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etc. interactions play a role…
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ChPT ChPT

  parameter-free predictions for  at ⇒ V2π(r) r ≳ M−1
π

Roy-Steiner equation
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Chiral expansion of the long-range NN force

SMS NN potentials  Reinert, Krebs, EE, EPJA 54 (2018) 86;  PRL 126 (2021) 092501

V1π(q) =
α

⃗q2 + M2
π

V2π(q) =
2
π ∫

∞

2Mπ

dμμ
ρ(μ)
⃗q2 + μ2

e− ⃗q2 + M2π
Λ2 + subtraction, e− ⃗q2 + μ2

2Λ2 + subtractions

+ nonlocal (Gaussian) cutoff for contacts

χ2
datum
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Chiral expansion of the long-range NN force

Can we test these predictions in NN scattering?

χ2
datum
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Chiral expansion of the long-range NN force

Can we test these predictions in NN scattering?

χ2
datum

 for the description of neutron-proton and proton-proton scattering dataχ2
datum

 Elab bin CD Bonn Nijm I Nijm II Reid 93 Bochum N4LO+

 0-300 MeV 1.042 1.061 1.070 1.078 1.013
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Chiral expansion of the long-range NN force

Can we test these predictions in NN scattering?

Switching off the -exchange leads to    (i.e.,  away!), consistent fits only for  MeV…2π χ2
datum ∼ 1.99 50σ Elab ≤ 135

χ2
datum

 for the description of neutron-proton and proton-proton scattering dataχ2
datum

 Elab bin CD Bonn Nijm I Nijm II Reid 93 Bochum N4LO+

 0-300 MeV 1.042 1.061 1.070 1.078 1.013



 Three-pion exchange
What about the 3π-exchange?



 Three-pion exchange
What about the 3π-exchange?                                            Tour-de-force calculation by N. Kaiser 
using the Cutkosky cutting rules  N. Kaiser, PRC61 (2000), PRC62 (2000), PRC63 (2001)     

Im[V(qμqμ = μ2 > 9M2
π)] = ∫ d Γ3 Ampl1 × Ampl2

3

FIG. 1: Schematic picture of a NN̄ ! 3⇡ ! NN̄ reaction.

V3⇡(q) = VC(q) + VS(q)~�1 · ~�2 + VT(q)~�1 · ~q ~�2 · ~q
+ [WC(q) +WS(q)~�1 · ~�2 +WT(q)~�1 · ~q ~�2 · ~q]~⌧1 · ~⌧2

with V the isoscalar and W the isovector part of the potential. The indices C, S and T indicate the central, spin-
spin and tensor part. In order to obtain the imaginary parts of the potential, we make use of the Cutkosky cutting
rules. That is, we cut in in the intermediate state and exchange each cut propagator with a delta-distribution, i.e.
1/(l2 � m

2) ! 2⇡i✓(l0)�
�
l
2 �m

2
�
. In other words, we set the pions on-shell. Thus, the imaginary part is given

(symbolic) by integrals of the squared N̄N ! 3⇡ transition amplitudes over the Lorentz invariant three pion phase
space:

Im


A

Z
d
4
l1

(2⇡4)

d
4
l2

(2⇡4)

d
4
l3

(2⇡4)

1

l
2
1 �M2

⇡

1

l
2
2 �M2

⇡

1

l
2
3 �M2

⇡

B

�
=

1

2

Z
d�3AB

In this notation, l3 = p1 � p2 � l1 � l2 and with A and B transition amplitudes. Before we simplify the phase space,
we first introduce our reference-frame to fix our notation. The nucleon four vectors are chosen as

p1 =

✓
µ/2
p ~v

◆
, p2 =

✓
�µ/2
p ~v

◆
(13)

and the three pions four vectors are

l1 =

✓
!1
~l1

◆
, l2 =

✓
!2
~l2

◆
, l3 =

✓
µ� !1 � !2

�~l1 �~l2

◆
. (14)

Here, ~v is a unit vector and p =
p
µ2/4�M2 = iM in the heavy baryon limit (M ! 1). For the nucleon propagators,

it follows:

2M

(P1 � li)
2 �M2

=
1

i~v ·~li � ✏

,
2M

(P2 + li)
2 �M2

=
�1

i~v ·~li + ✏

(15)

Notice that the sign of the ✏ is fixed. Some details about that can be found in the appendix.
After setting the notation, we move on by simplifying the phase space. Once we applied the Cutcosky-rules, we can
perform the integration over the time-component in order to obtain the Lorentz-invariant phase space. Thus, our
starting expression reads:

Z
d�3 =

Z
d
3
l1

(2⇡)32!1

d
3
l2

(2⇡)32!2

d
3
l3

(2⇡)32!3
�
(3)(~l3 + (~l1 + ~l2))�(µ� (!1 + !2 + !3))

Since we are free to choose a frame, we show two di↵erent ways how to simplify the phase space. In both cases we
perform first the three dimensional integration over ~l3.

A. Simplification of the Phase Space in Frame 1

We choose a direction in which the nucleon unit three-vector is in the z-direction, thus v̂ = (0, 0, 1). In this frame,

the unit vectors of ~l1 and ~l2 can be expressed as

l̂1 =

0

@

p
1� x2 cos�1p
1� x2 sin�1

x

1

A , l̂2 =

0

@

p
1� y2 cos�2p
1� y2 sin�2

y
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On-shell amplitudes analytically continued 
to complex momenta

both become α-dependent. In (measurable) on-shell matrix elements the unphysical param-
eter α must of course drop out. For elastic ππ-scattering this is obvious due to the mass-shell
condition q21 = q22 = q23 = q24 = m2

π. The T-matrix for the reaction πN → ππN at threshold
in the center-of-mass frame

T cm
th (πa(k⃗ )N → πbπcN) = i σ⃗ · k⃗

[
D1(τ

bδac + τ cδab) +D2 τ
aδbc

]
, (6)

receives contributions from the chiral 3πNN -contact vertex eq.(5) and the pion-pole diagram
of the form

Dcont
1 =

gA
4f 3

π

(4α− 1) , Dπ−pole
1 =

gA
8f 3

π

(3− 8α) , (7)

Dcont
2 =

gA
f 3
π

α , Dπ−pole
2 = −

gA
8f 3

π

(8α + 3) . (8)

The sums D(cont)
1,2 +D(π−pole)

1,2 are indeed α-independent and they constitute the leading order
terms of the chiral low-energy theorems for πN → ππN derived in ref.[6]. Note that there is
no value of α which would allow one to derive the complete leading order terms for D1 and
D2 from a single diagram. Graphs with the chiral 3πNN -contact vertex and graphs with the
chiral 4π-vertex always have to be grouped into classes and only the results of such classes
of diagrams have a physical meaning.

Fig.1: 3π-exchange diagrams of class I. Solid and dashed lines represent nucleons and pions,
respectively. The symmetry factor of these graphs is 1/6.

Let us now turn to the evaluation of (parts of) the chiral 3π-exchange NN-potential.
According to the previous discussion the full class of two-loop diagrams shown in Fig. 1
should be considered as one entity, whereas in ref.[3] only the first one was evaluated for
α = 0. From a consideration of the spin- and isospin-factors occurring in these diagrams
one finds immediately that only non-vanishing isovector spin-spin and tensor NN-amplitudes
will be obtained, i.e. a contribution to the NN T-matrix of the form

TNN =
[
WS(q) σ⃗1 · σ⃗2 +WT (q) σ⃗1 · q⃗ σ⃗2 · q⃗

]
τ⃗1 · τ⃗2 , (9)

where q = |q⃗ | denotes the momentum transfer between the initial and final state nucleon.
Obviously, the two-loop pion-pole diagrams in Fig. 1 contribute via mass and coupling con-
stant renormalization also to the 1π-exchange. These effects are, however, automatically
taken care of by working with the physical pion mass mπ and physical πNN -coupling con-
stant gπN . We are interested here only in the coordinate space potentials generated by the
simultaneous exchange of three pions between both nucleons. For that purpose it is suffi-
cient to calculate the imaginary parts of the NN-amplitudes WS,T (q) analytically continued

3

Fig.2: 3π-exchange diagrams of class II. Diagrams for which the role of both nucleons is
interchanged are not shown. They lead to the same contribution to the NN-potential. The
symmetry factor of these graphs is 1/2.

Next, we consider the diagrams of class II shown in Fig. 2. These are the diagrams with
exactly one nucleon-propagator and because of this property the invariant 3π-phase space
integral can still be reduced to a simple one-dimensional integral in the heavy nucleon mass
limit M → ∞ (compare also with ImGA(t) in ref.[7]). After a somewhat lengthy calculation
we find from class II,

ImW (II)
S (iµ) =

g2A
3µ4(16πf 2

π)
3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)w2(3m2

π + µ2 − 3w2) ,

(16)

ImW (II)
T (iµ) =

g2A
6(8πf 2

πµ
2)3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
w4m2

π(µ
2 −m2

π)
−1 − 2w2µ2 +m2

π(µ
2 +m2

π)(3µ
2 +m2

π)w
−2

]
. (17)

In the chiral limit, mπ = 0, one obtains now attractive isovector tensor and spin-spin poten-
tials with a r−7-dependence,

W̃ (II)
T (r) =

28

13
W̃ (II)

S (r) = −
35g2A

18(4π)5f 6
π

1

r7
. (18)

The asymptotic fall-off for r → ∞ differs from class I due to a different threshold behavior
of the mass-spectra: ImW (II)

S (iµ) ∼ (µ−3mπ)4 and ImW (II)
T (iµ) ∼ (µ−3mπ)3, which leads

to

W̃ (II)
T (r) = W̃ (II)

S (r) = −
14g2Am

2
π

3
√
3(8π)4f 6

π

e−3mπr

r5
+ . . . (19)

Fig.3: 3π-exchange diagrams of class III. The isoscalar NN-amplitudes sum up to zero.

Furthermore, we consider the diagrams of class III shown in Fig. 3. The isospin-factor of
the first and second graph is 6−2 τ⃗1·τ⃗2 while that of the third and fourth graph is −6−2 τ⃗1 ·τ⃗2.
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Fig.3: 3π-exchange diagrams of class III. The isoscalar NN-amplitudes sum up to zero.

Furthermore, we consider the diagrams of class III shown in Fig. 3. The isospin-factor of
the first and second graph is 6−2 τ⃗1·τ⃗2 while that of the third and fourth graph is −6−2 τ⃗1 ·τ⃗2.
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Since all other factors occuring in these two types of diagrams are equal (modulo the sign
of an i0+-term in one heavy nucleon-propagator which finally does not matter) one obtains
only a contribution to the isovector spin-spin and tensor NN-amplitudes. Altogether, we
find the following imaginary parts from the diagrams of class III,

ImW (III)
S (iµ) =

g2A
18µ4(16πf 2

π)
3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
9w4 − 5µ4 + 30µ2m2

π − 9m4
π

]
, (20)

ImW (III)
T (iµ) =

2g2A
9(16πf 2

πµ
2)3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
4µ4 + 9µ2m2

π + 9m4
π − 3w4 + 6m2

π(µ
4 −m4

π)w
−2

]
. (21)

In the chiral limit, mπ = 0, one has again potentials with a r−7-dependence,

W̃ (III)
T (r) = W̃ (III)

S (r) =
490g2A

9(8π)5f 6
π

1

r7
, (22)

and the asymptotic fall-off of these potentials for r → ∞ is given by

W̃ (III)
T (r) = W̃ (III)

S (r) =
g2Am

3
π

4
√
3(4π)4f 6

π

e−3mπr

r4
+ . . . (23)

Fig.4: 3π-exchange diagrams of class IV. The symmetry factor of these graphs is 1/2.

Finally, we consider the diagrams of class IV shown in Fig. 4. The isospin-factor of the
first and second graph (planar boxes) is 6− 4 τ⃗1 · τ⃗2 while that of the third and fourth graph
(crossed boxes) is 6+4 τ⃗1 ·τ⃗2. In ref.[1] it was shown that the irreducible part of the planar box
and the crossed box are exactly equal up to a minus-sign. If one makes here use of this fact,
one obtains again only a contribution to the isovector spin-spin and tensor NN-amplitudes
from the diagrams of class IV. The explicit calculation of the corresponding imaginary parts
leads to the following result,

ImW (IV )
S (iµ) =

g2A
9µ4(16πf 2

π)
3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
9w4 − 5µ4 + 30µ2m2

π − 9m4
π

]
, (24)

ImW (IV )
T (iµ) =

g2A
6(8πf 2

πµ
2)3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

[
w4 + 7µ2m2

π (25)

−
2

3
µ4 −m2

π(µ
2 +m2

π)
2w−2 + 4m2

πµ
4(4m2

π − w2)λ−1(w2, m2
π, µ

2)
]
.

6

axial nucleon form factors and found perfect agreement with the results of ref.[4]. As a
further check we applied the methods to calculate the imaginary parts of the 2π-exchange
NN-amplitudes. In that case only a much simpler two-body phase space integral needs to
be evaluated and one reproduces indeed exactly the results of ref.[2, 3] in a rather short
calculation.

Fig.1: 3π-exchange diagrams of classV proportional to g4A. Solid and dashed lines represent
nucleons and pions, respectively.

