Future Directions in Experimental Hadronic Physics

A Personal High-level Perspective on About the Next Decade
No EIC nor JLab 22 GeV

- USA
 - Jefferson Lab: CLAS12 upgrade, SoLID plans
 - Higs at Duke U.
 - Towards the EIC.....
- Europe
 - Bonn
 - Mainz
 - FAIR
 - AMBER at CERN
- Asia/Japan
 - KEK

With thanks for slides from:

R. Beck, N. Berger, M. Bondi, H. Gao,

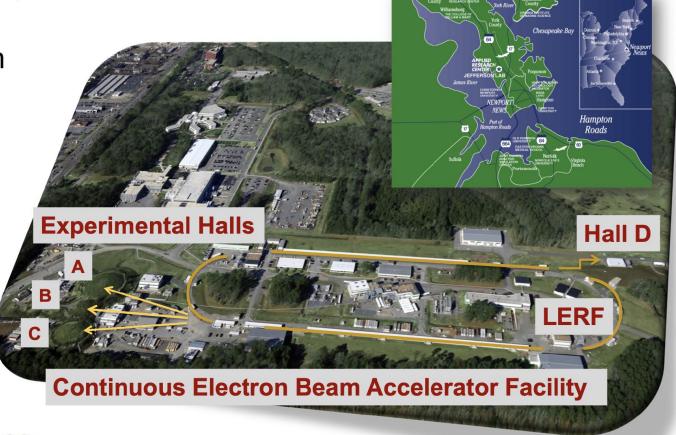
F. Hauenstein, B. Ketzer, J. Lajoie, N. Saito,

C. Sfienti, S. Stengel, S. Stepanyan

Jefferson Lab - Experimental overview (1)

CEBAF upgrade completed in September 2017

CW electron beam


■ E_{max} = 12 GeV

• $I_{max} = 90 \mu A$

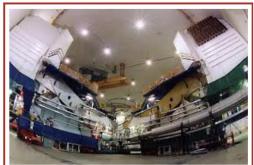
■ Pol_{max} ~90%

Physics operation

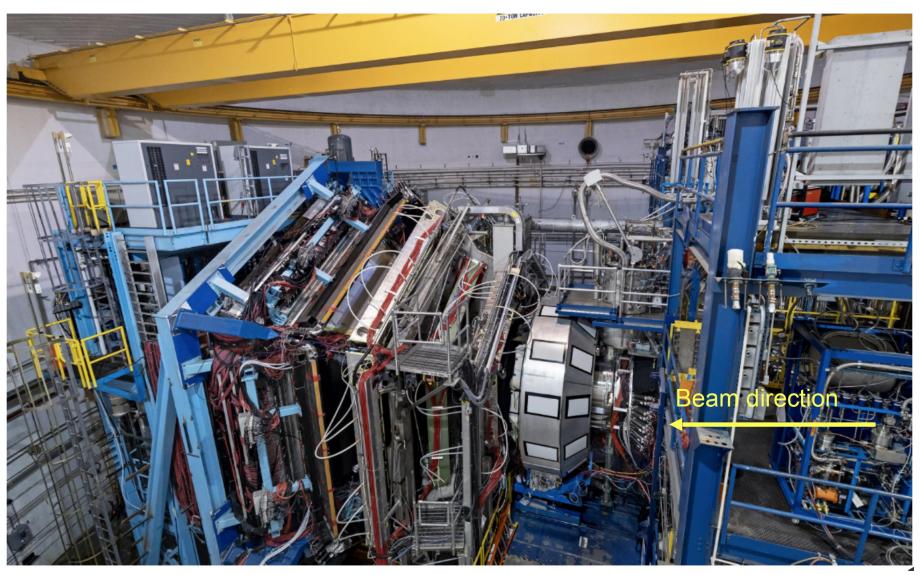
 4 Halls running simultaneously since January 2018

Jefferson Lab - Experimental overview (2)

HALL C - precision determination of valence quark properties in nucleons and nuclei



HALL B - understanding the 3D nucleon structure, hadron spectroscopy and nuclear effects



HALL D - exploring origin of confinement by studying exotic mesons

HALL A - form factors and PDFs, hyper nuclear physics, Physics BSM

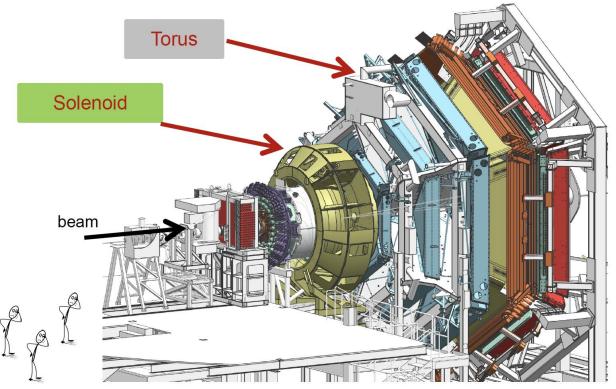
CLAS12 in JLAB-HALL B

CLAS12 - Detector

C Beamline

Target

Central Vertex Tracker


Central Time of Flight

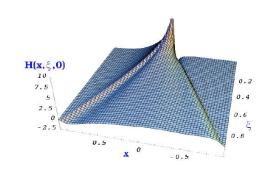
Central Neutron Detector

■ Back-Angle Neutron Detector

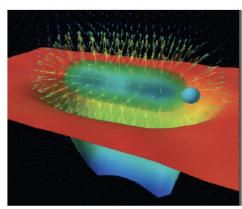
	Forward	Central
Angular coverage	5° – 40°	35° – 135°
Momentum resolution	dp/p < 1%	dp/p < 5%
θ resolution	1 mrad	5 – 10 mrad
φ resolution	1 mrad/sinθ	5 mrad/sinθ

F O Forward Tagger
R Drift Chambers
W Low Threshold Cherenkov
A Ring Imaging Cherenkov
Forward Time of Flight
EM Calorimeter

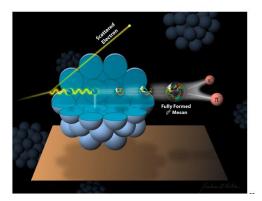
Design Luminosity:


■ 10³⁵ cm⁻²s⁻¹

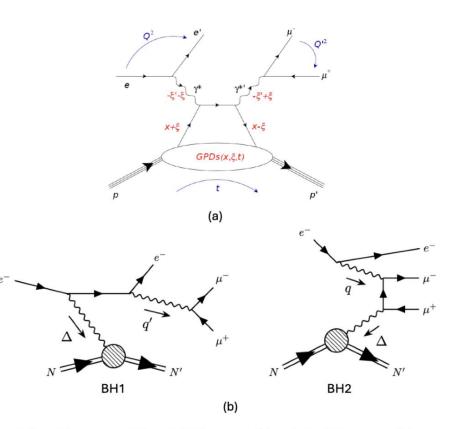
Physics targets:


- LH₂, LD₂, LHe, LAr
- D, ⁴He
- 12C to 208Pb
- Polarized NH₃, ND₃, ⁶LiH, ⁷LiD,
 ³He-gas

CLAS12 physics program


 The multidimensional structure of the nucleon – from form factors and PDFs to GPDs and TMDs

 Quark confinement and the role of the glue in meson and baryon spectroscopy

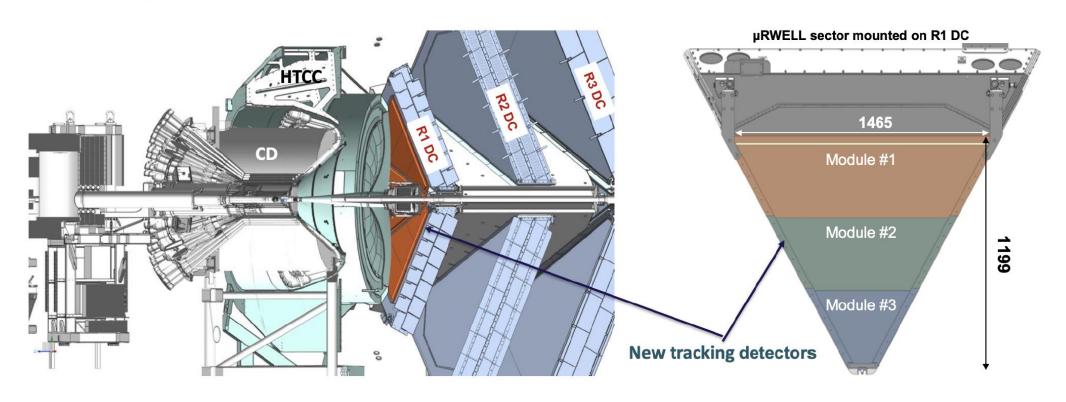


 The strong interaction in nuclei – evolution of quark hadronization, nuclear transparency of hadrons, short range correlation

Electro- and photo-production of muon pairs with μ CLAS12: Double Deeply Virtual Compton Scattering, Timelike Compton Scattering, and J/ψ production

PR12-25-001

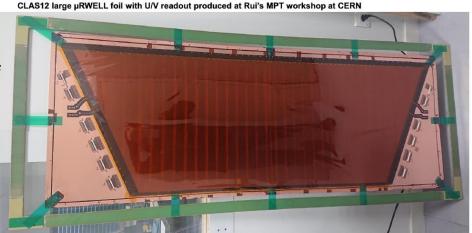
Motivation: The proposal presents an innovative experimental program to explore nucleon structure via Double Deeply Virtual Compton Scattering (DDVCS), Timelike Compton Scattering (TCS), and near-threshold J/ ψ production, utilizing muon pairs in the final state:

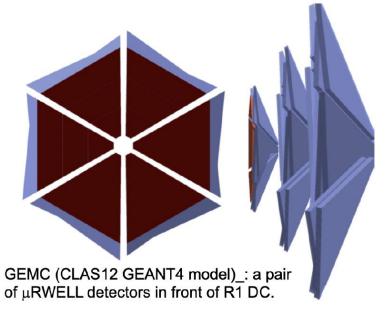

- **DDVCS** ($e \ p \to e' \ p' \ \mu^+\mu^-$) provides direct access to the full three-dimensional (x, ξ, t) mapping of Generalized Parton Distributions (GPDs) beyond the $x = \pm \xi$ constraint of DVCS/TCS, offering a unique opportunity to test the analytic structure of the Compton amplitude and its connection to QCD dispersion relations. Cross-section measurements and angular distributions will complement asymmetries to constrain both the real and imaginary parts of the Compton Form Factors (CFFs).
- TCS provides complementary sensitivity to the real and imaginary components of Compton Form Factors (CFFs), through observables such as photon beam polarization asymmetries and forward-backward angular asymmetries, providing a timelike counterpart to DVCS results and enabling stringent cross-checks of GPD universality.
- Near-threshold J/ ψ production probes gluonic GPDs and the nucleon's gravitational form factors (GFFs), which encode information about the mass and pressure distributions inside the nucleon. Near-threshold J/ ψ measurements will determine total and differential cross-sections, exploring gluonic contributions and gravitational form factors.
- Search for exotic states: The program also aims to investigate exotic states, such as hidden charm pentaquarks, by constraining or measuring their electroproduction cross sections. The anticipated J/ψ yield will be significantly higher (up to 25 times compared to current CLAS12 programs), allowing searches for pentaquark states and detailed studies of hidden charm dynamics.

