

(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

Momentum 
transfer :

electromagnetic 
current:

electromagnetic form factor

1/8



Introduction

(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

Momentum 
transfer :

electromagnetic 
current:

electromagnetic form factor

form factor(output)

3pt function

(input from lattice QCD)

1/8



Introduction

(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

Momentum 
transfer :

electromagnetic 
current:

electromagnetic form factor

form factor(output)

3pt function

(input from lattice QCD)

✓ Initially  ： large difference

    Recently ： consistent

✓  Error ： Lattice > Experimental 

There are 4 main systematic errors

➢ Chiral extrapolation

➢ Continuum extrapolation

➢ Finite volume effect

➢ Fit ansatz 1/8



Introduction

(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

Momentum 
transfer :

electromagnetic 
current:

electromagnetic form factor

form factor(output)

3pt function

(input from lattice QCD)

✓ Initially  ： large difference

1/8



Introduction

(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

Momentum 
transfer :

electromagnetic 
current:

electromagnetic form factor

form factor(output)

3pt function

(input from lattice QCD)

✓

    Recently ： consistent

✓  Error ： Lattice > Experimental 

1/8



Introduction

(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

Momentum 
transfer :

electromagnetic 
current:

electromagnetic form factor

form factor(output)

3pt function

(input from lattice QCD)

    Recently ： consistent

✓  Error ： Lattice > Experimental 

There are 4 main systematic errors

➢ Chiral extrapolation

➢ Continuum extrapolation

➢ Finite volume effect

➢ Fit ansatz 1/8



Introduction

(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

Momentum 
transfer :

electromagnetic 
current:

electromagnetic form factor

form factor(output)

3pt function

(input from lattice QCD)

➢ Chiral extrapolation

By changing theoretical parameters, we can 
compute physics in various worlds.

✓  To reproduce the real world, we must use the 
parameters that correspond to our physical 
universe.

✓  Use chiral extrapolation to obtain values at the 
physical point.

B. Brandt, Int.J.Mod.Phys.E 22 (2013) 1330030
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Earlier lattice QCD calculations

Many simulations were performed 
at heavier pion masses

We needed to extrapolate these results 
to the physical point

using chiral extrapolation



Introduction

(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

Momentum 
transfer :

electromagnetic 
current:

electromagnetic form factor

form factor(output)

3pt function

(input from lattice QCD)

➢ Continuum extrapolation

Lattice calculations discretize spacetime.

・・・

Continuum 
(real world)Coarse lattice Fine lattice

✓  Continuum extrapolation derives real values from 
discrete data.
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By the discretization of space-time

Values change depending on the 
lattice spacing

We need to calculate at multiple lattice 
spacings and then extrapolate
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If the simulation volume is too small

The particle cannot be
fully contained in space
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If the volume is large enough

The particle fits well
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(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

Momentum 
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electromagnetic 
current:

electromagnetic form factor

form factor(output)

3pt function
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➢ Chiral extrapolation

➢ Continuum extrapolation

➢ Finite volume effect

PACS10 configurations

➢ Chiral extrapolation  
At physical point → almost unnecessary → good!!

➢ Continuum extrapolation
If computed with 3 configurations

→ evaluation possible → good!!

➢ Finite volume effect
Large volume sufficiently suppresses effects → good!!

…Large-volume configurations at physical point
(3 lattice spacings).

Indicator of finite-volume effects

PACS10 configurations ～ 7

PACS10 suppresses 3 major systematic errors.

Hadron masses reproduced within 5% error
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(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.

Momentum 
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form factor(output)
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➢ Fit ansatz

Systematic errors from traditional analysis methods

3-pt functions (lattice QCD) Known function

Form factors (desired quantity)

Properly combine lattice data and 
known functions.

Fit

✓ The fit ansatz error arises from the choice of the 
fitting function and the fitting range.

Fit ansatz
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(mean-square) charge radius … a quantity that characterizes the structure of hadrons.

It represents the spread of the charge distribution.
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current:

electromagnetic form factor

form factor(output)

3pt function

(input from lattice QCD)

➢ Chiral extrapolation

➢ Continuum extrapolation

➢ Finite volume effect

➢ Fit ansatz

Suppressed with PACS10 configurations

Avoidable by model-independent method
(without fitting)
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✓ Introduction

• Charge radius

•  Main systematic errors

✓ Overview of model-independent method

•  Reducing contamination using spatial moment

✓ Application to PACS10 configurations

• Analysis of 𝜋+, 𝐾+, and 𝐾0 charge radii using model-independent method

✓ Summary

Outline
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✓ Is there a way to extract the first derivative of the form factor

from the three-point function with less contamination?

request ：

Overview of model-independent method

cannot be 

exactly evaluated

can be

exactly evaluated
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Example: difference (If 𝑄2 is sufficiently small)
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➢ Differentiation of Fourier transform

( 𝑁𝑠𝑝𝑎𝑐𝑒 → ∞, 𝑎 :finite ; 𝐿 = 𝑁𝑠𝑝𝑎𝑐𝑒𝑎 → ∞ )

infinite volume limit

✓ Method：Combining 𝒙𝟐 and 𝒙𝟒 moments
Xu Feng et al., Phys.Rev.D101,051502(R)(2020)

We can cleverly add these higher-order moments to 
reduce the contamination.