Let us now turn to the results for the (two-loop) chiral 3π-exchange diagrams proportional
to g4A and g6A. We start with the diagrams of classV shown in Fig. 1. As stressed in ref.[1]
diagrams involving the chiral 3πNN -vertex or the chiral 4π-vertex depend on an arbitrary
parameter α and therefore one should consider the full classV as one entity. Obviously, the
last two pion-pole diagrams in Fig. 1 contribute via coupling constant renormalization also to
the point-like 1π-exchange. This effect is however automatically taken care by working with
the physical πNN -coupling constant gπN . From an inspection of the spin- and isospin factors
occurring in the diagrams of classV one finds immediately that only non-vanishing isovector
spin-spin and tensor NN-amplitudes WS,T will be obtained. We find the following imaginary
parts from classV,

ImW (V )
S (iµ) =

2g4A
3(8πf 2

π)
3

∫∫

z2≤1

dω1dω2

{
k2
1 + µω1 + 3(m2

π − µω1)
(
z +

k2
k1

)arccos(−z)√
1− z2

}
, (7)

ImW (V )
T (iµ) =

1

µ2
ImW (V )

S (iµ) +
g4A(µ

2 −m2
π)

−1

µ2(8πf 2
π)

3

∫∫

z2≤1

dω1dω2

×
[
(6µ2 + 2m2

π)(ω1 + ω2)− µ(4µ2 + 3m2
π)

]

×
{[

(µ2 +m2
π)

(
2ω1 −

µ

2

)
− 2µω1ω2

] arccos(−z)

k1k2
√
1− z2

+ µ+ 2zω1
k2
k1

}
. (8)

The inequality z2 ≤ 1 defines the kinematically allowed (Dalitz) region in the ω1ω2-plane
(which is bounded by a cubic curve) together with the obvious kinematical constraints mπ ≤
ω1,2 ≤ µ− 2mπ and 2mπ ≤ ω1 + ω2 ≤ µ−mπ. Note that the same integrand as in eq.(7) for

ImW (V )
S (iµ) was found in ref.[4] for the spectral-function of the nucleon isovector axial form

factor. In the chiral limit mπ = 0 one can evaluate the remaining double-integrals in eqs.(7,8)
using the substitution ω1 = µ(1− xy)/2, ω2 = µy/2 which maps the unit-square 0 ≤ x, y ≤ 1
onto the (in the chiral limit) triangle-shaped Dalitz region.

One finds from classV repulsive isovector spin-spin and tensor potentials with an r−7-
dependence,

W̃ (V )
S (r)

∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
16

21
π2 +

85

36

)
, W̃ (V )

T (r)
∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
245

72

)
. (9)

3

Next, we come to the diagrams of classVI shown in Fig. 2. The isospin factor of the first
and second graph is 4τ⃗1 · τ⃗2 − 6 while that of the third and fourth graphs is −4τ⃗1 · τ⃗2 − 6.
The last two graphs are irreducible whereas the first two contain the iteration of 1π-exchange
and 2π-exchange (triangle subgraphs). This iterative part has to be separated off in the
construction of the NN-potential. A closer inspection reveals that the two types of diagram
differ only by some signs in nucleon propagators. The first two diagrams carry a factor
−[(iv⃗ ·k⃗1+ϵ)(iv⃗ ·k⃗1−ϵ)]−1 in comparison to a factor (iv⃗ ·k⃗1+ϵ)−2 from the last two (irreducible)
diagrams. The irreducible part of the first two diagrams is obtained by switching the sign of
one ϵ-term (−ϵ → +ϵ) such that the expression agrees with that of the irreducible diagrams.

Fig.2: 3π-exchange diagrams of classVI proportional to g4A. Diagrams for which the role
of both nucleons is interchanged are not shown. They lead to the same contribution to the
NN-potential. The (irreducible) isoscalar NN-amplitudes sum up to zero.

In order to make this procedure more understandable consider the following integrals:∫ 1
−1 dx[(x+ iϵ)(x− iϵ)]−1 = π/ϵ−2+O(ϵ2) and

∫ 1
−1 dx(x+ iϵ)−2 = −2+O(ϵ2). The difference

between both diverges as 1/ϵ for ϵ → 0+. According to the definition in eq.(6) one has
ϵ ∼ M−1 and from the (non-relativistic) Lippmann-Schwinger equation [5] it is known that
the iteration of the potential leads to a contribution proportional to the nucleon mass M .
Therefore the 1/ϵ-term which gets subtracted by switching the sign (of one ϵ) corresponds
indeed to the iterative part. In the case of 2π-exchange all this has been worked out in detail
in ref.[2] and as already mentioned the present methods allow to reproduce exactly the results
of ref.[2] for the irreducible 2π-exchange.

After subtracting the iterative part the first two and the last two diagrams in Fig. 2 become
equal up to a minus-sign. Combining this with the isospin factors one obtains again only a
non-vanishing contribution to the isovector spin-spin and tensor NN-amplitudes WS,T . We
find the following imaginary parts from classVI,

ImW (V I)
S (iµ) =

2g4A
(8πf 2

π)
3

∫∫

z2≤1

dω1dω2

{
− k2

1 −
5

3
µω1 + (µω1 −m2

π)
(
z +

k2
k1

)arccos(−z)√
1− z2

}
, (10)

ImW (V I)
T (iµ) =

1

µ2
ImW (V I)

S (iµ) +
2g4A

µ2(8πf 2
π)

3

∫∫

z2≤1

dω1dω2 ω1

{
2ω1

3k2
1

(2µω1 − µ2 + 3m2
π − 6ω2

2)

+
[
(µ2 +m2

π)(µ− 2ω1 − 2ω2) + 4µω1ω2

] arccos(−z)

k1k2
√
1− z2

− 2zω2
k2
k1

+ 3ω1 − 2µ
}
. (11)

In the chiral limit (mπ = 0) one gets now a repulsive isovector spin-spin potential and an
attractive isovector tensor potential of the form,

W̃ (V I)
S (r)

∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
175

36

)
, W̃ (V I)

T (r)
∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
4

3
π2 −

665

36

)
. (12)
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Next, we come the diagrams of classVII shown Fig. 3. The isospin factor of all four
diagrams is 6 and after considering their spin-structure one finds immediately that there will
be only a non-vanishing contribution to the isoscalar spin-spin and tensor NN-amplitudes
VS,T . In the case of classVII one can actually solve all integrals analytically and one obtains
the following closed form expressions for the imaginary parts,

Fig.3: 3π-exchange diagrams of classVII proportional to g4A. The isospin factor of these
diagrams is 6.

Im V (V II)
S (iµ) =

g4A(µ− 3mπ)2

35π(32f 3
π)

2

[
2m2

π − 12µmπ − 2µ2 + 15
m3

π

µ
+ 2

m4
π

µ2
+ 3

m5
π

µ3

]
, (13)

ImV (V II)
T (iµ) =

g4A(µ− 3mπ)

35π(32µf 3
π)

2

[
µ3 + 3µ2mπ + 2µm2

π + 6m3
π + 18

m4
π

µ
− 9

m5
π

µ2
− 27

m6
π

µ3

]
. (14)

It is even more astonishing that the corresponding coordinate space potentials (inserting
eqs.(13,14) into eqs.(3,4)) can be expressed through a simple exponential-function multiplied
by a polynomial. We find the following repulsive isoscalar spin-spin and tensor potentials
from classVII,

Ṽ (V II)
S (r) =

g4A
2(8πf 2

π)
3

e−3mπr

r7
(1 +mπr)

2(2 +mπr)
2 , (15)

Ṽ (V II)
T (r) =

g4A
2(8πf 2

π)
3

e−3mπr

r7
(1 +mπr)

2(1 +mπr +m2
πr

2) . (16)

Fig.4: 3π-exchange diagrams of classVIII proportional to g6A.

Next, we consider the diagrams of classVIII shown in Fig. 4. The isospin factor of the
first graph is 7τ⃗1 · τ⃗2 − 6 while that of the second one is 7τ⃗1 · τ⃗2 + 6. In order to separate
off the iterative parts from the first diagram one has to switch the sign of two different ϵ-
terms in nucleon propagators. After this procedure the factors coming from the nucleon
propagators agree identically for both diagrams in Fig. 4. The two diagrams differ however
in the ordering of the first and third (spin-dependent) pion-coupling to one nucleon line.
Exploiting furthermore the properties of σ⃗-matrices one finds that the spin-independent part
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Fig.5: 3π-exchange diagrams of class IX proportional to g6A.

In order to arrive at the very short expression given in eq.(21) we have exploited the
inherent permutational symmetry of the 3π-phase space integration. In the chiral limitmπ = 0
one obtains from class IX an attractive isoscalar central potential of the form

Ṽ (IX)
C (r)

∣∣∣
mπ=0

=
g6A r−7

(4π)5f 6
π

(
4π2 − 60

)
, (22)

which just cancels the one coming from classVIII given in eq.(18). Later when presenting
numerical results in Table 1 we will see that this cancellation holds also for any finite pion
mass mπ. Furthermore, we obtain from class IX a non-vanishing contribution to the isovector
central NN-amplitude WC . For the corresponding imaginary part all appearing integrals can
be solved analytically and one finds the following closed form expression,

ImW (IX)
C (iµ) =

g6A(µ− 3mπ)2

30πµ(4fπ)6
(3m3

π + 2µm2
π − 9µ2mπ − 4µ3) . (23)

Inserting this mass-spectrum into eq.(2) one obtains finally a repulsive isovector central po-
tential which can be expressed in terms of a simple exponential-function multiplied by a
polynomial,

W̃ (IX)
C (r) =

2g6A
(16πf 2

π)
3

e−3mπr

r7
(1 +mπr)(4 + 5mπr + 3m2

πr
2) . (24)

We have also evaluated the imaginary parts of the isoscalar and isovector spin-spin and tensor
NN-amplitudes arising from the four diagrams shown in Fig 5. In these cases there appear
again singular terms proportional to (1−z2)−3/2 in the integrands such that the double-integral∫∫

z2≤1 dω1dω2 diverges. Consequently, we may conclude that only the central potentials gen-
erated by the 3π-exchange diagrams proportional to g6A (shown in Figs. 4,5) exist in the static
limit (M → ∞) while all spin-spin and tensor potentials diverge. This is a somewhat unex-
pected feature of the 3π-exchange NN-potential.

In Table 1, we present numerical results for the coordinate space NN-potentials generated
by the 3π-exchange graphs of classV, VI, VII, VIII and IX for internucleon distances 0.6 fm≤
r ≤ 1.4 fm. We use the parameters fπ = 92.4MeV, mπ = 138MeV (average pion mass) and
gA = gπNfπ/M = 1.32 employing the Goldberger-Treiman relation together with gπN = 13.4.
The choice gA = 1.32 is most natural in the present context since the pion-nucleon coupling is
the relevant here and not the axial-vector coupling. One observes that the isovector spin-spin
and tensor potentials from classesV and VI (scaling with g4A) are a factor 3 to 10 larger than

the (largest) potential W̃ (III)
S,T (r) found in our previous work [1] on the chiral 3π-exchange

diagrams scaling with g2A. The most striking result is that the isoscalar central potentials

from classVIII and IX cancel each other, Ṽ (V III)
C (r) + Ṽ (IX)

C (r) = 0, and this cancellation is
found to happen with high numerical precision. From the double-integral representation in
eqs.(17,21) it is not at all obvious that the relation ImV (V III)

C (iµ)+ImV (IX)
C (iµ) = 0 holds, at

least we have not yet found a simple analytical proof. Consequently, we can conclude that the
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Fig.1: 3π-exchange diagrams of classX proportional to g2A. Solid and dashed lines represent
nucleons and pions, respectively. The heavy dot symbolized an insertion from second order
chiral πN-Lagrangian. The combinatoric factor of these diagrams is 1/2. Diagrams for which
the role of both nucleons is interchanged are not shown. They lead to the same NN-potential.

Note that we are considering here only the finite-range Yukawa-parts of the 1π-exchange
and we disregard all zero-range δ3(r⃗ )-terms. Transformed into momentum space the latter
become polynomials in q2 with possible contributions from higher-derivative operators. From
an inspection of the spin- and isospin factors occurring in the diagrams of classX one finds
immediately that only non-vanishing isovector spin-spin and tensor NN-amplitudes WS,T will
be obtained. We find the following imaginary parts from classX (dropping from now on the
argument iµ),
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where we have introduced the abbreviations C13(w) = 4c1m2
π + c3(w2 − 2m2

π) and λ(w) =
w4+µ4+m4

π − 2w2µ2− 2w2m2
π − 2µ2m2

π. The variable w denotes the invariant mass of a pion-
pair and its kinematically allowed range is 2mπ ≤ w ≤ µ −mπ. The dw-integrals in eqs.(7,8)
could of course be solved easily in terms of square-root and logarithmic functions. However,
we want to avoid the resulting rather lengthy expressions.

Fig.2: 3π-exchange diagrams of classXI proportional to g2A. These give a vanishing contribution
to the NN-potential.

Next, we consider the diagrams of classXI shown in Fig.2. Each of them gives a vanishing
contribution to the NN T-matrix for the following reason. Since the leading order (Weinberg-
Tomozawa) ππNN -vertex is of isovector nature (i.e. proportional to ϵabcτ c) a non-zero isospin-
factor is obtained only from the spin-dependent isovector term in eq.(2) proportional to c4.