CLAS12 Luminosity upgrade, staged approach

- **Phase1**: achieve luminosity of 2x10³⁵ cm⁻²s⁻¹ for CLAS12 normal running conditions with charged particle reconstruction efficiency of >85%.
 - To support efficient and fast execution of the current program;
 - Support a growing demands of physics program with a low rate, exclusive reactions (TCS, J/Psi production,...);
 - Will need to upgrade forward tracking. The beam-line and the rest of the detector systems will perform at x2 higher luminosity;
- Phase2: achieve two orders of magnitude higher luminosities: µCLAS12 at > 10³⁷ cm⁻²s⁻¹
 - New physics opportunities for CLAS12 DDVCS and e-J/ψ;
 - Requires a large acceptance forward calorimeter (FTCal-Large), a recoil detector and a forward vertex tracker

CLAS12 Luminosity upgrade - Phase 1 - Plans

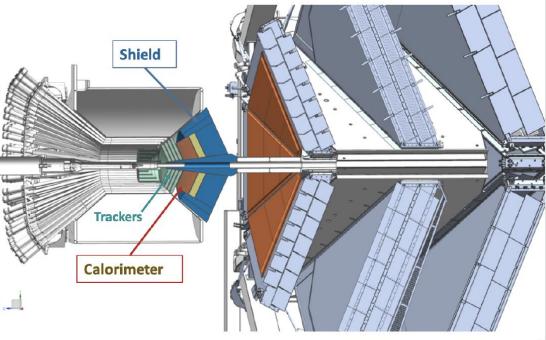

To mitigate occupancy-related inefficiency of FD tracking, we plan to add faster tracking MPGD layers to the forward drift chambers.



- Each layer will consist of 6 triangular large detectors
- Each detector will consist of three modules (there are no foils large enough to cover the whole R1).
- ■µRWell with 2-D, 10° stereo, strip readout with capacitive sharing, is the chosen technology

CLAS12 Luminosity upgrade - Phase 1 - Status

- Simulations fully developed and show:
 - no sizable degradation of momentum resolution with pair of such detectors in front of R1 DC
 - existing tracking software can already achieve the desired efficiency at higher luminosities
- Full-scale, single-sector, prototype assembled at CERN, in collaboration with University of Virginia
 - Trapezoid with an active area of [1460 mm 1012 mm] × 50 mm
 - U & V strips at 10-degree stereo pitch = 1 mm
 - Capacitive-sharing R/O scheme
- Timeline:
 - 2024: testing of prototype
 - 2025: fabrication of full 6 sectors
 - 2026: installation



CLAS12 Luminosity upgrade - Phase 2 - Plans

- Remove HTCC and block the CLAS12 forward with a W-shield and PbWO₄ calorimeter to prevent flooding of DC by EM background;
- Scattered electrons will be detected in the calorimeter, while shield will work as pion filter, as most of charged pions will shower and will not reach to the forward tracking system;
- Install fast, high rate MPGD trackers in front of the calorimeter for vertexing and inside the solenoid for recoil tagging.
- The existing downstream trackers and toroidal field become a muon spectrometer for luminosity of 10³⁷cm⁻¹s⁻¹
- Time frame for Phase 2 is 6-8 years.

Detector capable of measuring $ep \rightarrow e'p'\mu^+\mu^- @ L > 10^{37}cm^{-2}sec^{-1}$

New Polarized ³He Target for CLAS12

A concept for polarized ³He targets for high luminosity scattering experiments in high magnetic field environments

J.D. Maxwell ^a \bowtie ⊠, R.G. Milner ^b

Show more ∨

+ Add to Mendeley \bowtie Share 55 Cite

https://doi.org/10.1016/j.nima.2021.165590 > Get rights and content > Get rights > Get rights and content > Get rights > Get

Combining two technologies: double-cell polarized ³He target (Maxwell, Milner, NIM A, 2021.)

CLAS12's 5 T solenoid standard configuration 5.4 amg, comparable to SEOP

High Field MEOP

High magnetic field (5 T)

Polarization ~ 60%

Higher pressure (100 times) compared to typical low field MEOP (100 mbar vs 1 mbar)

Double-Cell Cryo Target

Polarize ³He using MEOP at room temp (300 K)

Diffuse transfer to 5 K target cell

Density increase by 60 times

Proposal PR12-20-002 to PAC48

A program of spin-dependent electron scattering using a polarized ³He target in CL

(Co-Spokespeople: H. Avakian, J. Maxwell, R. Milner, D. Nguyen)

P_T -dependence of n longitudinal spin structure

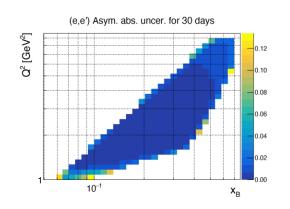
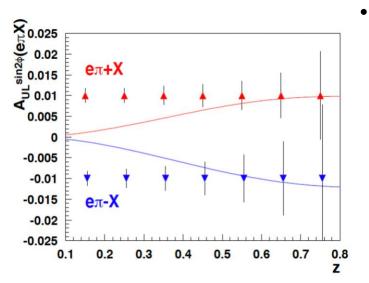



FIG. 13: Projected number of DIS events and absolute statistical uncertainty in the ullet asymmetry for 30 days of running at 0.5 μ A on the polarized 3 He target.

Nuclear corrections to SIDIS

- Beam energy = 10.6 GeV
- Beam current = 500 nA
- Target thickness = 2.9×10^{21} ³He cm⁻²
- Target poln. = 50%
- Beam poln. = 80%
 - Luminosity = $2.7 \times 10^{34} \text{ nucleons/cm}^2/\text{s}$
- 30 days of running

$$0.05 < x < 0.7$$

 $1 < Q^2 < 9 (GeV/c)^2$
 $0.2 < z < 0.9$
 $0 < p_T < 1.3 (GeV/c)$

Richard Milner EINN 2025

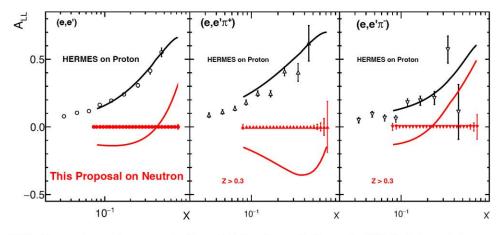
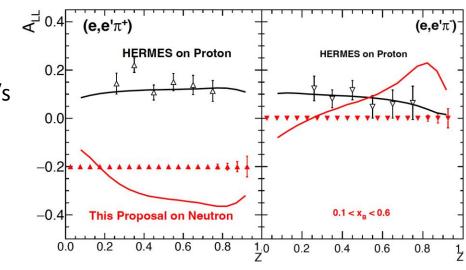
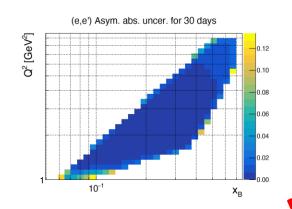
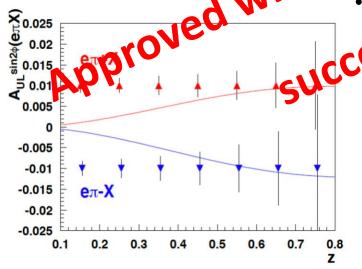


FIG. 15: x—dependence projection plot for charged pions, the black data points are HERMES data [83], the red data points are projection for this proposal for 30 days of running at 0.5 μ A. The curves use GRV [84] PDFs, and $D_1(z)$ from DSS [85], with black curves calculated for proton, and red curves calculated for neutron.



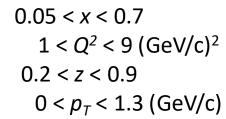

FIG. 16: z—dependence projection plot for charged pions in the valence region 0.1 < x < 0.6, compared to the HERMES data on proton [86]. The curves use GRV [84] PDFs, and $D_1(z)$ from DSS [85].

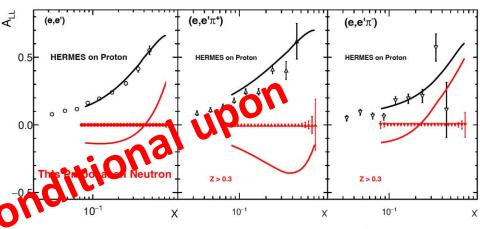

Proposal PR12-20-002 to PAC48

A program of spin-dependent electron scattering using a polarized ³He target in CL

(Co-Spokespeople: H. Avakian, J. Maxwell, R. Milner, D. Nguyen)

 P_{T} -dependence of n longitudinal spin structure




Nuclear corrections to SIDIS

- Beam energy = 10.6 GeV
- Beam current = 500 n
- Target thickness = 2.9×10^{21} ³Hercher
- Targe (2001n. = 50%

 - nucleons/cm²/s

Richard Milner **EINN 2025**

-dependence projection plot for charged pions, the black data points are [83], the data points are projection for this proposal for 30 days of Pulses use GRV [84] PDFs, and $D_1(z)$ from DSS [85], with black lated for proton, and red curves calculated for neutron.