Overview of model-independent method

cannot be 

exactly evaluated

can be

exactly evaluated

We can suppress the contamination at large volume. 𝛼1, 𝛼2: parameters which set to cancel out the contamination

Our Improvement : K. S. et al., PoS LAT22,122(2022) ;  PoS LAT23,312(2023)

->  Effective at small lattice size

Example: difference (If 𝑄2 is sufficiently small)
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0.0846 fm

10.8 fm

Lattice size
1284

𝑁𝑓 = 2 + 1 six-stout-smeared non-perturbative 

𝑂(𝑎)-improved Wilson action+ Iwasaki gauge action

Simulation parameters

✓ Measurement parameter
• 20 config. , 2304～13824 meas. Per config.
• Periodic + anti-periodic correlation functions in 

time direction
• Forward + Backward correlation functions in 

time direction
• 𝑡𝑠𝑖𝑛𝑘 − 𝑡𝑠𝑜𝑢𝑟𝑐𝑒 = 36, 42, 48(L128); 50, 58, 64(L160)

↑ Statistics
Reduce the wrapping-around effect
Systematic errors can be evaluated

4/8

PACS10 configuration

✓ Gauge configuration (                             )

➢ Chiral extrapolation
→ Physical point

➢ Continuum extrapolation
→ 3 lattice spacings

➢ Finite volume effects
→ Large volume

PACS, PRD 99, 014504 (2019);
PACS, PRD 106, 094505 (2022);
PACS, PRD 109, 094505 (2024)

All preliminary results are obtained on the 128 and 160 lattice



Result
✓  Model-independent method

(without fit ansatz)
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✓  Model-independent method
(without fit ansatz)

Result ✓  Extraction including the first excited state
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✓ From the plateau, we can see that the 
PACS10 configurations reproduce the 
experimental mass of the first excited 
state.

✓ We use experimental value as the mass of 
the first excited state



• Central value : result using all source–sink separations
• Statistic error : Jackknife error of the central value
• Systematic error : Maximum difference between the

central value and each separation

Result
✓  Model-independent method

(without fit ansatz)
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✓Also perform the same calculation
for K mesons and L160 configuration.

Result
✓  Model-independent method

(without fit ansatz)
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• Central value : result using all source–sink separations
• Statistic error : Jackknife error of the central value
• Systematic error : Maximum difference between the

central value and each separation



✓ 𝜋+ charge radius ✓  𝐾+ charge radius

✓ As a preliminary extrapolation, we perform both a constant and a linear fit in 𝑎2.

✓ We take the constant extrapolation as the central value for 𝜋+ and 𝐾+, and the linear 
extrapolation in 𝑎2 as the central value for 𝐾0.

✓ For the continuum limit values, results agree with PDG within ~2σ.

✓ 𝜋+ and 𝐾0 achieve the same level of experimental error, while K⁺ achieves precision 
exceeding the experiment.

✓  𝐾0 charge radius

Preliminary results
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almost no dependence on 𝑎2

dependence on 𝑎2



✓ Calculated charge radii of 𝜋+, 𝐾+, and 𝐾0 on PACS10/L128 and L160 

configurations.
✓ Used the model-independent method.
✓ Although preliminary, the results are consistent with the experimental 

value(PDG) and the results of the previous lattice calculations.
✓ Some of our results exceed their precision.

Summary

Model-independent

Traditional

Model-independent

Traditional

Model-independent

Traditional
𝜋+ 𝐾+ 𝐾0
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✓ Increase statistics for PACS/L160
✓ Analyze data using conserved currents
✓ Perform calculations on PACS/L256

=> The precision of our continuous extrapolation will improve.

Future works :

8/8

Summary

?

𝐾0 Expectations for the Experiment:

✓ An experiment called AMBER is currently being 
conducted at CERN.

✓ Phase 2 plans to conduct a high-precision 
measurement of the K meson's charge radius.

The experimental error for K mesons is large.

We are looking forward to seeing the results of these 
experiments.
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