4
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Next, we consider the diagrams of classXI shown in Fig.2. Each of them gives a vanishing
contribution to the NN T-matrix for the following reason. Since the leading order (Weinberg-
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When combined with the spin-independent Weinberg-Tomozawa vertex on the other side of the
bubble-type sub-diagram one finds immediately that the pertinent 1-loop integral is zero in the
heavy baryon formalism (basically because the spin-vector σ⃗ has no time-component).

Fig.3: 3π-exchange diagrams of classXII proportional to g2A. For further notation, see Fig. 1.

Next, we consider the diagrams of classXII shown in Fig.3. The isoscalar contribution
comes exclusively from the c4-term in eq.(2). Altogether one obtains the following imaginary
parts of the isoscalar and isovector spin-spin and tensor NN-amplitudes from classXII,
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×
[
3w4 − 2w2(5m2

π + 2µ2) + µ4 + 2µ2m2
π + 5m4
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}
. (12)

Fig.4: 3π-exchange diagrams of class XIII proportional to g4A. For further notation, see Fig. 1.

Next, we turn to the diagrams of classXIII shown in Fig.4. The technique to separate off the
iterative part from the first two reducible diagrams has been explained in ref.[10]. The iterative
(or reducible) part is defined here (entirely) within perturbation theory as that part which
carries in the numerator the large scale enhancement factor M , the nucleon mass. Such an
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Next, we turn to the diagrams of classXIII shown in Fig.4. The technique to separate off the
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(or reducible) part is defined here (entirely) within perturbation theory as that part which
carries in the numerator the large scale enhancement factor M , the nucleon mass. Such an
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iterative part does therefore not obey the naive chiral power counting rules (see also section 4.3
in ref.[6] on the so-called iterated 1π-exchange). A detailed discussion of possible ambiguities
showing up in (non-perturbative) iterations to infinite orders (e.g. via a Schrödinger equation)
can be found in ref.[17]. The isovectorial spin-dependent contact vertex proportional to c4 (and
in fact only this one) produces now also a central NN-amplitude. Interestingly, its isoscalar
and isovector components come with a fixed ratio. The corresponding imaginary parts read

ImV (XIII)
C = −

3

4
ImW (XIII)

C =
12g4Ac4

(4fπ)6π2µ

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π λ(w) . (13)

Furthermore, the isoscalar and isovector spin-spin and tensor NN-amplitudes generated by the
diagrams of classXIII have the following imaginary parts,

ImV (XIII)
S =

g4Ac4
(4fπ)6π2µ3

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π

{
7µ6 − 37µ4m2

π + 45µ2m4
π − 15m6

π + 9w6

−w4(11µ2 + 37m2
π) + w2(45m4

π + 32µ2m2
π − 5µ4) + 2m2

π(µ
2 −m2

π)
3w−2

}
,(14)

ImV (XIII)
T =

1

µ2
ImV (XIII)

S +
2g4Ac4

(4fπ)6π2µ5

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π

×
{
9w6 − w4(19µ2 + 37m2

π) + w2(11µ4 + 52µ2m2
π + 45m4

π)

−µ6 − 13µ4m2
π − 35µ2m4

π − 15m6
π + 2m2

π(m
2
π − µ2)(µ4 −m4

π)w
−2

}
, (15)

ImW (XIII)
S =

g4A
(4fπ)6π2µ3

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π

{
3C13(w)

[
4µ2(µ2 −m2

π − w2)− λ(w)
]

+
c2
2
(8m2

π − 5w2)λ(w) + 4c4
[
w6 − w4(µ2 + 4m2

π)

+w2(µ4 − 2µ2m2
π + 5m4

π)− µ6 + 4µ4m2
π − µ2m4

π − 2m6
π

]}
, (16)

ImW (XIII)
T =

1

µ2
ImW (XIII)

S +
g4A

(4fπ)6π2µ5

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π

{
(m2

π + µ2 − w2)

×
[
6C13(w)(3µ

2 + w2 −m2
π) + c2(8m

2
π − 5w2)(m2

π + µ2 − w2)
]

+8c4(w
2 − 2m2

π)[(w
2 −m2

π)
2 − µ4]

}
. (17)

Fig.5: 3π-exchange diagrams of classXIV proportional to g4A. For further notation, see Fig. 1.

Finally, we consider the (irreducible) diagrams of classXIV shown in Fig.5. In this case
the isovectorial c4-term in eq.(2) does not make a contribution to the isovector NN-amplitudes
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A bit sparse on detail:  „After a somewhat lengthy calculation we find, from class II,…“

As one may expect, 3π-exchange is well representable by contacts  EE, Krebs, Meißner, PRL115 (2015)
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 Three-pion exchange
What about the 3π-exchange?                                            Tour-de-force calculation by N. Kaiser 
using the Cutkosky cutting rules  N. Kaiser, PRC61 (2000), PRC62 (2000), PRC63 (2001)     

Im[V(qμqμ = μ2 > 9M2
π)] = ∫ d Γ3 Ampl1 × Ampl2

3

FIG. 1: Schematic picture of a NN̄ ! 3⇡ ! NN̄ reaction.

V3⇡(q) = VC(q) + VS(q)~�1 · ~�2 + VT(q)~�1 · ~q ~�2 · ~q
+ [WC(q) +WS(q)~�1 · ~�2 +WT(q)~�1 · ~q ~�2 · ~q]~⌧1 · ~⌧2

with V the isoscalar and W the isovector part of the potential. The indices C, S and T indicate the central, spin-
spin and tensor part. In order to obtain the imaginary parts of the potential, we make use of the Cutkosky cutting
rules. That is, we cut in in the intermediate state and exchange each cut propagator with a delta-distribution, i.e.
1/(l2 � m

2) ! 2⇡i✓(l0)�
�
l
2 �m

2
�
. In other words, we set the pions on-shell. Thus, the imaginary part is given

(symbolic) by integrals of the squared N̄N ! 3⇡ transition amplitudes over the Lorentz invariant three pion phase
space:

Im


A

Z
d
4
l1

(2⇡4)

d
4
l2

(2⇡4)

d
4
l3

(2⇡4)

1

l
2
1 �M2

⇡

1

l
2
2 �M2

⇡

1

l
2
3 �M2

⇡

B

�
=

1

2

Z
d�3AB

In this notation, l3 = p1 � p2 � l1 � l2 and with A and B transition amplitudes. Before we simplify the phase space,
we first introduce our reference-frame to fix our notation. The nucleon four vectors are chosen as

p1 =

✓
µ/2
p ~v

◆
, p2 =

✓
�µ/2
p ~v

◆
(13)

and the three pions four vectors are

l1 =

✓
!1
~l1

◆
, l2 =

✓
!2
~l2

◆
, l3 =

✓
µ� !1 � !2

�~l1 �~l2

◆
. (14)

Here, ~v is a unit vector and p =
p
µ2/4�M2 = iM in the heavy baryon limit (M ! 1). For the nucleon propagators,

it follows:

2M

(P1 � li)
2 �M2

=
1

i~v ·~li � ✏

,
2M

(P2 + li)
2 �M2

=
�1

i~v ·~li + ✏

(15)

Notice that the sign of the ✏ is fixed. Some details about that can be found in the appendix.
After setting the notation, we move on by simplifying the phase space. Once we applied the Cutcosky-rules, we can
perform the integration over the time-component in order to obtain the Lorentz-invariant phase space. Thus, our
starting expression reads:

Z
d�3 =

Z
d
3
l1

(2⇡)32!1

d
3
l2

(2⇡)32!2

d
3
l3

(2⇡)32!3
�
(3)(~l3 + (~l1 + ~l2))�(µ� (!1 + !2 + !3))

Since we are free to choose a frame, we show two di↵erent ways how to simplify the phase space. In both cases we
perform first the three dimensional integration over ~l3.

A. Simplification of the Phase Space in Frame 1

We choose a direction in which the nucleon unit three-vector is in the z-direction, thus v̂ = (0, 0, 1). In this frame,

the unit vectors of ~l1 and ~l2 can be expressed as

l̂1 =

0

@

p
1� x2 cos�1p
1� x2 sin�1

x

1

A , l̂2 =

0

@

p
1� y2 cos�2p
1� y2 sin�2

y

1

A , v̂ =

0

@
0
0
1

1

A (16)

On-shell amplitudes analytically continued 
to complex momenta

both become α-dependent. In (measurable) on-shell matrix elements the unphysical param-
eter α must of course drop out. For elastic ππ-scattering this is obvious due to the mass-shell
condition q21 = q22 = q23 = q24 = m2

π. The T-matrix for the reaction πN → ππN at threshold
in the center-of-mass frame

T cm
th (πa(k⃗ )N → πbπcN) = i σ⃗ · k⃗

[
D1(τ

bδac + τ cδab) +D2 τ
aδbc

]
, (6)

receives contributions from the chiral 3πNN -contact vertex eq.(5) and the pion-pole diagram
of the form

Dcont
1 =

gA
4f 3

π

(4α− 1) , Dπ−pole
1 =

gA
8f 3

π

(3− 8α) , (7)

Dcont
2 =

gA
f 3
π

α , Dπ−pole
2 = −

gA
8f 3

π

(8α + 3) . (8)

The sums D(cont)
1,2 +D(π−pole)

1,2 are indeed α-independent and they constitute the leading order
terms of the chiral low-energy theorems for πN → ππN derived in ref.[6]. Note that there is
no value of α which would allow one to derive the complete leading order terms for D1 and
D2 from a single diagram. Graphs with the chiral 3πNN -contact vertex and graphs with the
chiral 4π-vertex always have to be grouped into classes and only the results of such classes
of diagrams have a physical meaning.

Fig.1: 3π-exchange diagrams of class I. Solid and dashed lines represent nucleons and pions,
respectively. The symmetry factor of these graphs is 1/6.

Let us now turn to the evaluation of (parts of) the chiral 3π-exchange NN-potential.
According to the previous discussion the full class of two-loop diagrams shown in Fig. 1
should be considered as one entity, whereas in ref.[3] only the first one was evaluated for
α = 0. From a consideration of the spin- and isospin-factors occurring in these diagrams
one finds immediately that only non-vanishing isovector spin-spin and tensor NN-amplitudes
will be obtained, i.e. a contribution to the NN T-matrix of the form

TNN =
[
WS(q) σ⃗1 · σ⃗2 +WT (q) σ⃗1 · q⃗ σ⃗2 · q⃗

]
τ⃗1 · τ⃗2 , (9)

where q = |q⃗ | denotes the momentum transfer between the initial and final state nucleon.
Obviously, the two-loop pion-pole diagrams in Fig. 1 contribute via mass and coupling con-
stant renormalization also to the 1π-exchange. These effects are, however, automatically
taken care of by working with the physical pion mass mπ and physical πNN -coupling con-
stant gπN . We are interested here only in the coordinate space potentials generated by the
simultaneous exchange of three pions between both nucleons. For that purpose it is suffi-
cient to calculate the imaginary parts of the NN-amplitudes WS,T (q) analytically continued

3

Fig.2: 3π-exchange diagrams of class II. Diagrams for which the role of both nucleons is
interchanged are not shown. They lead to the same contribution to the NN-potential. The
symmetry factor of these graphs is 1/2.

Next, we consider the diagrams of class II shown in Fig. 2. These are the diagrams with
exactly one nucleon-propagator and because of this property the invariant 3π-phase space
integral can still be reduced to a simple one-dimensional integral in the heavy nucleon mass
limit M → ∞ (compare also with ImGA(t) in ref.[7]). After a somewhat lengthy calculation
we find from class II,

ImW (II)
S (iµ) =

g2A
3µ4(16πf 2

π)
3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)w2(3m2

π + µ2 − 3w2) ,

(16)

ImW (II)
T (iµ) =

g2A
6(8πf 2

πµ
2)3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
w4m2

π(µ
2 −m2

π)
−1 − 2w2µ2 +m2

π(µ
2 +m2

π)(3µ
2 +m2

π)w
−2

]
. (17)

In the chiral limit, mπ = 0, one obtains now attractive isovector tensor and spin-spin poten-
tials with a r−7-dependence,

W̃ (II)
T (r) =

28

13
W̃ (II)

S (r) = −
35g2A

18(4π)5f 6
π

1

r7
. (18)

The asymptotic fall-off for r → ∞ differs from class I due to a different threshold behavior
of the mass-spectra: ImW (II)

S (iµ) ∼ (µ−3mπ)4 and ImW (II)
T (iµ) ∼ (µ−3mπ)3, which leads

to

W̃ (II)
T (r) = W̃ (II)

S (r) = −
14g2Am

2
π

3
√
3(8π)4f 6

π

e−3mπr

r5
+ . . . (19)

Fig.3: 3π-exchange diagrams of class III. The isoscalar NN-amplitudes sum up to zero.

Furthermore, we consider the diagrams of class III shown in Fig. 3. The isospin-factor of
the first and second graph is 6−2 τ⃗1·τ⃗2 while that of the third and fourth graph is −6−2 τ⃗1 ·τ⃗2.
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Fig.2: 3π-exchange diagrams of class II. Diagrams for which the role of both nucleons is
interchanged are not shown. They lead to the same contribution to the NN-potential. The
symmetry factor of these graphs is 1/2.
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2)w2(3m2

π + µ2 − 3w2) ,

(16)

ImW (II)
T (iµ) =

g2A
6(8πf 2

πµ
2)3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
w4m2

π(µ
2 −m2

π)
−1 − 2w2µ2 +m2

π(µ
2 +m2

π)(3µ
2 +m2

π)w
−2

]
. (17)

In the chiral limit, mπ = 0, one obtains now attractive isovector tensor and spin-spin poten-
tials with a r−7-dependence,

W̃ (II)
T (r) =

28

13
W̃ (II)

S (r) = −
35g2A

18(4π)5f 6
π

1

r7
. (18)

The asymptotic fall-off for r → ∞ differs from class I due to a different threshold behavior
of the mass-spectra: ImW (II)

S (iµ) ∼ (µ−3mπ)4 and ImW (II)
T (iµ) ∼ (µ−3mπ)3, which leads

to

W̃ (II)
T (r) = W̃ (II)

S (r) = −
14g2Am

2
π

3
√
3(8π)4f 6

π

e−3mπr

r5
+ . . . (19)

Fig.3: 3π-exchange diagrams of class III. The isoscalar NN-amplitudes sum up to zero.