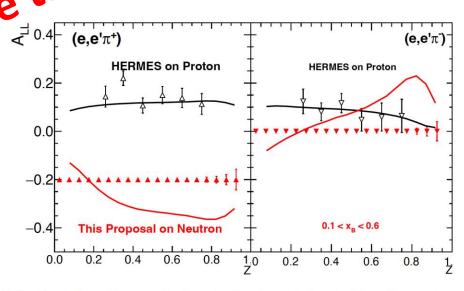


FIG. 16: z-dependence projection plot for charged pions in the valence region 0.1 < x < 0.6, compared to the HERMES data on proton [86]. The curves use GRV [84] PDFs, and $D_1(z)$ from DSS [85].

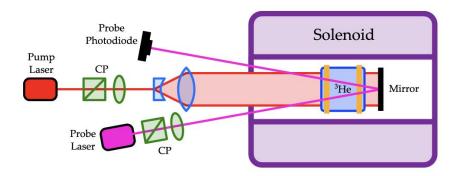


Figure 2: Diagram of high field polarizing apparatus and probe laser polarimeter.

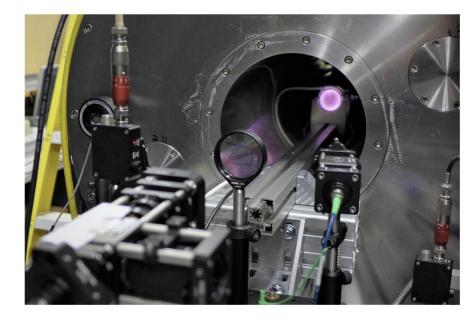
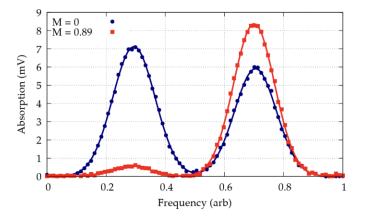


Figure 3: Photograph of the polarizing apparatus and EBIS spare solenoid warm bore. In the foreground are the pumping laser circular polarization optics. The probe laser fiber enters a circular polarizer on the right, and after passing through the cell the probe light is reflected by a mirror back to a photodiode on the left. The sealed cell is illuminated by the RF discharge plasma in pink; for this photograph it is much brighter than is effective for optical pumping.


Enhanced polarization of low pressure ³He through metastability exchange optical pumping at high field

 $\underline{\text{J.D. Maxwell}} \overset{\text{d. }}{\sim} \overset{\text{d. }}{\sim} , \underline{\text{J. Alessi}} \overset{\text{b. }}{\rightarrow}, \underline{\text{G. Atoian}} \overset{\text{b. }}{\rightarrow}, \underline{\text{E. Beebe}} \overset{\text{b. }}{\rightarrow}, \underline{\text{C.S. Epstein}} \overset{\text{a. }}{\rightarrow}, \underline{\text{R.G. Milner}} \overset{\text{a. }}{\rightarrow}, \underline{\text{M. Musgrave}} \overset{\text{d. }}{\rightarrow}, \underline{\text{A. Pikin}} \overset{\text{b. }}{\rightarrow}, \underline{\text{J. Ritter}} \overset{\text{b. }}{\rightarrow}, \underline{\text{A. Zelenski}} \overset{\text{b. }}{\rightarrow}, \underline{\text{C.S. Epstein}} \overset{\text{a. }}{\rightarrow}, \underline{\text{R.G. Milner}} \overset{\text{a. }}{\rightarrow}, \underline{\text{C.S. Epstein}} \overset{\text{a. }}{\rightarrow}, \underline{\text{R.G. Milner}} \overset{\text{a. }}{\rightarrow}, \underline{\text{C.S. Epstein}} \overset{\text{a. }}{\rightarrow}, \underline{\text{C.$

Show more 🗸

https://doi.org/10.1016/j.nima.2019.02.019 >

Get rights and content π

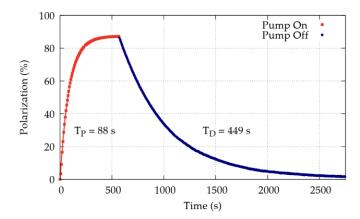


Figure 4: Example probe laser absorption signals with sample nuclear polarization at 0 and 89%, using a 1 torr sealed cell at 3 T. Both probe transition peaks are visible for each signal, as are the side-by-side Gaussian fits used to extract the peak amplitudes for analysis.

Figure 5: Typical pump and relaxation cycle at 2 T, showing exponential pumping build-up time T_P with the optical pumping active, and the relaxation time T_D after the pumping laser is blocked at 560 s.

Full Length Article

Metastability exchange optical pumping of ³He at low pressure and high magnetic field

X. Li $\overset{a}{\sim}$ $\overset{b}{\bowtie}$, J.D. Maxwell $\overset{b}{\rightarrow}$, D. Nguyen $\overset{b}{\rightarrow}$, J. Brock $\overset{b}{\rightarrow}$, C.D. Keith $\overset{b}{\rightarrow}$, R.G. Milner $\overset{a}{\rightarrow}$, X. Wei $\overset{b}{\rightarrow}$

Show more ✓

JLab, MIT, U. Tennessee, Shandong U.

https://doi.org/10.1016/j.nima.2023.168792 >

Get rights and content ↗

Full Length Article

Polarizing ³He via metastability exchange optical pumping using a 1.2 mbar sealed cell at magnetic fields up to 5 T

P. Pandey ^a $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\bowtie}$, H. Lu ^b $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\bowtie}$, J.D. Maxwell ^c, J. Brock ^c, C.D. Keith ^c, X. Li ^d, R.G. Milner ^a, D. Nguyen ^b

Show more 🗸

https://doi.org/10.1016/j.nima.2025.170870 7

Get rights and content a

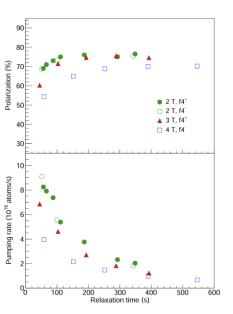


Figure 6: Maximum steady-state nuclear polarization and pumping rate measured with various discharge intensity levels (characterized by the relaxation time) at 2T (circles), 3T (triangles) and 4T (squares) using the f_{\pm}^{\pm} pumping schemes and a pump laser output power of 3 W. The closed and open symbols are for the σ^+ and σ^- schemes, respectively.

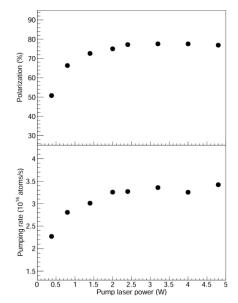


Figure 7: Maximum steady-state nuclear polarization and pumping rate measured with various on-cell pump laser power at 2 T using the f_4^- pumping transition. The discharge-on relaxation time corresponding to each data point is above 200 s.

Figure 2: Top: "Bone" style cell with 30 mm windows and a 25.4 mm diameter volume, showing the inductive electrode wound the length. Bottom: Discharge in the cell sets pushed to the edge while in the 5 T magnetic field.

Richard Milner EINN 2025

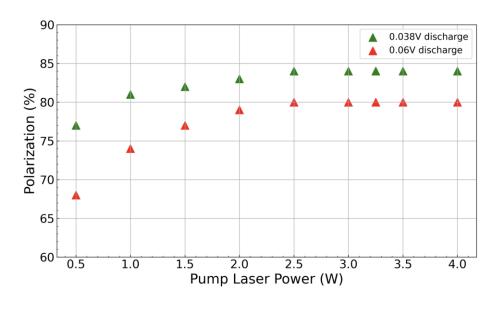
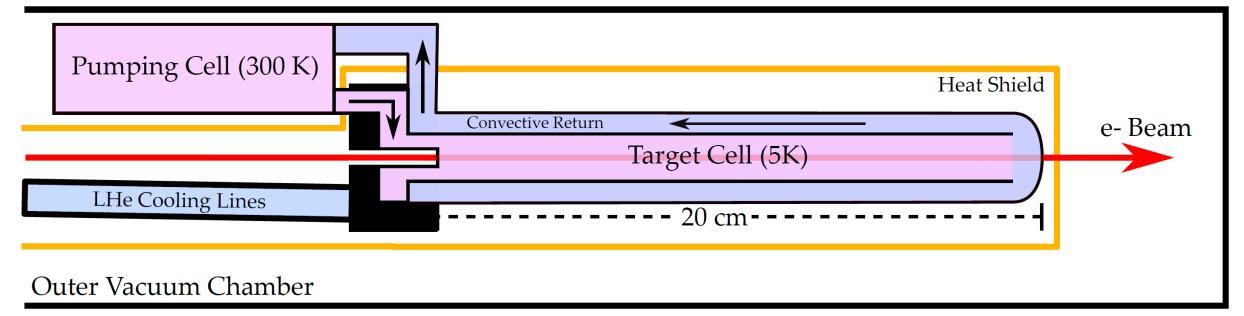
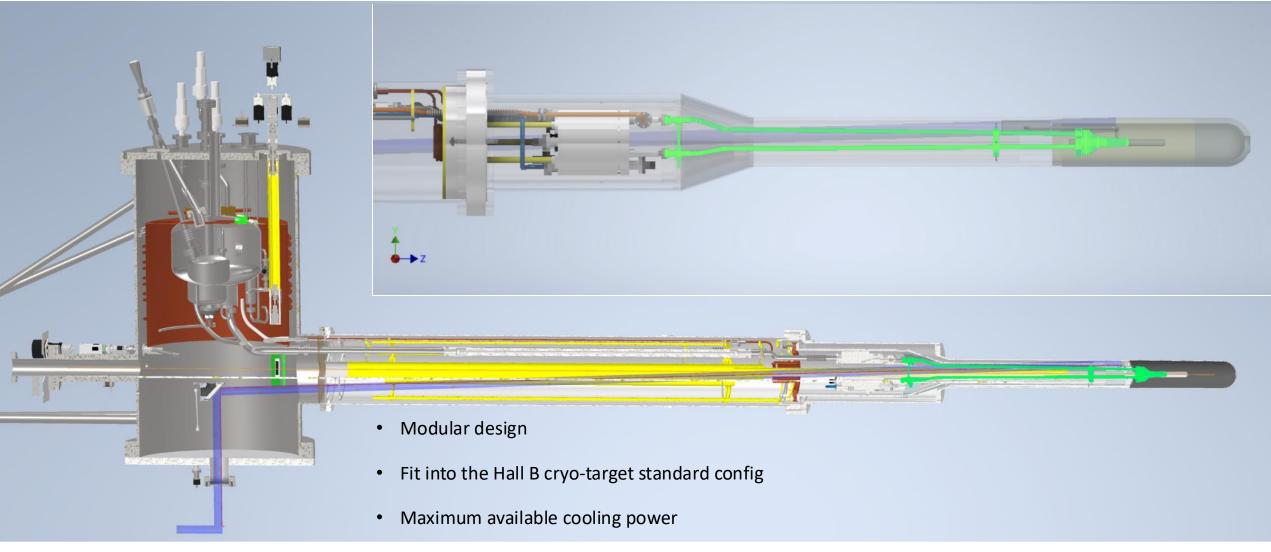