Furthermore, we consider the diagrams of class III shown in Fig. 3. The isospin-factor of
the first and second graph is 6−2 τ⃗1·τ⃗2 while that of the third and fourth graph is −6−2 τ⃗1 ·τ⃗2.
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Since all other factors occuring in these two types of diagrams are equal (modulo the sign
of an i0+-term in one heavy nucleon-propagator which finally does not matter) one obtains
only a contribution to the isovector spin-spin and tensor NN-amplitudes. Altogether, we
find the following imaginary parts from the diagrams of class III,

ImW (III)
S (iµ) =

g2A
18µ4(16πf 2

π)
3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
9w4 − 5µ4 + 30µ2m2

π − 9m4
π

]
, (20)

ImW (III)
T (iµ) =

2g2A
9(16πf 2

πµ
2)3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
4µ4 + 9µ2m2

π + 9m4
π − 3w4 + 6m2

π(µ
4 −m4

π)w
−2

]
. (21)

In the chiral limit, mπ = 0, one has again potentials with a r−7-dependence,

W̃ (III)
T (r) = W̃ (III)

S (r) =
490g2A

9(8π)5f 6
π

1

r7
, (22)

and the asymptotic fall-off of these potentials for r → ∞ is given by

W̃ (III)
T (r) = W̃ (III)

S (r) =
g2Am

3
π

4
√
3(4π)4f 6

π

e−3mπr

r4
+ . . . (23)

Fig.4: 3π-exchange diagrams of class IV. The symmetry factor of these graphs is 1/2.

Finally, we consider the diagrams of class IV shown in Fig. 4. The isospin-factor of the
first and second graph (planar boxes) is 6− 4 τ⃗1 · τ⃗2 while that of the third and fourth graph
(crossed boxes) is 6+4 τ⃗1 ·τ⃗2. In ref.[1] it was shown that the irreducible part of the planar box
and the crossed box are exactly equal up to a minus-sign. If one makes here use of this fact,
one obtains again only a contribution to the isovector spin-spin and tensor NN-amplitudes
from the diagrams of class IV. The explicit calculation of the corresponding imaginary parts
leads to the following result,

ImW (IV )
S (iµ) =

g2A
9µ4(16πf 2

π)
3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
9w4 − 5µ4 + 30µ2m2

π − 9m4
π

]
, (24)

ImW (IV )
T (iµ) =

g2A
6(8πf 2

πµ
2)3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

[
w4 + 7µ2m2

π (25)

−
2

3
µ4 −m2

π(µ
2 +m2

π)
2w−2 + 4m2

πµ
4(4m2

π − w2)λ−1(w2, m2
π, µ

2)
]
.

6

axial nucleon form factors and found perfect agreement with the results of ref.[4]. As a
further check we applied the methods to calculate the imaginary parts of the 2π-exchange
NN-amplitudes. In that case only a much simpler two-body phase space integral needs to
be evaluated and one reproduces indeed exactly the results of ref.[2, 3] in a rather short
calculation.

Fig.1: 3π-exchange diagrams of classV proportional to g4A. Solid and dashed lines represent
nucleons and pions, respectively.

Let us now turn to the results for the (two-loop) chiral 3π-exchange diagrams proportional
to g4A and g6A. We start with the diagrams of classV shown in Fig. 1. As stressed in ref.[1]
diagrams involving the chiral 3πNN -vertex or the chiral 4π-vertex depend on an arbitrary
parameter α and therefore one should consider the full classV as one entity. Obviously, the
last two pion-pole diagrams in Fig. 1 contribute via coupling constant renormalization also to
the point-like 1π-exchange. This effect is however automatically taken care by working with
the physical πNN -coupling constant gπN . From an inspection of the spin- and isospin factors
occurring in the diagrams of classV one finds immediately that only non-vanishing isovector
spin-spin and tensor NN-amplitudes WS,T will be obtained. We find the following imaginary
parts from classV,

ImW (V )
S (iµ) =

2g4A
3(8πf 2

π)
3

∫∫

z2≤1

dω1dω2

{
k2
1 + µω1 + 3(m2

π − µω1)
(
z +

k2
k1

)arccos(−z)√
1− z2

}
, (7)

ImW (V )
T (iµ) =

1

µ2
ImW (V )

S (iµ) +
g4A(µ

2 −m2
π)

−1

µ2(8πf 2
π)

3

∫∫

z2≤1

dω1dω2

×
[
(6µ2 + 2m2

π)(ω1 + ω2)− µ(4µ2 + 3m2
π)

]

×
{[

(µ2 +m2
π)

(
2ω1 −

µ

2

)
− 2µω1ω2

] arccos(−z)

k1k2
√
1− z2

+ µ+ 2zω1
k2
k1

}
. (8)

The inequality z2 ≤ 1 defines the kinematically allowed (Dalitz) region in the ω1ω2-plane
(which is bounded by a cubic curve) together with the obvious kinematical constraints mπ ≤
ω1,2 ≤ µ− 2mπ and 2mπ ≤ ω1 + ω2 ≤ µ−mπ. Note that the same integrand as in eq.(7) for

ImW (V )
S (iµ) was found in ref.[4] for the spectral-function of the nucleon isovector axial form

factor. In the chiral limit mπ = 0 one can evaluate the remaining double-integrals in eqs.(7,8)
using the substitution ω1 = µ(1− xy)/2, ω2 = µy/2 which maps the unit-square 0 ≤ x, y ≤ 1
onto the (in the chiral limit) triangle-shaped Dalitz region.

One finds from classV repulsive isovector spin-spin and tensor potentials with an r−7-
dependence,

W̃ (V )
S (r)

∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
16

21
π2 +

85

36

)
, W̃ (V )

T (r)
∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
245

72

)
. (9)
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Next, we come to the diagrams of classVI shown in Fig. 2. The isospin factor of the first
and second graph is 4τ⃗1 · τ⃗2 − 6 while that of the third and fourth graphs is −4τ⃗1 · τ⃗2 − 6.
The last two graphs are irreducible whereas the first two contain the iteration of 1π-exchange
and 2π-exchange (triangle subgraphs). This iterative part has to be separated off in the
construction of the NN-potential. A closer inspection reveals that the two types of diagram
differ only by some signs in nucleon propagators. The first two diagrams carry a factor
−[(iv⃗ ·k⃗1+ϵ)(iv⃗ ·k⃗1−ϵ)]−1 in comparison to a factor (iv⃗ ·k⃗1+ϵ)−2 from the last two (irreducible)
diagrams. The irreducible part of the first two diagrams is obtained by switching the sign of
one ϵ-term (−ϵ → +ϵ) such that the expression agrees with that of the irreducible diagrams.

Fig.2: 3π-exchange diagrams of classVI proportional to g4A. Diagrams for which the role
of both nucleons is interchanged are not shown. They lead to the same contribution to the
NN-potential. The (irreducible) isoscalar NN-amplitudes sum up to zero.

In order to make this procedure more understandable consider the following integrals:∫ 1
−1 dx[(x+ iϵ)(x− iϵ)]−1 = π/ϵ−2+O(ϵ2) and

∫ 1
−1 dx(x+ iϵ)−2 = −2+O(ϵ2). The difference

between both diverges as 1/ϵ for ϵ → 0+. According to the definition in eq.(6) one has
ϵ ∼ M−1 and from the (non-relativistic) Lippmann-Schwinger equation [5] it is known that
the iteration of the potential leads to a contribution proportional to the nucleon mass M .
Therefore the 1/ϵ-term which gets subtracted by switching the sign (of one ϵ) corresponds
indeed to the iterative part. In the case of 2π-exchange all this has been worked out in detail
in ref.[2] and as already mentioned the present methods allow to reproduce exactly the results
of ref.[2] for the irreducible 2π-exchange.

After subtracting the iterative part the first two and the last two diagrams in Fig. 2 become
equal up to a minus-sign. Combining this with the isospin factors one obtains again only a
non-vanishing contribution to the isovector spin-spin and tensor NN-amplitudes WS,T . We
find the following imaginary parts from classVI,

ImW (V I)
S (iµ) =

2g4A
(8πf 2

π)
3

∫∫

z2≤1

dω1dω2

{
− k2

1 −
5

3
µω1 + (µω1 −m2

π)
(
z +

k2
k1

)arccos(−z)√
1− z2

}
, (10)

ImW (V I)
T (iµ) =

1

µ2
ImW (V I)

S (iµ) +
2g4A

µ2(8πf 2
π)

3

∫∫

z2≤1

dω1dω2 ω1

{
2ω1

3k2
1

(2µω1 − µ2 + 3m2
π − 6ω2

2)

+
[
(µ2 +m2

π)(µ− 2ω1 − 2ω2) + 4µω1ω2

] arccos(−z)

k1k2
√
1− z2

− 2zω2
k2
k1

+ 3ω1 − 2µ
}
. (11)

In the chiral limit (mπ = 0) one gets now a repulsive isovector spin-spin potential and an
attractive isovector tensor potential of the form,

W̃ (V I)
S (r)

∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
175

36

)
, W̃ (V I)

T (r)
∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
4

3
π2 −

665

36

)
. (12)
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Next, we come the diagrams of classVII shown Fig. 3. The isospin factor of all four
diagrams is 6 and after considering their spin-structure one finds immediately that there will
be only a non-vanishing contribution to the isoscalar spin-spin and tensor NN-amplitudes
VS,T . In the case of classVII one can actually solve all integrals analytically and one obtains
the following closed form expressions for the imaginary parts,

Fig.3: 3π-exchange diagrams of classVII proportional to g4A. The isospin factor of these
diagrams is 6.

Im V (V II)
S (iµ) =

g4A(µ− 3mπ)2

35π(32f 3
π)

2

[
2m2

π − 12µmπ − 2µ2 + 15
m3

π

µ
+ 2

m4
π

µ2
+ 3

m5
π

µ3

]
, (13)

ImV (V II)
T (iµ) =

g4A(µ− 3mπ)

35π(32µf 3
π)

2

[
µ3 + 3µ2mπ + 2µm2

π + 6m3
π + 18

m4
π

µ
− 9

m5
π

µ2
− 27

m6
π

µ3

]
. (14)

It is even more astonishing that the corresponding coordinate space potentials (inserting
eqs.(13,14) into eqs.(3,4)) can be expressed through a simple exponential-function multiplied
by a polynomial. We find the following repulsive isoscalar spin-spin and tensor potentials
from classVII,

Ṽ (V II)
S (r) =

g4A
2(8πf 2

π)
3

e−3mπr

r7
(1 +mπr)

2(2 +mπr)
2 , (15)

Ṽ (V II)
T (r) =

g4A
2(8πf 2

π)
3

e−3mπr

r7
(1 +mπr)

2(1 +mπr +m2
πr

2) . (16)

Fig.4: 3π-exchange diagrams of classVIII proportional to g6A.

Next, we consider the diagrams of classVIII shown in Fig. 4. The isospin factor of the
first graph is 7τ⃗1 · τ⃗2 − 6 while that of the second one is 7τ⃗1 · τ⃗2 + 6. In order to separate
off the iterative parts from the first diagram one has to switch the sign of two different ϵ-
terms in nucleon propagators. After this procedure the factors coming from the nucleon
propagators agree identically for both diagrams in Fig. 4. The two diagrams differ however
in the ordering of the first and third (spin-dependent) pion-coupling to one nucleon line.
Exploiting furthermore the properties of σ⃗-matrices one finds that the spin-independent part
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Fig.5: 3π-exchange diagrams of class IX proportional to g6A.

In order to arrive at the very short expression given in eq.(21) we have exploited the
inherent permutational symmetry of the 3π-phase space integration. In the chiral limitmπ = 0
one obtains from class IX an attractive isoscalar central potential of the form

Ṽ (IX)
C (r)

∣∣∣
mπ=0

=
g6A r−7

(4π)5f 6
π

(
4π2 − 60

)
, (22)

which just cancels the one coming from classVIII given in eq.(18). Later when presenting
numerical results in Table 1 we will see that this cancellation holds also for any finite pion
mass mπ. Furthermore, we obtain from class IX a non-vanishing contribution to the isovector
central NN-amplitude WC . For the corresponding imaginary part all appearing integrals can
be solved analytically and one finds the following closed form expression,

ImW (IX)
C (iµ) =

g6A(µ− 3mπ)2

30πµ(4fπ)6
(3m3

π + 2µm2
π − 9µ2mπ − 4µ3) . (23)

Inserting this mass-spectrum into eq.(2) one obtains finally a repulsive isovector central po-
tential which can be expressed in terms of a simple exponential-function multiplied by a
polynomial,

W̃ (IX)
C (r) =

2g6A
(16πf 2

π)
3

e−3mπr

r7
(1 +mπr)(4 + 5mπr + 3m2

πr
2) . (24)

We have also evaluated the imaginary parts of the isoscalar and isovector spin-spin and tensor
NN-amplitudes arising from the four diagrams shown in Fig 5. In these cases there appear
again singular terms proportional to (1−z2)−3/2 in the integrands such that the double-integral∫∫

z2≤1 dω1dω2 diverges. Consequently, we may conclude that only the central potentials gen-
erated by the 3π-exchange diagrams proportional to g6A (shown in Figs. 4,5) exist in the static
limit (M → ∞) while all spin-spin and tensor potentials diverge. This is a somewhat unex-
pected feature of the 3π-exchange NN-potential.

In Table 1, we present numerical results for the coordinate space NN-potentials generated
by the 3π-exchange graphs of classV, VI, VII, VIII and IX for internucleon distances 0.6 fm≤
r ≤ 1.4 fm. We use the parameters fπ = 92.4MeV, mπ = 138MeV (average pion mass) and
gA = gπNfπ/M = 1.32 employing the Goldberger-Treiman relation together with gπN = 13.4.
The choice gA = 1.32 is most natural in the present context since the pion-nucleon coupling is
the relevant here and not the axial-vector coupling. One observes that the isovector spin-spin
and tensor potentials from classesV and VI (scaling with g4A) are a factor 3 to 10 larger than

the (largest) potential W̃ (III)
S,T (r) found in our previous work [1] on the chiral 3π-exchange

diagrams scaling with g2A. The most striking result is that the isoscalar central potentials

from classVIII and IX cancel each other, Ṽ (V III)
C (r) + Ṽ (IX)

C (r) = 0, and this cancellation is
found to happen with high numerical precision. From the double-integral representation in
eqs.(17,21) it is not at all obvious that the relation ImV (V III)

C (iµ)+ImV (IX)
C (iµ) = 0 holds, at

least we have not yet found a simple analytical proof. Consequently, we can conclude that the
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class-I:

class-II:

class-III:

class-IV:

class-V:

class-VI:

class-VII:

class-VIII:

class-IX:

Fig.1: 3π-exchange diagrams of classX proportional to g2A. Solid and dashed lines represent
nucleons and pions, respectively. The heavy dot symbolized an insertion from second order
chiral πN-Lagrangian. The combinatoric factor of these diagrams is 1/2. Diagrams for which
the role of both nucleons is interchanged are not shown. They lead to the same NN-potential.

Note that we are considering here only the finite-range Yukawa-parts of the 1π-exchange
and we disregard all zero-range δ3(r⃗ )-terms. Transformed into momentum space the latter
become polynomials in q2 with possible contributions from higher-derivative operators. From
an inspection of the spin- and isospin factors occurring in the diagrams of classX one finds
immediately that only non-vanishing isovector spin-spin and tensor NN-amplitudes WS,T will
be obtained. We find the following imaginary parts from classX (dropping from now on the
argument iµ),

ImW (X)
S =

g2A
(4fπ)6π2µ3

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π

{[
2C13(w) +

c2
3
(w2 − 4m2

π)
]
λ(w)

+
c4
3
(w2 − 4m2

π)
[
(w2 −m2

π)
2 + µ2(2m2

π + 2w2 − 3µ2)
]}

, (7)

ImW (X)
T =

1

µ2
ImW (X)

S +
g2A

(4fπ)6π2µ5

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π

{[
4C13(w) +

2c2
3
(w2 − 4m2

π)
]

× (µ2 +m2
π − w2)

[
µ2 +m2

π − w2 + 2µ2(2w2 − µ2)(µ2 −m2
π)

−1
]

+
2c4
3
(w2 − 4m2

π)λ(w)(m
2
π + 3µ2)(m2

π − µ2)−1
}
, (8)

where we have introduced the abbreviations C13(w) = 4c1m2
π + c3(w2 − 2m2

π) and λ(w) =
w4+µ4+m4

π − 2w2µ2− 2w2m2
π − 2µ2m2

π. The variable w denotes the invariant mass of a pion-
pair and its kinematically allowed range is 2mπ ≤ w ≤ µ −mπ. The dw-integrals in eqs.(7,8)
could of course be solved easily in terms of square-root and logarithmic functions. However,
we want to avoid the resulting rather lengthy expressions.

Fig.2: 3π-exchange diagrams of classXI proportional to g2A. These give a vanishing contribution
to the NN-potential.

Next, we consider the diagrams of classXI shown in Fig.2. Each of them gives a vanishing
contribution to the NN T-matrix for the following reason. Since the leading order (Weinberg-
Tomozawa) ππNN -vertex is of isovector nature (i.e. proportional to ϵabcτ c) a non-zero isospin-
factor is obtained only from the spin-dependent isovector term in eq.(2) proportional to c4.

4
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factor is obtained only from the spin-dependent isovector term in eq.(2) proportional to c4.
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When combined with the spin-independent Weinberg-Tomozawa vertex on the other side of the
bubble-type sub-diagram one finds immediately that the pertinent 1-loop integral is zero in the
heavy baryon formalism (basically because the spin-vector σ⃗ has no time-component).

Fig.3: 3π-exchange diagrams of classXII proportional to g2A. For further notation, see Fig. 1.

Next, we consider the diagrams of classXII shown in Fig.3. The isoscalar contribution
comes exclusively from the c4-term in eq.(2). Altogether one obtains the following imaginary
parts of the isoscalar and isovector spin-spin and tensor NN-amplitudes from classXII,
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Fig.4: 3π-exchange diagrams of class XIII proportional to g4A. For further notation, see Fig. 1.

Next, we turn to the diagrams of classXIII shown in Fig.4. The technique to separate off the
iterative part from the first two reducible diagrams has been explained in ref.[10]. The iterative
(or reducible) part is defined here (entirely) within perturbation theory as that part which
carries in the numerator the large scale enhancement factor M , the nucleon mass. Such an
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iterative part does therefore not obey the naive chiral power counting rules (see also section 4.3
in ref.[6] on the so-called iterated 1π-exchange). A detailed discussion of possible ambiguities
showing up in (non-perturbative) iterations to infinite orders (e.g. via a Schrödinger equation)
can be found in ref.[17]. The isovectorial spin-dependent contact vertex proportional to c4 (and
in fact only this one) produces now also a central NN-amplitude. Interestingly, its isoscalar
and isovector components come with a fixed ratio. The corresponding imaginary parts read

ImV (XIII)
C = −

3

4
ImW (XIII)

C =
12g4Ac4

(4fπ)6π2µ

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π λ(w) . (13)

Furthermore, the isoscalar and isovector spin-spin and tensor NN-amplitudes generated by the
diagrams of classXIII have the following imaginary parts,
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dw
√
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Fig.5: 3π-exchange diagrams of classXIV proportional to g4A. For further notation, see Fig. 1.

Finally, we consider the (irreducible) diagrams of classXIV shown in Fig.5. In this case
the isovectorial c4-term in eq.(2) does not make a contribution to the isovector NN-amplitudes

6

class-X:

class-XI:

class-XII:

class-XIII:

class-XIV:
N3LO N4LO

A bit sparse on detail:  „After a somewhat lengthy calculation we find, from class II,…“

As one may expect, 3π-exchange is well representable by contacts  EE, Krebs, Meißner, PRL115 (2015)

Main concern: Potentials from reducible-like diagrams are scheme-dependent. Are the results of 
Norbert consistent with our potentials obtained using the Method of Unitary Transformation? 
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both become α-dependent. In (measurable) on-shell matrix elements the unphysical param-
eter α must of course drop out. For elastic ππ-scattering this is obvious due to the mass-shell
condition q21 = q22 = q23 = q24 = m2

π. The T-matrix for the reaction πN → ππN at threshold
in the center-of-mass frame

T cm
th (πa(k⃗ )N → πbπcN) = i σ⃗ · k⃗

[
D1(τ

bδac + τ cδab) +D2 τ
aδbc

]
, (6)

receives contributions from the chiral 3πNN -contact vertex eq.(5) and the pion-pole diagram
of the form

Dcont
1 =

gA
4f 3

π

(4α− 1) , Dπ−pole
1 =

gA
8f 3

π

(3− 8α) , (7)

Dcont
2 =

gA
f 3
π

α , Dπ−pole
2 = −

gA
8f 3

π

(8α + 3) . (8)

The sums D(cont)
1,2 +D(π−pole)

1,2 are indeed α-independent and they constitute the leading order
terms of the chiral low-energy theorems for πN → ππN derived in ref.[6]. Note that there is
no value of α which would allow one to derive the complete leading order terms for D1 and
D2 from a single diagram. Graphs with the chiral 3πNN -contact vertex and graphs with the
chiral 4π-vertex always have to be grouped into classes and only the results of such classes
of diagrams have a physical meaning.

Fig.1: 3π-exchange diagrams of class I. Solid and dashed lines represent nucleons and pions,
respectively. The symmetry factor of these graphs is 1/6.

Let us now turn to the evaluation of (parts of) the chiral 3π-exchange NN-potential.
According to the previous discussion the full class of two-loop diagrams shown in Fig. 1
should be considered as one entity, whereas in ref.[3] only the first one was evaluated for
α = 0. From a consideration of the spin- and isospin-factors occurring in these diagrams
one finds immediately that only non-vanishing isovector spin-spin and tensor NN-amplitudes
will be obtained, i.e. a contribution to the NN T-matrix of the form

TNN =
[
WS(q) σ⃗1 · σ⃗2 +WT (q) σ⃗1 · q⃗ σ⃗2 · q⃗

]
τ⃗1 · τ⃗2 , (9)

where q = |q⃗ | denotes the momentum transfer between the initial and final state nucleon.
Obviously, the two-loop pion-pole diagrams in Fig. 1 contribute via mass and coupling con-
stant renormalization also to the 1π-exchange. These effects are, however, automatically
taken care of by working with the physical pion mass mπ and physical πNN -coupling con-
stant gπN . We are interested here only in the coordinate space potentials generated by the
simultaneous exchange of three pions between both nucleons. For that purpose it is suffi-
cient to calculate the imaginary parts of the NN-amplitudes WS,T (q) analytically continued

3

Fig.2: 3π-exchange diagrams of class II. Diagrams for which the role of both nucleons is
interchanged are not shown. They lead to the same contribution to the NN-potential. The
symmetry factor of these graphs is 1/2.

Next, we consider the diagrams of class II shown in Fig. 2. These are the diagrams with
exactly one nucleon-propagator and because of this property the invariant 3π-phase space
integral can still be reduced to a simple one-dimensional integral in the heavy nucleon mass
limit M → ∞ (compare also with ImGA(t) in ref.[7]). After a somewhat lengthy calculation
we find from class II,

ImW (II)
S (iµ) =

g2A
3µ4(16πf 2

π)
3

∫ µ−mπ

2mπ

dw
√
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π, µ
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2 +m2
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. (17)

In the chiral limit, mπ = 0, one obtains now attractive isovector tensor and spin-spin poten-
tials with a r−7-dependence,

W̃ (II)
T (r) =

28

13
W̃ (II)

S (r) = −
35g2A

18(4π)5f 6
π

1

r7
. (18)

The asymptotic fall-off for r → ∞ differs from class I due to a different threshold behavior
of the mass-spectra: ImW (II)

S (iµ) ∼ (µ−3mπ)4 and ImW (II)
T (iµ) ∼ (µ−3mπ)3, which leads

to

W̃ (II)
T (r) = W̃ (II)

S (r) = −
14g2Am

2
π

3
√
3(8π)4f 6

π

e−3mπr

r5
+ . . . (19)

Fig.3: 3π-exchange diagrams of class III. The isoscalar NN-amplitudes sum up to zero.

Furthermore, we consider the diagrams of class III shown in Fig. 3. The isospin-factor of
the first and second graph is 6−2 τ⃗1·τ⃗2 while that of the third and fourth graph is −6−2 τ⃗1 ·τ⃗2.
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Fig.3: 3π-exchange diagrams of class III. The isoscalar NN-amplitudes sum up to zero.

Furthermore, we consider the diagrams of class III shown in Fig. 3. The isospin-factor of
the first and second graph is 6−2 τ⃗1·τ⃗2 while that of the third and fourth graph is −6−2 τ⃗1 ·τ⃗2.
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Since all other factors occuring in these two types of diagrams are equal (modulo the sign
of an i0+-term in one heavy nucleon-propagator which finally does not matter) one obtains
only a contribution to the isovector spin-spin and tensor NN-amplitudes. Altogether, we
find the following imaginary parts from the diagrams of class III,

ImW (III)
S (iµ) =

g2A
18µ4(16πf 2

π)
3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2
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×
[
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π

]
, (20)

ImW (III)
T (iµ) =

2g2A
9(16πf 2
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π(µ
4 −m4

π)w
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]
. (21)

In the chiral limit, mπ = 0, one has again potentials with a r−7-dependence,

W̃ (III)
T (r) = W̃ (III)

S (r) =
490g2A

9(8π)5f 6
π

1

r7
, (22)

and the asymptotic fall-off of these potentials for r → ∞ is given by

W̃ (III)
T (r) = W̃ (III)

S (r) =
g2Am

3
π

4
√
3(4π)4f 6

π

e−3mπr

r4
+ . . . (23)

Fig.4: 3π-exchange diagrams of class IV. The symmetry factor of these graphs is 1/2.