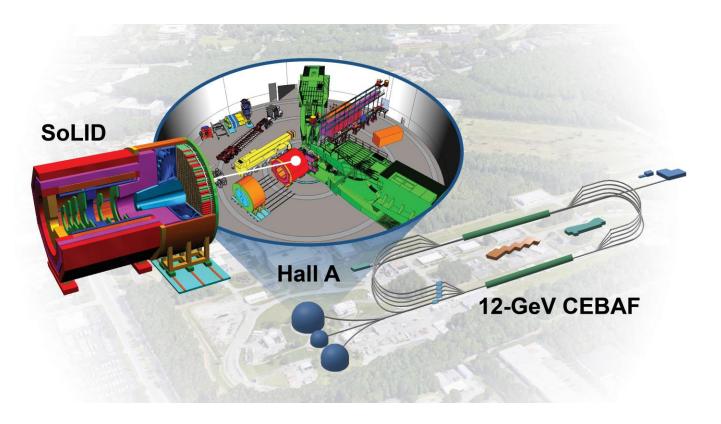
Figure 5: Maximum steady-state nuclear polarization measured at 5 T using the f_4^+ line for various pump laser power levels at two different discharge intensities.

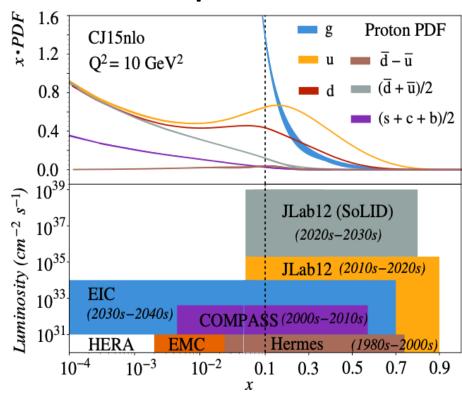

Double-cell Target Design

- Pumping Cell
 - 200 cm³ borosilicate glass
 - Annular cylindrical volume

- Target Cell
 - 100 cm³, 20 cm long aluminum cell
 - Cooled by LHe heat exchanger

Double-cell Target Design

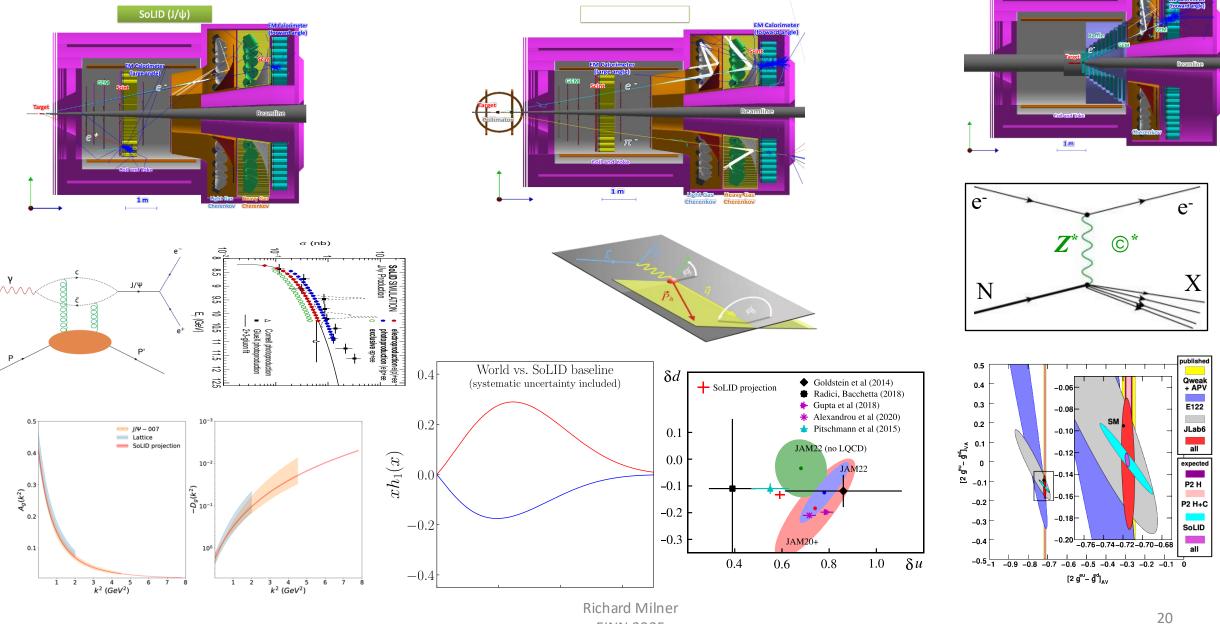

Interplay of Energy and Intensity


Structure of visible matter probed at JLab and the future EIC

Discoveries in Physics are often enabled by high-precision measurements and that is where

Solenoidal Large Intensity Device (SoLID) comes!

Up to 10³⁹ cm⁻²s⁻¹

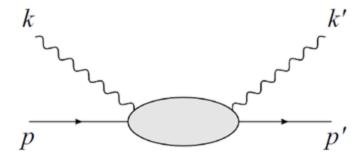


Haiyan Gao (Duke), Zein-Eddine Meziani (ANL)

https://www.innovationnewsnetwork.com/quantum-chromodynamics-at-the-intensity-frontier-with-a-precision-microscope/52920/

SoLID@JLab: QCD at the intensity frontier

EINN 2025

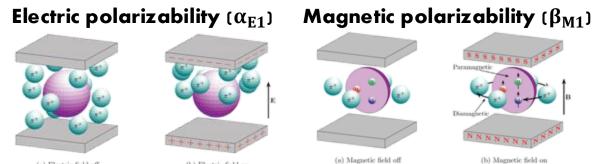

Nucleon Static Electromagnetic Polarizabilities

TUNL

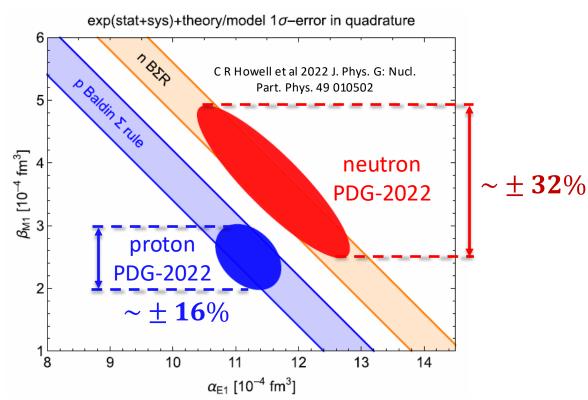
- Properties probing structure of the nucleon
- Characterizing responses to external EM fields
 - Structure responses -- induced dipole moments

$$\vec{d}_{ind} = lpha_{E1} \: \vec{E}$$
 , $\overrightarrow{m}_{ind} = eta_{M1} \: \vec{H}$

• Compton scattering is an effective probe of α_{E1} and β_{M1} \rightarrow Photon provides external EM field



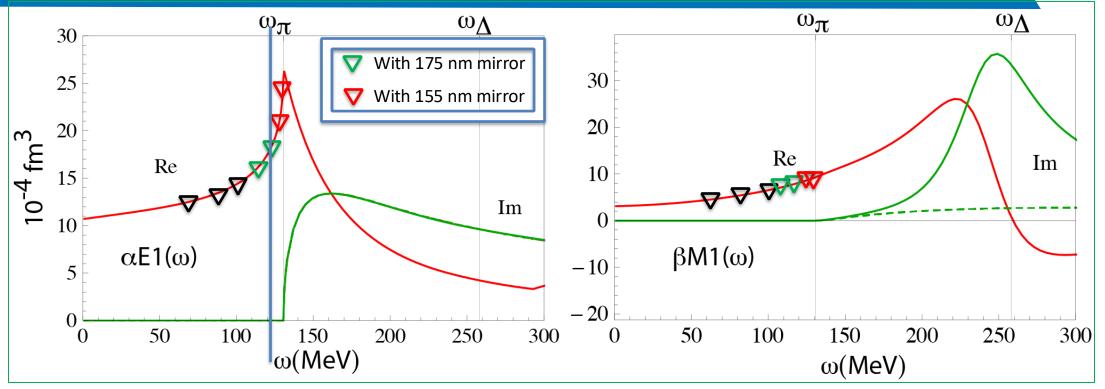
• Benchmark χEFT and lattice QCD calculations


Margaryan, Arman, et al. *The European Physical Journal A* 54.7 (2018): 125.

Grießhammer, Harald W., et al. *The European Physical Journal A* 60.6 (2024): 132.

Wang, Xuan-He, et al. *Physical Review Letters* 133.14 (2024): 141901.

(Graphs credited to P. Martel)



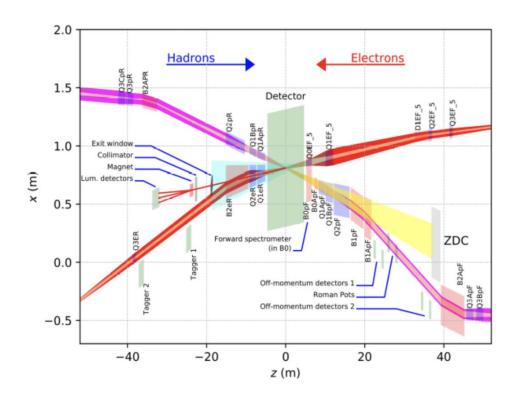
HIGS: The Next Three Years

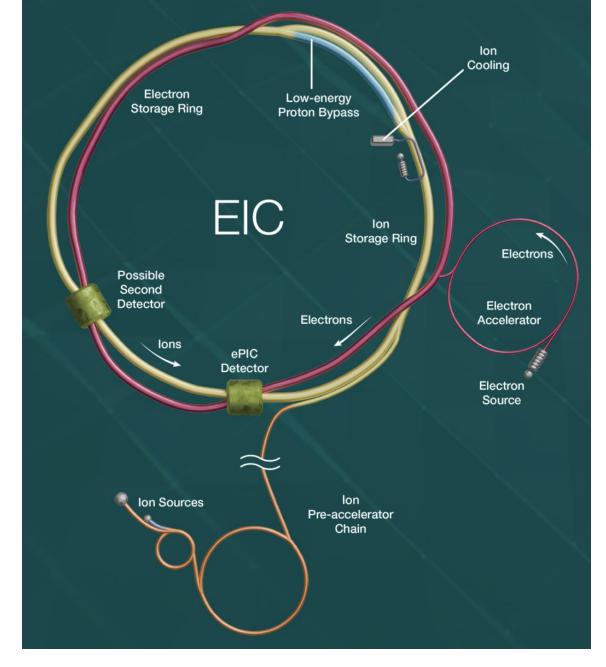
• Reduce uncertainty in neutron α and β by a factor of 2

- Liquid 2 H target at E $_{\gamma}$ = 61 MeV; done spring summer 2022
- Liquid 3 He target at E_{γ} = 60 and 100 MeV; done summer 2024
- Liquid ⁴He target at E_{γ} = 87 and 100 MeV; done summer 2025
- Liquid 3 He target at E_{γ} = 87 MeV
- Liquid 2 H target at E_{γ} = 87 MeV
- Liquid 3 He and 4 He targets at E_{y} = 120 MeV (need 175-nm mirrors)

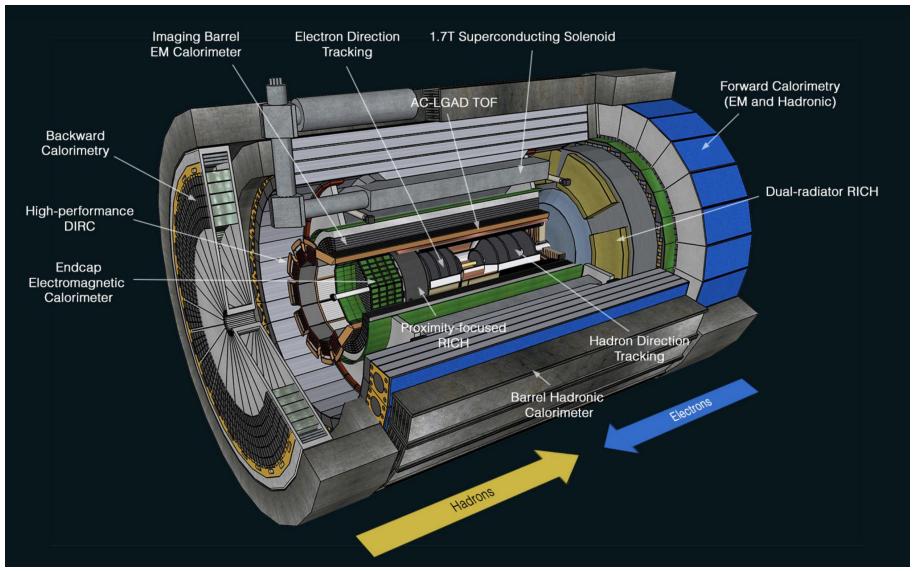
• High precision measurement of proton α and β

• Liquid H target at E_{γ} = 87, 100 MeV, = 120 MeV (need 175-nm mirrors)

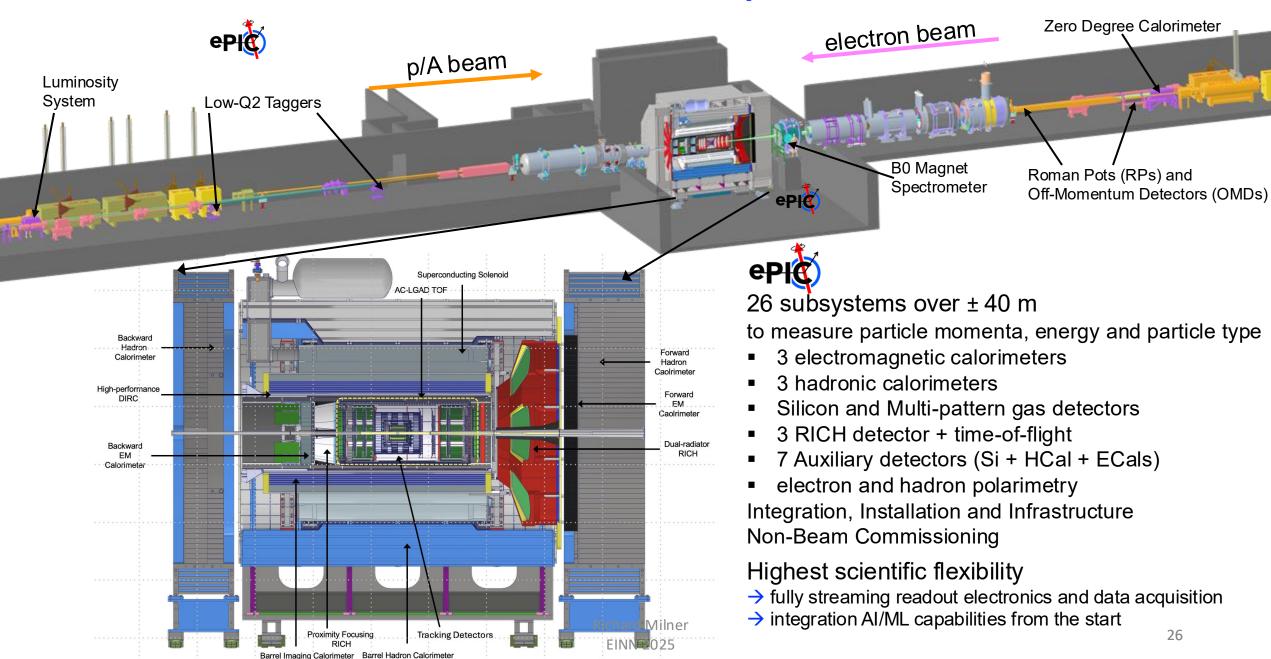



Towards the EIC.....

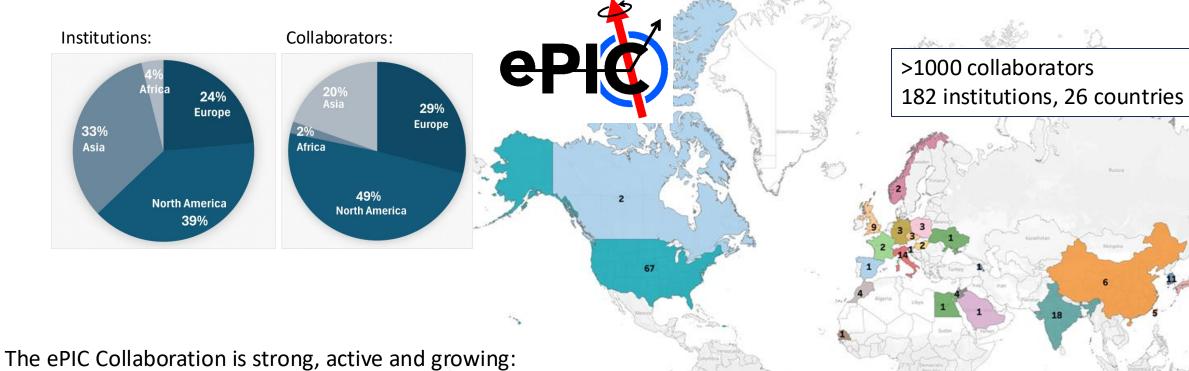
- Accelerator: RHIC operations expected to end in 2026 and construction of EIC in RHIC tunnel to get underway.
- ePIC detector design proceeding.
- EPIOS scientific consortium formed to realize polarized ion beams at EIC.