Finally, we consider the diagrams of class IV shown in Fig. 4. The isospin-factor of the
first and second graph (planar boxes) is 6− 4 τ⃗1 · τ⃗2 while that of the third and fourth graph
(crossed boxes) is 6+4 τ⃗1 ·τ⃗2. In ref.[1] it was shown that the irreducible part of the planar box
and the crossed box are exactly equal up to a minus-sign. If one makes here use of this fact,
one obtains again only a contribution to the isovector spin-spin and tensor NN-amplitudes
from the diagrams of class IV. The explicit calculation of the corresponding imaginary parts
leads to the following result,

ImW (IV )
S (iµ) =

g2A
9µ4(16πf 2

π)
3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
9w4 − 5µ4 + 30µ2m2

π − 9m4
π

]
, (24)

ImW (IV )
T (iµ) =

g2A
6(8πf 2

πµ
2)3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

[
w4 + 7µ2m2

π (25)

−
2

3
µ4 −m2

π(µ
2 +m2

π)
2w−2 + 4m2

πµ
4(4m2

π − w2)λ−1(w2, m2
π, µ

2)
]
.
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axial nucleon form factors and found perfect agreement with the results of ref.[4]. As a
further check we applied the methods to calculate the imaginary parts of the 2π-exchange
NN-amplitudes. In that case only a much simpler two-body phase space integral needs to
be evaluated and one reproduces indeed exactly the results of ref.[2, 3] in a rather short
calculation.

Fig.1: 3π-exchange diagrams of classV proportional to g4A. Solid and dashed lines represent
nucleons and pions, respectively.

Let us now turn to the results for the (two-loop) chiral 3π-exchange diagrams proportional
to g4A and g6A. We start with the diagrams of classV shown in Fig. 1. As stressed in ref.[1]
diagrams involving the chiral 3πNN -vertex or the chiral 4π-vertex depend on an arbitrary
parameter α and therefore one should consider the full classV as one entity. Obviously, the
last two pion-pole diagrams in Fig. 1 contribute via coupling constant renormalization also to
the point-like 1π-exchange. This effect is however automatically taken care by working with
the physical πNN -coupling constant gπN . From an inspection of the spin- and isospin factors
occurring in the diagrams of classV one finds immediately that only non-vanishing isovector
spin-spin and tensor NN-amplitudes WS,T will be obtained. We find the following imaginary
parts from classV,

ImW (V )
S (iµ) =

2g4A
3(8πf 2

π)
3

∫∫

z2≤1

dω1dω2

{
k2
1 + µω1 + 3(m2

π − µω1)
(
z +

k2
k1

)arccos(−z)√
1− z2

}
, (7)

ImW (V )
T (iµ) =

1

µ2
ImW (V )

S (iµ) +
g4A(µ

2 −m2
π)

−1

µ2(8πf 2
π)

3

∫∫

z2≤1

dω1dω2

×
[
(6µ2 + 2m2

π)(ω1 + ω2)− µ(4µ2 + 3m2
π)

]

×
{[

(µ2 +m2
π)

(
2ω1 −

µ

2

)
− 2µω1ω2

] arccos(−z)

k1k2
√
1− z2

+ µ+ 2zω1
k2
k1

}
. (8)

The inequality z2 ≤ 1 defines the kinematically allowed (Dalitz) region in the ω1ω2-plane
(which is bounded by a cubic curve) together with the obvious kinematical constraints mπ ≤
ω1,2 ≤ µ− 2mπ and 2mπ ≤ ω1 + ω2 ≤ µ−mπ. Note that the same integrand as in eq.(7) for

ImW (V )
S (iµ) was found in ref.[4] for the spectral-function of the nucleon isovector axial form

factor. In the chiral limit mπ = 0 one can evaluate the remaining double-integrals in eqs.(7,8)
using the substitution ω1 = µ(1− xy)/2, ω2 = µy/2 which maps the unit-square 0 ≤ x, y ≤ 1
onto the (in the chiral limit) triangle-shaped Dalitz region.

One finds from classV repulsive isovector spin-spin and tensor potentials with an r−7-
dependence,

W̃ (V )
S (r)

∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
16

21
π2 +

85

36

)
, W̃ (V )

T (r)
∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
245

72

)
. (9)
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Next, we come to the diagrams of classVI shown in Fig. 2. The isospin factor of the first
and second graph is 4τ⃗1 · τ⃗2 − 6 while that of the third and fourth graphs is −4τ⃗1 · τ⃗2 − 6.
The last two graphs are irreducible whereas the first two contain the iteration of 1π-exchange
and 2π-exchange (triangle subgraphs). This iterative part has to be separated off in the
construction of the NN-potential. A closer inspection reveals that the two types of diagram
differ only by some signs in nucleon propagators. The first two diagrams carry a factor
−[(iv⃗ ·k⃗1+ϵ)(iv⃗ ·k⃗1−ϵ)]−1 in comparison to a factor (iv⃗ ·k⃗1+ϵ)−2 from the last two (irreducible)
diagrams. The irreducible part of the first two diagrams is obtained by switching the sign of
one ϵ-term (−ϵ → +ϵ) such that the expression agrees with that of the irreducible diagrams.

Fig.2: 3π-exchange diagrams of classVI proportional to g4A. Diagrams for which the role
of both nucleons is interchanged are not shown. They lead to the same contribution to the
NN-potential. The (irreducible) isoscalar NN-amplitudes sum up to zero.

In order to make this procedure more understandable consider the following integrals:∫ 1
−1 dx[(x+ iϵ)(x− iϵ)]−1 = π/ϵ−2+O(ϵ2) and

∫ 1
−1 dx(x+ iϵ)−2 = −2+O(ϵ2). The difference

between both diverges as 1/ϵ for ϵ → 0+. According to the definition in eq.(6) one has
ϵ ∼ M−1 and from the (non-relativistic) Lippmann-Schwinger equation [5] it is known that
the iteration of the potential leads to a contribution proportional to the nucleon mass M .
Therefore the 1/ϵ-term which gets subtracted by switching the sign (of one ϵ) corresponds
indeed to the iterative part. In the case of 2π-exchange all this has been worked out in detail
in ref.[2] and as already mentioned the present methods allow to reproduce exactly the results
of ref.[2] for the irreducible 2π-exchange.

After subtracting the iterative part the first two and the last two diagrams in Fig. 2 become
equal up to a minus-sign. Combining this with the isospin factors one obtains again only a
non-vanishing contribution to the isovector spin-spin and tensor NN-amplitudes WS,T . We
find the following imaginary parts from classVI,

ImW (V I)
S (iµ) =

2g4A
(8πf 2

π)
3

∫∫

z2≤1

dω1dω2

{
− k2

1 −
5

3
µω1 + (µω1 −m2

π)
(
z +

k2
k1

)arccos(−z)√
1− z2

}
, (10)

ImW (V I)
T (iµ) =

1

µ2
ImW (V I)

S (iµ) +
2g4A

µ2(8πf 2
π)

3

∫∫

z2≤1

dω1dω2 ω1

{
2ω1

3k2
1

(2µω1 − µ2 + 3m2
π − 6ω2

2)

+
[
(µ2 +m2

π)(µ− 2ω1 − 2ω2) + 4µω1ω2

] arccos(−z)

k1k2
√
1− z2

− 2zω2
k2
k1

+ 3ω1 − 2µ
}
. (11)

In the chiral limit (mπ = 0) one gets now a repulsive isovector spin-spin potential and an
attractive isovector tensor potential of the form,

W̃ (V I)
S (r)

∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
175

36

)
, W̃ (V I)

T (r)
∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
4

3
π2 −

665

36

)
. (12)
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Next, we come the diagrams of classVII shown Fig. 3. The isospin factor of all four
diagrams is 6 and after considering their spin-structure one finds immediately that there will
be only a non-vanishing contribution to the isoscalar spin-spin and tensor NN-amplitudes
VS,T . In the case of classVII one can actually solve all integrals analytically and one obtains
the following closed form expressions for the imaginary parts,

Fig.3: 3π-exchange diagrams of classVII proportional to g4A. The isospin factor of these
diagrams is 6.

Im V (V II)
S (iµ) =

g4A(µ− 3mπ)2

35π(32f 3
π)

2

[
2m2

π − 12µmπ − 2µ2 + 15
m3

π

µ
+ 2

m4
π

µ2
+ 3

m5
π

µ3

]
, (13)

ImV (V II)
T (iµ) =

g4A(µ− 3mπ)

35π(32µf 3
π)

2

[
µ3 + 3µ2mπ + 2µm2

π + 6m3
π + 18

m4
π

µ
− 9

m5
π

µ2
− 27

m6
π

µ3

]
. (14)

It is even more astonishing that the corresponding coordinate space potentials (inserting
eqs.(13,14) into eqs.(3,4)) can be expressed through a simple exponential-function multiplied
by a polynomial. We find the following repulsive isoscalar spin-spin and tensor potentials
from classVII,

Ṽ (V II)
S (r) =

g4A
2(8πf 2

π)
3

e−3mπr

r7
(1 +mπr)

2(2 +mπr)
2 , (15)

Ṽ (V II)
T (r) =

g4A
2(8πf 2

π)
3

e−3mπr

r7
(1 +mπr)

2(1 +mπr +m2
πr

2) . (16)

Fig.4: 3π-exchange diagrams of classVIII proportional to g6A.

Next, we consider the diagrams of classVIII shown in Fig. 4. The isospin factor of the
first graph is 7τ⃗1 · τ⃗2 − 6 while that of the second one is 7τ⃗1 · τ⃗2 + 6. In order to separate
off the iterative parts from the first diagram one has to switch the sign of two different ϵ-
terms in nucleon propagators. After this procedure the factors coming from the nucleon
propagators agree identically for both diagrams in Fig. 4. The two diagrams differ however
in the ordering of the first and third (spin-dependent) pion-coupling to one nucleon line.
Exploiting furthermore the properties of σ⃗-matrices one finds that the spin-independent part
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Fig.4: 3π-exchange diagrams of classVIII proportional to g6A.

Next, we consider the diagrams of classVIII shown in Fig. 4. The isospin factor of the
first graph is 7τ⃗1 · τ⃗2 − 6 while that of the second one is 7τ⃗1 · τ⃗2 + 6. In order to separate
off the iterative parts from the first diagram one has to switch the sign of two different ϵ-
terms in nucleon propagators. After this procedure the factors coming from the nucleon
propagators agree identically for both diagrams in Fig. 4. The two diagrams differ however
in the ordering of the first and third (spin-dependent) pion-coupling to one nucleon line.
Exploiting furthermore the properties of σ⃗-matrices one finds that the spin-independent part

5
Fig.5: 3π-exchange diagrams of class IX proportional to g6A.

In order to arrive at the very short expression given in eq.(21) we have exploited the
inherent permutational symmetry of the 3π-phase space integration. In the chiral limitmπ = 0
one obtains from class IX an attractive isoscalar central potential of the form

Ṽ (IX)
C (r)

∣∣∣
mπ=0

=
g6A r−7

(4π)5f 6
π

(
4π2 − 60

)
, (22)

which just cancels the one coming from classVIII given in eq.(18). Later when presenting
numerical results in Table 1 we will see that this cancellation holds also for any finite pion
mass mπ. Furthermore, we obtain from class IX a non-vanishing contribution to the isovector
central NN-amplitude WC . For the corresponding imaginary part all appearing integrals can
be solved analytically and one finds the following closed form expression,

ImW (IX)
C (iµ) =

g6A(µ− 3mπ)2

30πµ(4fπ)6
(3m3

π + 2µm2
π − 9µ2mπ − 4µ3) . (23)

Inserting this mass-spectrum into eq.(2) one obtains finally a repulsive isovector central po-
tential which can be expressed in terms of a simple exponential-function multiplied by a
polynomial,

W̃ (IX)
C (r) =

2g6A
(16πf 2

π)
3

e−3mπr

r7
(1 +mπr)(4 + 5mπr + 3m2

πr
2) . (24)

We have also evaluated the imaginary parts of the isoscalar and isovector spin-spin and tensor
NN-amplitudes arising from the four diagrams shown in Fig 5. In these cases there appear
again singular terms proportional to (1−z2)−3/2 in the integrands such that the double-integral∫∫

z2≤1 dω1dω2 diverges. Consequently, we may conclude that only the central potentials gen-
erated by the 3π-exchange diagrams proportional to g6A (shown in Figs. 4,5) exist in the static
limit (M → ∞) while all spin-spin and tensor potentials diverge. This is a somewhat unex-
pected feature of the 3π-exchange NN-potential.