EIC Machine

New electron injector scheme



ePIC Detector

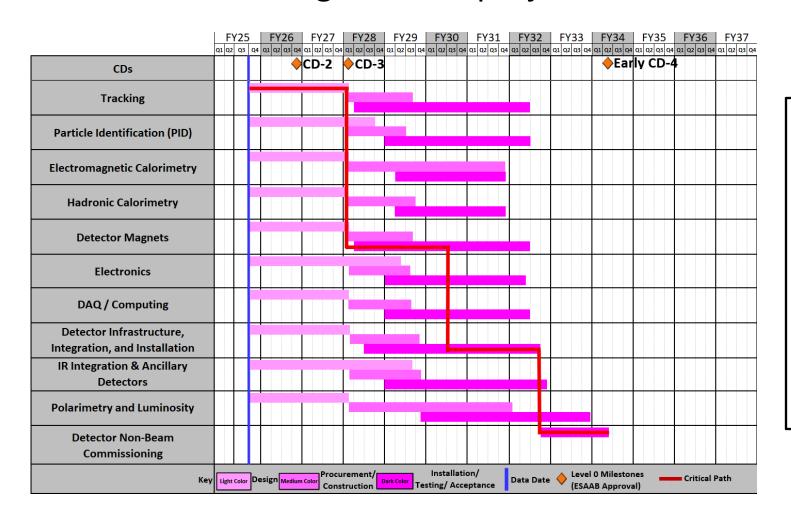


ePIC – The EIC State-of-the-Art General-Purpose Detector

The ePI Collaboration

- **CERN Recognized Experiment**
- Adding new collaborating institutions
- Ongoing subdetector design reviews

Current Collaboration Priorities:


- Writing ePIC preTDR, v2.2 due Dec. 2025
- Developing the EIC Early Science plan:

Supporting baselining for the ePIC detector in 2026

The Path to Realizing ePIC

ePIC is working with the project to baseline the detector in 2026

Schedule Drivers:

- To hold the date for a CD-2 Independent Project Review (IPR) expected not before June 2026
- To keep the (inter)national user community engaged and limit the danger to lose groups
- all subdetectors need to be more or less ready at the same time to be assembled to ePIC
- Superconducting Solenoid → CD-3A item
- Silicon Sensors (MAPS, AC-LGAD & ASTROPIX)
- ASIC long time frames only one ASIC designed from scratch all others are modifications to existing ASICS
- Items with long production times, single vendor and complex assembly → CD-3A & CD-3B
- International agreements driving in-kind and MAPS design (agreement with CERN)

Realizing the Scientific Program with Polarized Ion Beams at EIC

(The EPIOS Scientific Consortium)

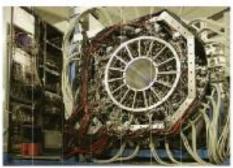
```
Grigor Atoian. Nigel Buttimore , Giuseppe Ciullo , Ian Cloet. Marco Contalbrigo , Jaydeep Datta , Jaydeep Datta
  Abhay Deshpande 0,5 Shubham Dutta, 0,6 Oleg Eyser, 1 Muhammad Faroog, 7 Renee Fatemi, 8 Ishara Fernando, 9
   Michael Finger, 10 Wolfram Fischer, 1 Dave Gaskell, 11 Prakash Gautam, 9, 11 Ralf Gebel , 12, 13 Boxing Gou , 14
              Daoning Gu, <sup>12, 15</sup> Yoshitaka Hatta, <sup>1</sup> Mohammad Hattawy, <sup>16</sup> Volker Hejny <sup>0</sup>, <sup>13</sup> Kiel Hock <sup>0</sup>, <sup>1</sup>
      Georg Hoffstaetter, <sup>17,1</sup> Haixin Huang <sup>0,1</sup> Christopher Ianzano, <sup>18</sup> Jiangyong Jia <sup>0,5</sup> Andro Kacharava <sup>0,13</sup>
            Maggie Kerr, <sup>18</sup> Wolfgang Korsch <sup>0</sup>, <sup>8</sup> Dario Lattuada, <sup>19</sup> Andreas Lehrach, <sup>15, 13</sup> Minxiang Li <sup>0</sup>, <sup>14</sup>
     Xiaqing Li,<sup>20</sup> Paolo Lenisa <sup>3</sup> Win Lin,<sup>5</sup> James Maxwell,<sup>11</sup> Aleksei Melnikov <sup>21</sup> Zein-Eddine Meziani <sup>4</sup>
Richard G. Milner <sup>0</sup>, <sup>18</sup> William R. Milner <sup>0</sup>, <sup>22</sup> Iurii Mitrankov, <sup>5</sup> Hamlet Mkrtchyan <sup>0</sup>, <sup>23</sup> Prajwal MohanMurthy <sup>0</sup>, <sup>18</sup>
       Christoph Montag, Sergei Nagaitsev, Charles-Joseph Naim 5, Alexander Nass 1, Dien Nguyen 2, 24
        Nikolai Nikolaev <sup>©</sup>, <sup>25</sup>, <sup>26</sup>, <sup>27</sup> Luciano Pappalardo <sup>©</sup>, <sup>3</sup> Chao Peng, <sup>4</sup> Anna Piccoli <sup>©</sup>, <sup>3</sup> Andrei Poblaguev, <sup>1</sup>
        Deepak Raparia 0, <sup>1</sup> Frank Rathmann 0, <sup>1</sup> Thomas Roser, <sup>1</sup> Premkumar Saganti, <sup>28</sup> Andrew Sandorfi 0, <sup>9</sup>
          Medani Sangroula, Vincent Schoefer, Yousif Shabaan 0,29 Rahul Shankar 0,3 Vera Shmakova 0,1
      Evgeny Shulga, <sup>1</sup> Jamal Slim <sup>0</sup>, <sup>30</sup> Dannie Steski, <sup>1</sup> Bernd Surrow, <sup>31</sup> Noah Wuerfel <sup>0</sup>, <sup>18</sup> and Yaojie Zhai <sup>0</sup>, <sup>14</sup>
                                          <sup>1</sup>Brookhaven National Laboratory, Upton, NY, USA
                                   <sup>2</sup>School of Mathematics, Trinity College Dublin, Dublin, Ireland
                      <sup>3</sup> University of Ferrara and Istituto Nazionale di Fisica Nucleare, 44100 Ferrara, Italy
                                            <sup>4</sup>Argonne National Laboratory, Lemont, IL, USA
                                           <sup>5</sup>Stony Brook University, Stony Brook, NY, USA
                                           <sup>6</sup>Saha Institute of Nuclear Physics, Kolkata, India
                                          <sup>7</sup> University of New Hampshire, Durham, NH, USA
                                             <sup>8</sup> University of Kentucky, Lexington, KY, USA
                                           <sup>9</sup> University of Virginia, Charlottesville, VA, USA
                                              <sup>10</sup>Charles University, Prague, Czech Republic
                            <sup>11</sup> Thomas Jefferson National Accelerator Facility, Newport News, VA, USA
                               <sup>12</sup>GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
                                              <sup>13</sup>Forschungszentrum Jülich, Jülich, Germany
                          <sup>14</sup>Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
                          <sup>15</sup>III. Physikalisches Institut B, RWTH Aachen University, Aachen, Germany
                                             <sup>16</sup>Old Dominion University, Norfolk, VA, USA
                                                 <sup>17</sup>Cornell University, Ithaca, NY, USA
                <sup>18</sup>Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA
                                  <sup>19</sup> Università Kore di Enna & INFN-LNS, Enna & Catania, Italy
                                                   <sup>20</sup>Shandong University, Jinan, China
                         <sup>21</sup>Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia
              <sup>22</sup>Research Laboratory for Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
              <sup>23</sup> A. I. Alikhanyan National Science Laboratory, Yerevan Physics Institute, Yerevan 0036, Armenia
                                            <sup>24</sup> University of Tennessee, Knoxville, TN, USA
                               <sup>25</sup>L.D. Landau Institute for Theoretical Physics, Chernogolovka, Russia
                           <sup>26</sup>Moscow Institute of Physics and Technology, National Research University,
                                       Dolgoprudny, Moscow Region 141701, Russian Federation
      <sup>27</sup> Bogoliubov Laboratory of Theoretical Physics, International Intergovernmental Scientific Research Organization,
                           Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 Russia
                                       <sup>28</sup>Prairie View A&M University, Prairie View, TX, USA
                                      <sup>29</sup>American University in Cairo, New Cairo 11835, Egypt
                                       <sup>30</sup> Deutsches Elektronen-Synchrotron, Hamburg, Germany
                                              <sup>31</sup> Temple University, Philadelphia, PA, USA
                                                        (Dated: September 29, 2025)
```

EIC Polarized IOn Source Scientific Consortium

https://arxiv.org/abs/2510.10794

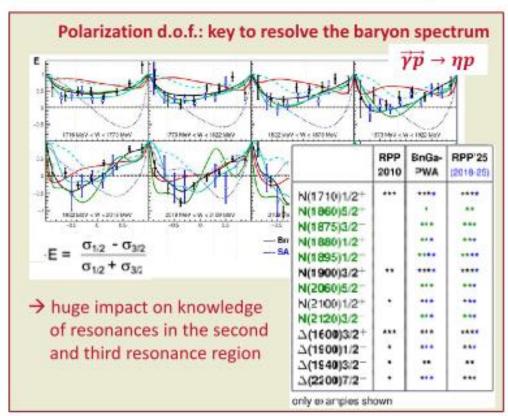
- We identify the AGS as a very valuable platform to carry out beam studies of polarized sources, polarized beams and spin manipulators in the era when RHIC is dark. We recommend that EPIOS and the BNL-CAD together consider the possibilities and develop a plan that takes advantage of the AGS.
- Finally, we point out that the polarized atom sources required for the production of EIC polarized ion beams can also be utilized to feed windowless gas targets internal to a charged particle storage ring. If desired, this would make possible a program of fixed target physics at one of the storage rings in the EIC accelerator complex.

Bonn University


- Awarded this year with colleagues from HEP an Excellence Cluster Grant *Color meets Flavor* in a German-wide competition.
- This secures the future at Bonn inc. the electron stretcher facility ELSA (3.5 GeV) for the next seven years.
- It also provides funding for a big upgrade for the existing CBELSA/TAPS experiment.
- This new Excellenz Cluster includes also support for the hadron physics program at the AMBER and LHCb experiments at CERN.
- For some years, they have a new building (FDT) with high-quality lab space for developing and building new detectors.
- The future of hadron physics is bright at Bonn.

Photon-induced Baryon Physics at ELSA

Photon beam (linear & circular polarization):


- CB-ELSA 4π detector + TAPS + polarized target
 - Double polarization experiments: $\vec{y}\vec{p} \rightarrow \pi^0 p, \eta p, \pi^0 \pi^0 p, ...$
 - Full kinem. coverage of asymmetries Σ, E, G, H, ...
- BGOOD detector (charged final states)
 - BGO 4π calorimeter combined with forward spectrometer
 - Strangeness photoproduction at low momentum transfer and coherent photoproduction off the deuteron

BGOOD

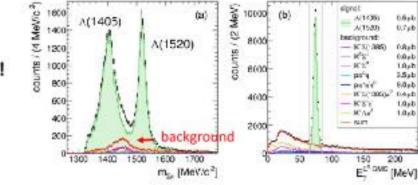
Future Directions ELSA @ Bonn

- Over almost the entire 4π-solid angle:
 - High resolution photon measurements
 - Precise charged particle detection
 Polarized beam and polarized target

→ unique possiblilities!

4

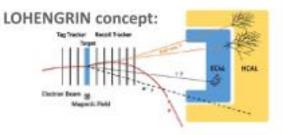
Future Directions ELSA @ Bonn


After ELSA shutdown in 2026/27:

INSIGHT@ELSA: Non-strange and strange baryon spectroscopy:

Gain a complete picture of the N^* , Δ^* - baryon spectrum:

Polarized photoproduction off the polarized proton and neutron! (unambigious PWA not possible without polarization obs.)


Spectrum and properties of Λ*, Σ* ⇔ ".. field is starved for data" ⇔ multi-quark states? molecules? 2-pole structures?

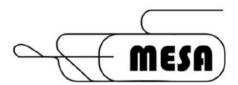
 $\gamma p \rightarrow K^+ \Lambda^* \rightarrow K^+ \Sigma^0 \pi^0$ (isospin selective)

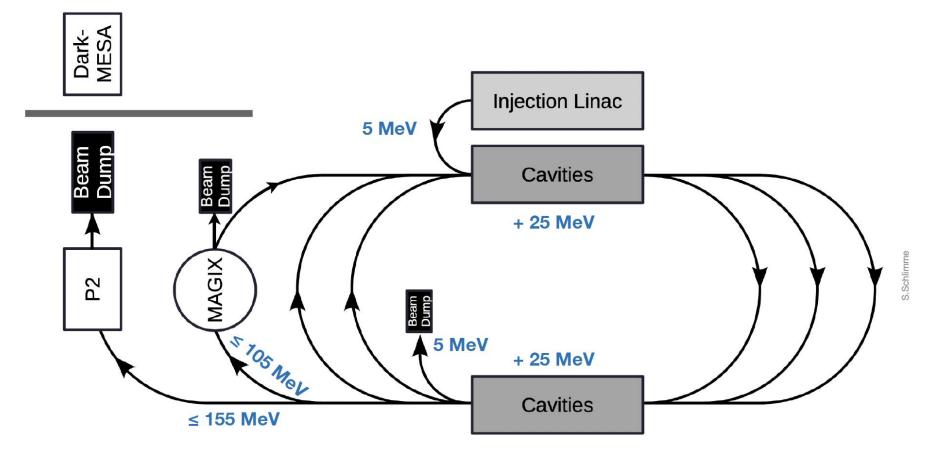
- LOHENGRIN proposal: Search for Light Dark Matter via dark bremsstrahlung

 need 10¹⁵ Electrons on Target via ELSA slow extraction @ 500 MHz
 (EPJC 85 (2025) 5, 600)
- ELSA also a key facility (test beam)
 for the FTD (Forschungs- und Technologiezentrum Detektorphysik) at University of Bonn

Mainz

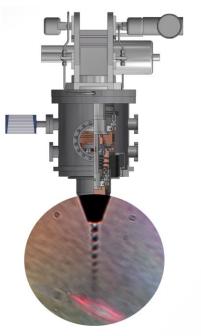
Unlocking physics with hadrons and nuclei


MESA - Mainz Energy-Recovering Superconducting Accelerator


155 MeV

- Energy-recovery mode for high intensity (MAGIX)
- Extracted-beam mode for high polarisation (P2)
- Beam dump experiment (DarkMESA)

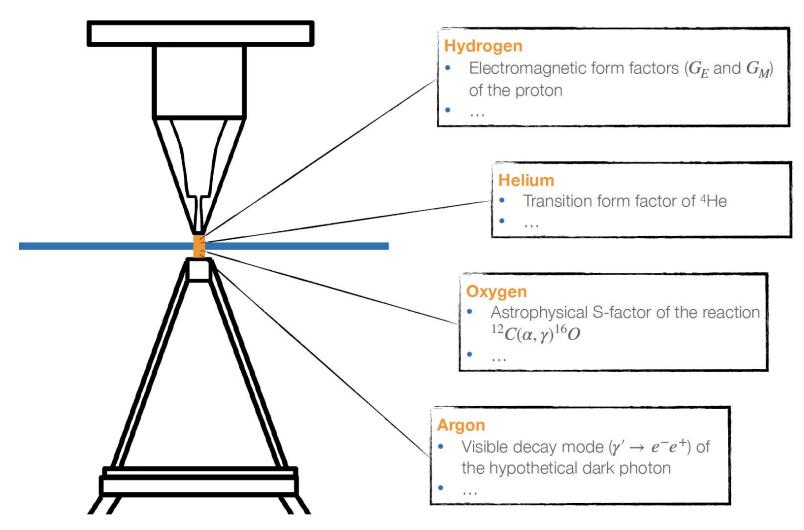
Let's build MESA (7/7).


Mainz Energy-recovering Superconducting Accelerator

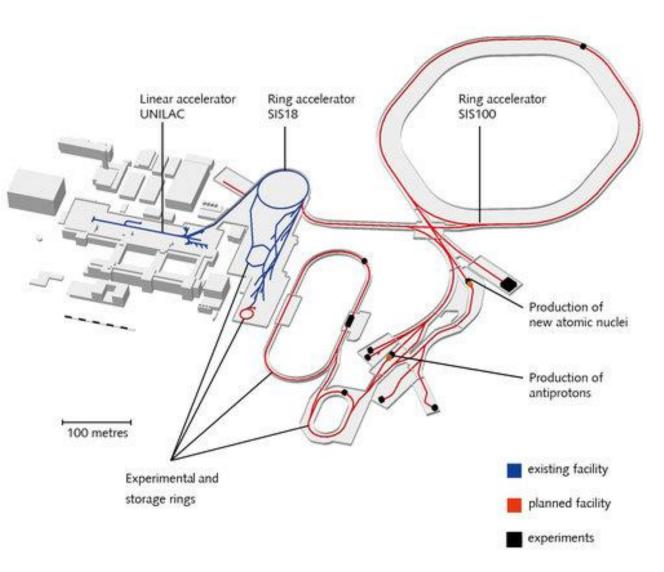
MAGIX

• High-resolution spectrometers ($\Delta p/p \le 10^{-4}$)

Cryogenic
 windowless gas-jet
 target



Detection of low-energy recoil particles



A versatile physics program.

Planned FAIR Accelerator

Ring Accelerator SIS100

The SIS100 ring accelerator runs along an underground tunnel whose floor lies as deep as 17 meters under the earth's surface. The SIS100 has a circumference of 1,100 meters and can accelerate the ions of all the natural elements in the periodic table to speeds as high as 99% of the speed of light. The magnets that keep the ions in their paths are superconducting and are cooled to -269°C by means of liquid helium. The accelerated particles are either used directly for experiments or for the production of other particles, so-called secondary particles.

FAIR Construction Status October 2025

First beams in ~ 2028

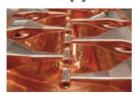
FAIR's Four Experimental Pillars

NUSTAR — Stars and nuclei

Nuclear Structure Astrophysics and Reactions.

Experiments with atomic nuclei are the key to understanding stars.

PANDA — Antimatter research


Antiproton Annihilation at Darmstadt. How can antimatter help us understand the mass of matter and the strong force?

■ CBM — Inside a neutron star

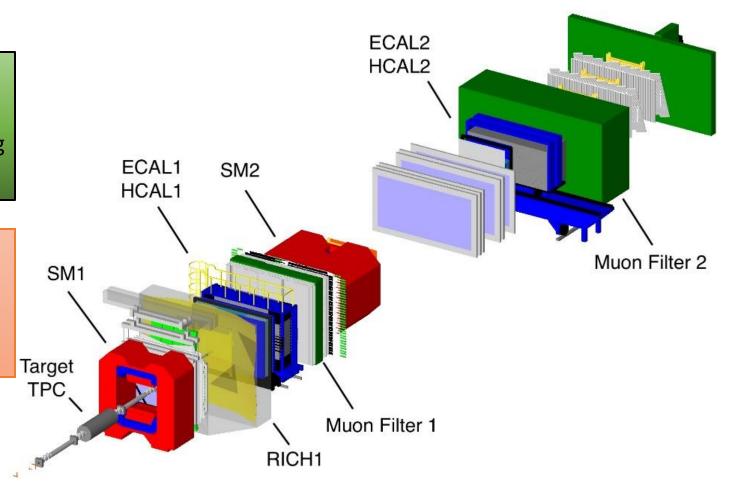
Compressed Baryonic Matter. The collision of atomic nuclei at high speeds can simulate the conditions inside supermassive objects for a split second.

APPA — From atoms and planets to cancer therapy

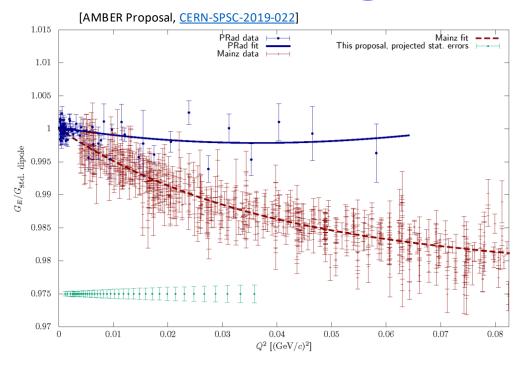
Atomic, Plasma Physics and

Applications. From the investigation of atoms and macroscopic effects in materials or tissues all the way to engineering and medical applications.