In Table 1, we present numerical results for the coordinate space NN-potentials generated
by the 3π-exchange graphs of classV, VI, VII, VIII and IX for internucleon distances 0.6 fm≤
r ≤ 1.4 fm. We use the parameters fπ = 92.4MeV, mπ = 138MeV (average pion mass) and
gA = gπNfπ/M = 1.32 employing the Goldberger-Treiman relation together with gπN = 13.4.
The choice gA = 1.32 is most natural in the present context since the pion-nucleon coupling is
the relevant here and not the axial-vector coupling. One observes that the isovector spin-spin
and tensor potentials from classesV and VI (scaling with g4A) are a factor 3 to 10 larger than

the (largest) potential W̃ (III)
S,T (r) found in our previous work [1] on the chiral 3π-exchange

diagrams scaling with g2A. The most striking result is that the isoscalar central potentials

from classVIII and IX cancel each other, Ṽ (V III)
C (r) + Ṽ (IX)

C (r) = 0, and this cancellation is
found to happen with high numerical precision. From the double-integral representation in
eqs.(17,21) it is not at all obvious that the relation ImV (V III)

C (iµ)+ImV (IX)
C (iµ) = 0 holds, at

least we have not yet found a simple analytical proof. Consequently, we can conclude that the
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class-I:

class-II:

class-III:

class-IV:

class-V:

class-VI:

class-VII:

class-VIII:

class-IX:

Fig.1: 3π-exchange diagrams of classX proportional to g2A. Solid and dashed lines represent
nucleons and pions, respectively. The heavy dot symbolized an insertion from second order
chiral πN-Lagrangian. The combinatoric factor of these diagrams is 1/2. Diagrams for which
the role of both nucleons is interchanged are not shown. They lead to the same NN-potential.

Note that we are considering here only the finite-range Yukawa-parts of the 1π-exchange
and we disregard all zero-range δ3(r⃗ )-terms. Transformed into momentum space the latter
become polynomials in q2 with possible contributions from higher-derivative operators. From
an inspection of the spin- and isospin factors occurring in the diagrams of classX one finds
immediately that only non-vanishing isovector spin-spin and tensor NN-amplitudes WS,T will
be obtained. We find the following imaginary parts from classX (dropping from now on the
argument iµ),

ImW (X)
S =

g2A
(4fπ)6π2µ3

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π

{[
2C13(w) +

c2
3
(w2 − 4m2

π)
]
λ(w)

+
c4
3
(w2 − 4m2

π)
[
(w2 −m2

π)
2 + µ2(2m2

π + 2w2 − 3µ2)
]}

, (7)

ImW (X)
T =

1

µ2
ImW (X)

S +
g2A

(4fπ)6π2µ5

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π

{[
4C13(w) +

2c2
3
(w2 − 4m2

π)
]

× (µ2 +m2
π − w2)

[
µ2 +m2

π − w2 + 2µ2(2w2 − µ2)(µ2 −m2
π)

−1
]

+
2c4
3
(w2 − 4m2

π)λ(w)(m
2
π + 3µ2)(m2

π − µ2)−1
}
, (8)

where we have introduced the abbreviations C13(w) = 4c1m2
π + c3(w2 − 2m2

π) and λ(w) =
w4+µ4+m4

π − 2w2µ2− 2w2m2
π − 2µ2m2

π. The variable w denotes the invariant mass of a pion-
pair and its kinematically allowed range is 2mπ ≤ w ≤ µ −mπ. The dw-integrals in eqs.(7,8)
could of course be solved easily in terms of square-root and logarithmic functions. However,
we want to avoid the resulting rather lengthy expressions.

Fig.2: 3π-exchange diagrams of classXI proportional to g2A. These give a vanishing contribution
to the NN-potential.

Next, we consider the diagrams of classXI shown in Fig.2. Each of them gives a vanishing
contribution to the NN T-matrix for the following reason. Since the leading order (Weinberg-
Tomozawa) ππNN -vertex is of isovector nature (i.e. proportional to ϵabcτ c) a non-zero isospin-
factor is obtained only from the spin-dependent isovector term in eq.(2) proportional to c4.

4
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chiral πN-Lagrangian. The combinatoric factor of these diagrams is 1/2. Diagrams for which
the role of both nucleons is interchanged are not shown. They lead to the same NN-potential.
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Next, we consider the diagrams of classXI shown in Fig.2. Each of them gives a vanishing
contribution to the NN T-matrix for the following reason. Since the leading order (Weinberg-
Tomozawa) ππNN -vertex is of isovector nature (i.e. proportional to ϵabcτ c) a non-zero isospin-
factor is obtained only from the spin-dependent isovector term in eq.(2) proportional to c4.
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When combined with the spin-independent Weinberg-Tomozawa vertex on the other side of the
bubble-type sub-diagram one finds immediately that the pertinent 1-loop integral is zero in the
heavy baryon formalism (basically because the spin-vector σ⃗ has no time-component).

Fig.3: 3π-exchange diagrams of classXII proportional to g2A. For further notation, see Fig. 1.

Next, we consider the diagrams of classXII shown in Fig.3. The isoscalar contribution
comes exclusively from the c4-term in eq.(2). Altogether one obtains the following imaginary
parts of the isoscalar and isovector spin-spin and tensor NN-amplitudes from classXII,

ImV (XII)
S =

2g2Ac4
(4fπ)6π2µ3

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π λ(w)
[
7m2

π −µ2−3w2+2m2
π(m

2
π −µ2)w−2

]
, (9)

ImV (XII)
T =

1

µ2
Im V (XII)

S +
4g2Ac4

(4fπ)6π2µ5

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π (µ
2 +m2

π − w2)

×
[
3w4 − 2w2(5m2

π + 2µ2) + µ4 + 2µ2m2
π + 5m4

π + 2m2
π(µ

2 −m2
π)

2w−2
]
,(10)
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dw
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π)
]
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+
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π)
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π)(3µ
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]}

, (11)

ImW (XII)
T =

1

µ2
ImW (XII)

S +
g2A

(4fπ)6π2µ5
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2mπ

dw
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[(w2 −m2

π)
2 − µ4]
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2c2
3
(w2 − 4m2

π)
]
−

2c4
3

(w2 − 4m2
π)λ(w)

}
. (12)

Fig.4: 3π-exchange diagrams of class XIII proportional to g4A. For further notation, see Fig. 1.

Next, we turn to the diagrams of classXIII shown in Fig.4. The technique to separate off the
iterative part from the first two reducible diagrams has been explained in ref.[10]. The iterative
(or reducible) part is defined here (entirely) within perturbation theory as that part which
carries in the numerator the large scale enhancement factor M , the nucleon mass. Such an

5

When combined with the spin-independent Weinberg-Tomozawa vertex on the other side of the
bubble-type sub-diagram one finds immediately that the pertinent 1-loop integral is zero in the
heavy baryon formalism (basically because the spin-vector σ⃗ has no time-component).

Fig.3: 3π-exchange diagrams of classXII proportional to g2A. For further notation, see Fig. 1.

Next, we consider the diagrams of classXII shown in Fig.3. The isoscalar contribution
comes exclusively from the c4-term in eq.(2). Altogether one obtains the following imaginary
parts of the isoscalar and isovector spin-spin and tensor NN-amplitudes from classXII,
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[
7m2

π −µ2−3w2+2m2
π(m

2
π −µ2)w−2

]
, (9)

ImV (XII)
T =

1

µ2
Im V (XII)

S +
4g2Ac4

(4fπ)6π2µ5

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π (µ
2 +m2

π − w2)

×
[
3w4 − 2w2(5m2

π + 2µ2) + µ4 + 2µ2m2
π + 5m4

π + 2m2
π(µ

2 −m2
π)

2w−2
]
,(10)

ImW (XII)
S =

g2A
(4fπ)6π2µ3

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π

{[
2C13(w) +

c2
3
(w2 − 4m2

π)
]
λ(w)

+
c4
3
(w2 − 4m2

π)
[
(µ2 −m2

π)(3µ
2 +m2

π − 2w2)− w4
]}

, (11)

ImW (XII)
T =

1

µ2
ImW (XII)

S +
g2A

(4fπ)6π2µ5

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π

{
[(w2 −m2

π)
2 − µ4]

×
[
4C13(w) +

2c2
3
(w2 − 4m2

π)
]
−

2c4
3

(w2 − 4m2
π)λ(w)

}
. (12)

Fig.4: 3π-exchange diagrams of class XIII proportional to g4A. For further notation, see Fig. 1.

Next, we turn to the diagrams of classXIII shown in Fig.4. The technique to separate off the
iterative part from the first two reducible diagrams has been explained in ref.[10]. The iterative
(or reducible) part is defined here (entirely) within perturbation theory as that part which
carries in the numerator the large scale enhancement factor M , the nucleon mass. Such an
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iterative part does therefore not obey the naive chiral power counting rules (see also section 4.3
in ref.[6] on the so-called iterated 1π-exchange). A detailed discussion of possible ambiguities
showing up in (non-perturbative) iterations to infinite orders (e.g. via a Schrödinger equation)
can be found in ref.[17]. The isovectorial spin-dependent contact vertex proportional to c4 (and
in fact only this one) produces now also a central NN-amplitude. Interestingly, its isoscalar
and isovector components come with a fixed ratio. The corresponding imaginary parts read

ImV (XIII)
C = −

3

4
ImW (XIII)

C =
12g4Ac4

(4fπ)6π2µ

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π λ(w) . (13)

Furthermore, the isoscalar and isovector spin-spin and tensor NN-amplitudes generated by the
diagrams of classXIII have the following imaginary parts,
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}
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}
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}
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Fig.5: 3π-exchange diagrams of classXIV proportional to g4A. For further notation, see Fig. 1.

Finally, we consider the (irreducible) diagrams of classXIV shown in Fig.5. In this case
the isovectorial c4-term in eq.(2) does not make a contribution to the isovector NN-amplitudes

6

class-X:

class-XI:

class-XII:

class-XIII:

class-XIV:
N3LO N4LO

First, calculated the corresponding energy denominators, e.g.: 

V3⇡ =

Z
d
3
l1 d

3
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both become α-dependent. In (measurable) on-shell matrix elements the unphysical param-
eter α must of course drop out. For elastic ππ-scattering this is obvious due to the mass-shell
condition q21 = q22 = q23 = q24 = m2

π. The T-matrix for the reaction πN → ππN at threshold
in the center-of-mass frame

T cm
th (πa(k⃗ )N → πbπcN) = i σ⃗ · k⃗

[
D1(τ

bδac + τ cδab) +D2 τ
aδbc

]
, (6)

receives contributions from the chiral 3πNN -contact vertex eq.(5) and the pion-pole diagram
of the form

Dcont
1 =

gA
4f 3

π

(4α− 1) , Dπ−pole
1 =

gA
8f 3

π

(3− 8α) , (7)

Dcont
2 =

gA
f 3
π

α , Dπ−pole
2 = −

gA
8f 3

π

(8α + 3) . (8)

The sums D(cont)
1,2 +D(π−pole)

1,2 are indeed α-independent and they constitute the leading order
terms of the chiral low-energy theorems for πN → ππN derived in ref.[6]. Note that there is
no value of α which would allow one to derive the complete leading order terms for D1 and
D2 from a single diagram. Graphs with the chiral 3πNN -contact vertex and graphs with the
chiral 4π-vertex always have to be grouped into classes and only the results of such classes
of diagrams have a physical meaning.

Fig.1: 3π-exchange diagrams of class I. Solid and dashed lines represent nucleons and pions,
respectively. The symmetry factor of these graphs is 1/6.

Let us now turn to the evaluation of (parts of) the chiral 3π-exchange NN-potential.
According to the previous discussion the full class of two-loop diagrams shown in Fig. 1
should be considered as one entity, whereas in ref.[3] only the first one was evaluated for
α = 0. From a consideration of the spin- and isospin-factors occurring in these diagrams
one finds immediately that only non-vanishing isovector spin-spin and tensor NN-amplitudes
will be obtained, i.e. a contribution to the NN T-matrix of the form

TNN =
[
WS(q) σ⃗1 · σ⃗2 +WT (q) σ⃗1 · q⃗ σ⃗2 · q⃗

]
τ⃗1 · τ⃗2 , (9)

where q = |q⃗ | denotes the momentum transfer between the initial and final state nucleon.
Obviously, the two-loop pion-pole diagrams in Fig. 1 contribute via mass and coupling con-
stant renormalization also to the 1π-exchange. These effects are, however, automatically
taken care of by working with the physical pion mass mπ and physical πNN -coupling con-
stant gπN . We are interested here only in the coordinate space potentials generated by the
simultaneous exchange of three pions between both nucleons. For that purpose it is suffi-
cient to calculate the imaginary parts of the NN-amplitudes WS,T (q) analytically continued

3

Fig.2: 3π-exchange diagrams of class II. Diagrams for which the role of both nucleons is
interchanged are not shown. They lead to the same contribution to the NN-potential. The
symmetry factor of these graphs is 1/2.

Next, we consider the diagrams of class II shown in Fig. 2. These are the diagrams with
exactly one nucleon-propagator and because of this property the invariant 3π-phase space
integral can still be reduced to a simple one-dimensional integral in the heavy nucleon mass
limit M → ∞ (compare also with ImGA(t) in ref.[7]). After a somewhat lengthy calculation
we find from class II,

ImW (II)
S (iµ) =

g2A
3µ4(16πf 2

π)
3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)w2(3m2

π + µ2 − 3w2) ,

(16)

ImW (II)
T (iµ) =
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6(8πf 2

πµ
2)3

∫ µ−mπ
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dw
√
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2)
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π(µ
2 −m2

π)
−1 − 2w2µ2 +m2

π(µ
2 +m2

π)(3µ
2 +m2

π)w
−2

]
. (17)

In the chiral limit, mπ = 0, one obtains now attractive isovector tensor and spin-spin poten-
tials with a r−7-dependence,

W̃ (II)
T (r) =

28

13
W̃ (II)

S (r) = −
35g2A

18(4π)5f 6
π

1

r7
. (18)

The asymptotic fall-off for r → ∞ differs from class I due to a different threshold behavior
of the mass-spectra: ImW (II)

S (iµ) ∼ (µ−3mπ)4 and ImW (II)
T (iµ) ∼ (µ−3mπ)3, which leads

to

W̃ (II)
T (r) = W̃ (II)

S (r) = −
14g2Am

2
π

3
√
3(8π)4f 6

π

e−3mπr

r5
+ . . . (19)

Fig.3: 3π-exchange diagrams of class III. The isoscalar NN-amplitudes sum up to zero.