AMBER – A QCD Facility at CERN's SPS M2 beam line


- Successor of COMPASS: LOI (2018) <u>arXiv:1808.00848</u>
- Upgraded spectrometer

Phase-1: 2023 \rightarrow **2031** (conventional beams)


- $ar{p}$ production cross section for DM searches
- Proton radius: high-energy μ -p elastic scattering
- Pion/kaon quark PDFs: Drell-Yan process

Phase-2: 2031 \rightarrow **2041** (high-intensity kaon beam)

- K gluon PDFs (DY, prompt photons)
- Strange meson spectroscopy
- Meson charge radii, Primakoff reactions

Proton Charge Radius

Unique measurement: high-energy μ^\pm (100 GeV/c)

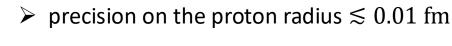
ightharpoonup goal: 70 million elastic scattering events in the $10^{-3} < Q^2 < 4 \cdot 10^{-2}$ GeV² range

ECAL1

HCAL₁

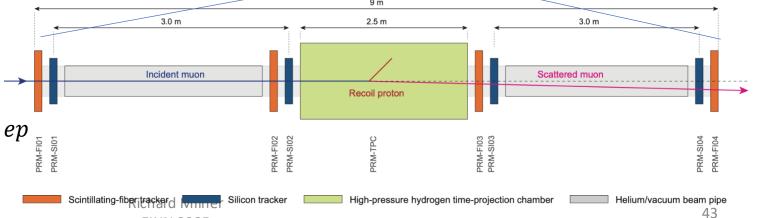
SM₁

Target

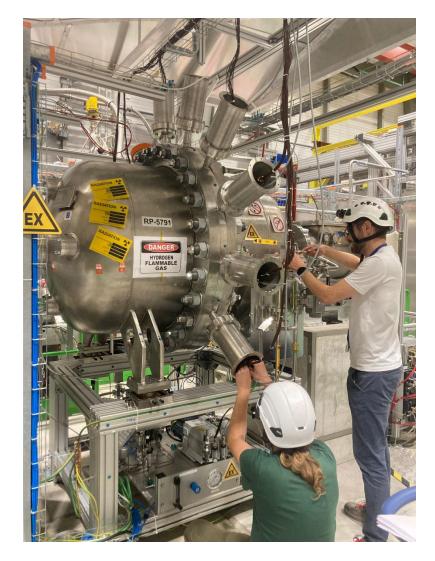

SM₂

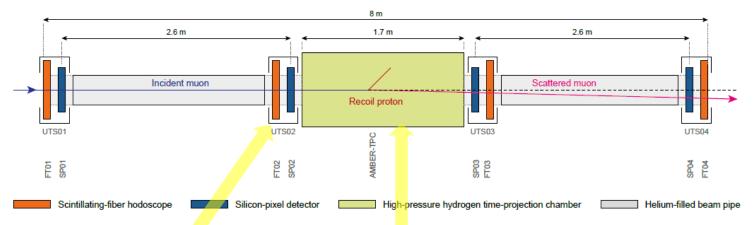
HCAL₂

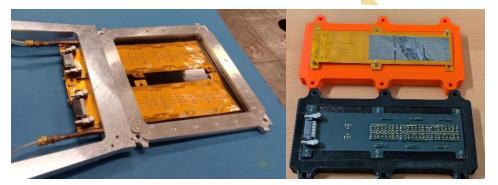
Muon Filter 1


RICH1

Muon Filter 2


Why μp scattering?


- different leptonic probe
- different systematic uncertainties
- >10 × smaller radiative corrections than ep
- provide precise data for global fit
- test lepton universality


EINN 2025

AMBER Gets ready for the Proton Radius

- ➤ High-pressure (20 barg H₂) active-target TPC installed in EHN2
- Precision vertexing using a combination of MAPS and scintillating fibers
- Muon PID using the AMBER spectrometer
- New free streaming DAQ

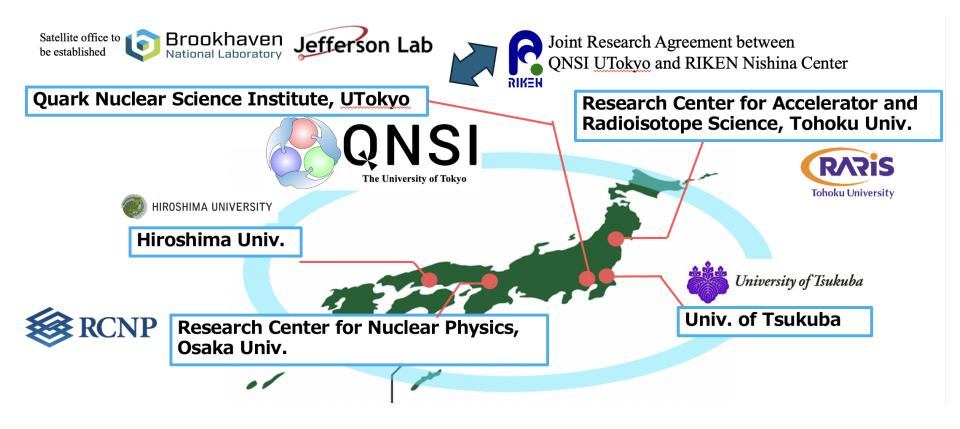
En route to provide the first measurement of the proton electric form factor with high-energy muons in 2026

FINN 2025



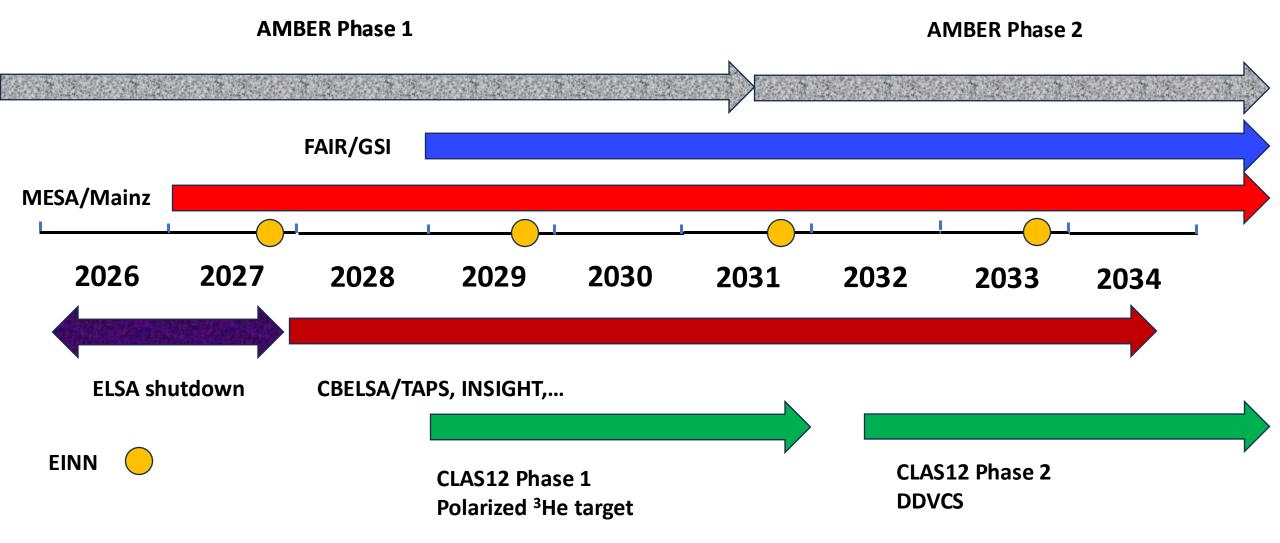
Particle and Nuclear physics at J-PARC

Hadron Experimental Facility EXtension

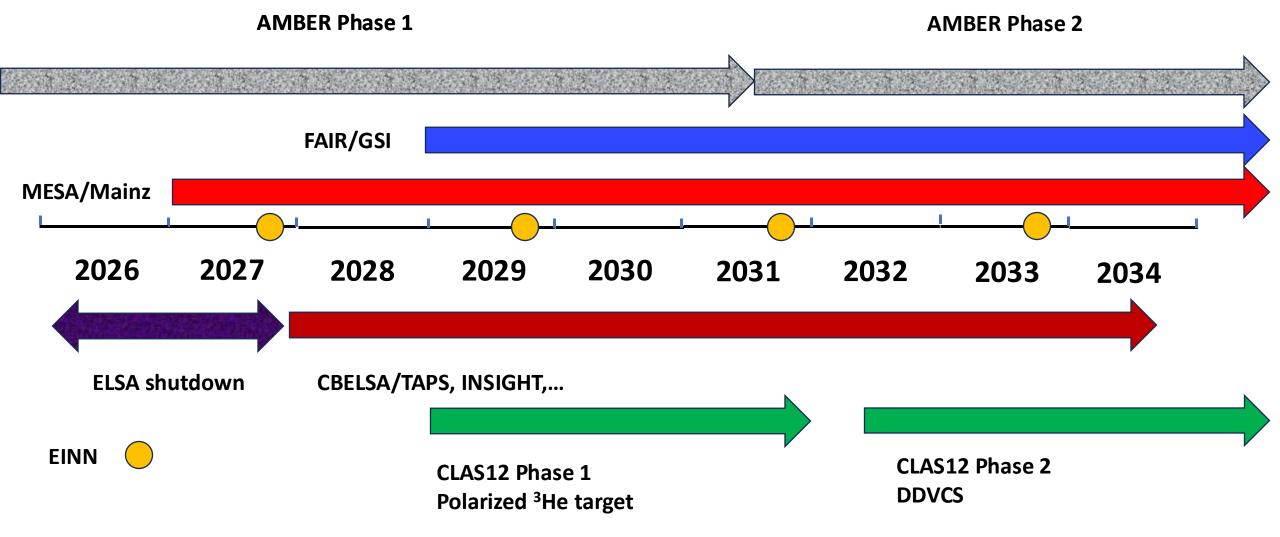

Explore the origin of matter with nuclear, hadron, and flavor physics

International Quantum Physics Network (IQPN)

Established in 2025 through inter-university collaboration in Japan


Through inter-university collaboration, we are building a cooperative framework with Japan's world-class accelerator facilities, J-PARC and RIBF, to continuously advance research related to the EIC project on an all-Japan basis

Summary


- Hadronic physics is a major international research effort with fundamental open questions being addressed:
 - imaging of quark and gluon structure of proton
 - precision measurement of hadron properties
 - search for new physics
- Currently, facilities are operating in Asia, Europe and N. America.
- There are significant upgrades of existing detectors and new detectors planned at these facilities.
- There are major new facilities (FAIR, EIC) expected to be realized over the next 5-10 years.
- Hadronic physics has a bright future well into the mid-twenty first century.

Possible Schedule

Possible Schedule

Also: AGS fixed target/BNL, SoLID/JLAB, HEFEX/J-PARC, ARIEL/TRIUMF......