Furthermore, we consider the diagrams of class III shown in Fig. 3. The isospin-factor of
the first and second graph is 6−2 τ⃗1·τ⃗2 while that of the third and fourth graph is −6−2 τ⃗1 ·τ⃗2.
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interchanged are not shown. They lead to the same contribution to the NN-potential. The
symmetry factor of these graphs is 1/2.
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Fig.3: 3π-exchange diagrams of class III. The isoscalar NN-amplitudes sum up to zero.

Furthermore, we consider the diagrams of class III shown in Fig. 3. The isospin-factor of
the first and second graph is 6−2 τ⃗1·τ⃗2 while that of the third and fourth graph is −6−2 τ⃗1 ·τ⃗2.
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Since all other factors occuring in these two types of diagrams are equal (modulo the sign
of an i0+-term in one heavy nucleon-propagator which finally does not matter) one obtains
only a contribution to the isovector spin-spin and tensor NN-amplitudes. Altogether, we
find the following imaginary parts from the diagrams of class III,

ImW (III)
S (iµ) =

g2A
18µ4(16πf 2

π)
3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
9w4 − 5µ4 + 30µ2m2

π − 9m4
π

]
, (20)

ImW (III)
T (iµ) =

2g2A
9(16πf 2

πµ
2)3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
4µ4 + 9µ2m2

π + 9m4
π − 3w4 + 6m2

π(µ
4 −m4

π)w
−2

]
. (21)

In the chiral limit, mπ = 0, one has again potentials with a r−7-dependence,

W̃ (III)
T (r) = W̃ (III)

S (r) =
490g2A

9(8π)5f 6
π

1

r7
, (22)

and the asymptotic fall-off of these potentials for r → ∞ is given by

W̃ (III)
T (r) = W̃ (III)

S (r) =
g2Am

3
π

4
√
3(4π)4f 6

π

e−3mπr

r4
+ . . . (23)

Fig.4: 3π-exchange diagrams of class IV. The symmetry factor of these graphs is 1/2.

Finally, we consider the diagrams of class IV shown in Fig. 4. The isospin-factor of the
first and second graph (planar boxes) is 6− 4 τ⃗1 · τ⃗2 while that of the third and fourth graph
(crossed boxes) is 6+4 τ⃗1 ·τ⃗2. In ref.[1] it was shown that the irreducible part of the planar box
and the crossed box are exactly equal up to a minus-sign. If one makes here use of this fact,
one obtains again only a contribution to the isovector spin-spin and tensor NN-amplitudes
from the diagrams of class IV. The explicit calculation of the corresponding imaginary parts
leads to the following result,

ImW (IV )
S (iµ) =

g2A
9µ4(16πf 2

π)
3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

×
[
9w4 − 5µ4 + 30µ2m2

π − 9m4
π

]
, (24)

ImW (IV )
T (iµ) =

g2A
6(8πf 2

πµ
2)3

∫ µ−mπ

2mπ

dw
√
(w2 − 4m2

π)λ(w
2, m2

π, µ
2)

[
w4 + 7µ2m2

π (25)

−
2

3
µ4 −m2

π(µ
2 +m2

π)
2w−2 + 4m2

πµ
4(4m2

π − w2)λ−1(w2, m2
π, µ

2)
]
.
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axial nucleon form factors and found perfect agreement with the results of ref.[4]. As a
further check we applied the methods to calculate the imaginary parts of the 2π-exchange
NN-amplitudes. In that case only a much simpler two-body phase space integral needs to
be evaluated and one reproduces indeed exactly the results of ref.[2, 3] in a rather short
calculation.

Fig.1: 3π-exchange diagrams of classV proportional to g4A. Solid and dashed lines represent
nucleons and pions, respectively.

Let us now turn to the results for the (two-loop) chiral 3π-exchange diagrams proportional
to g4A and g6A. We start with the diagrams of classV shown in Fig. 1. As stressed in ref.[1]
diagrams involving the chiral 3πNN -vertex or the chiral 4π-vertex depend on an arbitrary
parameter α and therefore one should consider the full classV as one entity. Obviously, the
last two pion-pole diagrams in Fig. 1 contribute via coupling constant renormalization also to
the point-like 1π-exchange. This effect is however automatically taken care by working with
the physical πNN -coupling constant gπN . From an inspection of the spin- and isospin factors
occurring in the diagrams of classV one finds immediately that only non-vanishing isovector
spin-spin and tensor NN-amplitudes WS,T will be obtained. We find the following imaginary
parts from classV,

ImW (V )
S (iµ) =

2g4A
3(8πf 2

π)
3

∫∫

z2≤1

dω1dω2

{
k2
1 + µω1 + 3(m2

π − µω1)
(
z +

k2
k1

)arccos(−z)√
1− z2

}
, (7)

ImW (V )
T (iµ) =

1

µ2
ImW (V )

S (iµ) +
g4A(µ

2 −m2
π)

−1

µ2(8πf 2
π)

3

∫∫

z2≤1

dω1dω2

×
[
(6µ2 + 2m2

π)(ω1 + ω2)− µ(4µ2 + 3m2
π)

]

×
{[

(µ2 +m2
π)

(
2ω1 −

µ

2

)
− 2µω1ω2

] arccos(−z)

k1k2
√
1− z2

+ µ+ 2zω1
k2
k1

}
. (8)

The inequality z2 ≤ 1 defines the kinematically allowed (Dalitz) region in the ω1ω2-plane
(which is bounded by a cubic curve) together with the obvious kinematical constraints mπ ≤
ω1,2 ≤ µ− 2mπ and 2mπ ≤ ω1 + ω2 ≤ µ−mπ. Note that the same integrand as in eq.(7) for

ImW (V )
S (iµ) was found in ref.[4] for the spectral-function of the nucleon isovector axial form

factor. In the chiral limit mπ = 0 one can evaluate the remaining double-integrals in eqs.(7,8)
using the substitution ω1 = µ(1− xy)/2, ω2 = µy/2 which maps the unit-square 0 ≤ x, y ≤ 1
onto the (in the chiral limit) triangle-shaped Dalitz region.

One finds from classV repulsive isovector spin-spin and tensor potentials with an r−7-
dependence,

W̃ (V )
S (r)

∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
16

21
π2 +

85

36

)
, W̃ (V )

T (r)
∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
245

72

)
. (9)
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Next, we come to the diagrams of classVI shown in Fig. 2. The isospin factor of the first
and second graph is 4τ⃗1 · τ⃗2 − 6 while that of the third and fourth graphs is −4τ⃗1 · τ⃗2 − 6.
The last two graphs are irreducible whereas the first two contain the iteration of 1π-exchange
and 2π-exchange (triangle subgraphs). This iterative part has to be separated off in the
construction of the NN-potential. A closer inspection reveals that the two types of diagram
differ only by some signs in nucleon propagators. The first two diagrams carry a factor
−[(iv⃗ ·k⃗1+ϵ)(iv⃗ ·k⃗1−ϵ)]−1 in comparison to a factor (iv⃗ ·k⃗1+ϵ)−2 from the last two (irreducible)
diagrams. The irreducible part of the first two diagrams is obtained by switching the sign of
one ϵ-term (−ϵ → +ϵ) such that the expression agrees with that of the irreducible diagrams.

Fig.2: 3π-exchange diagrams of classVI proportional to g4A. Diagrams for which the role
of both nucleons is interchanged are not shown. They lead to the same contribution to the
NN-potential. The (irreducible) isoscalar NN-amplitudes sum up to zero.

In order to make this procedure more understandable consider the following integrals:∫ 1
−1 dx[(x+ iϵ)(x− iϵ)]−1 = π/ϵ−2+O(ϵ2) and

∫ 1
−1 dx(x+ iϵ)−2 = −2+O(ϵ2). The difference

between both diverges as 1/ϵ for ϵ → 0+. According to the definition in eq.(6) one has
ϵ ∼ M−1 and from the (non-relativistic) Lippmann-Schwinger equation [5] it is known that
the iteration of the potential leads to a contribution proportional to the nucleon mass M .
Therefore the 1/ϵ-term which gets subtracted by switching the sign (of one ϵ) corresponds
indeed to the iterative part. In the case of 2π-exchange all this has been worked out in detail
in ref.[2] and as already mentioned the present methods allow to reproduce exactly the results
of ref.[2] for the irreducible 2π-exchange.

After subtracting the iterative part the first two and the last two diagrams in Fig. 2 become
equal up to a minus-sign. Combining this with the isospin factors one obtains again only a
non-vanishing contribution to the isovector spin-spin and tensor NN-amplitudes WS,T . We
find the following imaginary parts from classVI,

ImW (V I)
S (iµ) =

2g4A
(8πf 2

π)
3

∫∫
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dω1dω2

{
− k2

1 −
5

3
µω1 + (µω1 −m2

π)
(
z +

k2
k1

)arccos(−z)√
1− z2

}
, (10)

ImW (V I)
T (iµ) =

1

µ2
ImW (V I)

S (iµ) +
2g4A

µ2(8πf 2
π)

3

∫∫

z2≤1

dω1dω2 ω1

{
2ω1

3k2
1

(2µω1 − µ2 + 3m2
π − 6ω2

2)

+
[
(µ2 +m2

π)(µ− 2ω1 − 2ω2) + 4µω1ω2

] arccos(−z)

k1k2
√
1− z2

− 2zω2
k2
k1

+ 3ω1 − 2µ
}
. (11)

In the chiral limit (mπ = 0) one gets now a repulsive isovector spin-spin potential and an
attractive isovector tensor potential of the form,

W̃ (V I)
S (r)

∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
175

36

)
, W̃ (V I)

T (r)
∣∣∣
mπ=0

=
g4A r−7

(4π)5f 6
π

(
4

3
π2 −

665

36

)
. (12)
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Next, we come the diagrams of classVII shown Fig. 3. The isospin factor of all four
diagrams is 6 and after considering their spin-structure one finds immediately that there will
be only a non-vanishing contribution to the isoscalar spin-spin and tensor NN-amplitudes
VS,T . In the case of classVII one can actually solve all integrals analytically and one obtains
the following closed form expressions for the imaginary parts,

Fig.3: 3π-exchange diagrams of classVII proportional to g4A. The isospin factor of these
diagrams is 6.

Im V (V II)
S (iµ) =

g4A(µ− 3mπ)2

35π(32f 3
π)

2

[
2m2

π − 12µmπ − 2µ2 + 15
m3

π

µ
+ 2

m4
π

µ2
+ 3

m5
π

µ3

]
, (13)

ImV (V II)
T (iµ) =

g4A(µ− 3mπ)

35π(32µf 3
π)

2

[
µ3 + 3µ2mπ + 2µm2

π + 6m3
π + 18

m4
π

µ
− 9

m5
π

µ2
− 27

m6
π

µ3

]
. (14)

It is even more astonishing that the corresponding coordinate space potentials (inserting
eqs.(13,14) into eqs.(3,4)) can be expressed through a simple exponential-function multiplied
by a polynomial. We find the following repulsive isoscalar spin-spin and tensor potentials
from classVII,

Ṽ (V II)
S (r) =

g4A
2(8πf 2

π)
3

e−3mπr

r7
(1 +mπr)

2(2 +mπr)
2 , (15)

Ṽ (V II)
T (r) =

g4A
2(8πf 2

π)
3

e−3mπr

r7
(1 +mπr)

2(1 +mπr +m2
πr

2) . (16)

Fig.4: 3π-exchange diagrams of classVIII proportional to g6A.

Next, we consider the diagrams of classVIII shown in Fig. 4. The isospin factor of the
first graph is 7τ⃗1 · τ⃗2 − 6 while that of the second one is 7τ⃗1 · τ⃗2 + 6. In order to separate
off the iterative parts from the first diagram one has to switch the sign of two different ϵ-
terms in nucleon propagators. After this procedure the factors coming from the nucleon
propagators agree identically for both diagrams in Fig. 4. The two diagrams differ however
in the ordering of the first and third (spin-dependent) pion-coupling to one nucleon line.
Exploiting furthermore the properties of σ⃗-matrices one finds that the spin-independent part
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Fig.5: 3π-exchange diagrams of class IX proportional to g6A.

In order to arrive at the very short expression given in eq.(21) we have exploited the
inherent permutational symmetry of the 3π-phase space integration. In the chiral limitmπ = 0
one obtains from class IX an attractive isoscalar central potential of the form

Ṽ (IX)
C (r)

∣∣∣
mπ=0

=
g6A r−7

(4π)5f 6
π

(
4π2 − 60

)
, (22)

which just cancels the one coming from classVIII given in eq.(18). Later when presenting
numerical results in Table 1 we will see that this cancellation holds also for any finite pion
mass mπ. Furthermore, we obtain from class IX a non-vanishing contribution to the isovector
central NN-amplitude WC . For the corresponding imaginary part all appearing integrals can
be solved analytically and one finds the following closed form expression,

ImW (IX)
C (iµ) =

g6A(µ− 3mπ)2

30πµ(4fπ)6
(3m3

π + 2µm2
π − 9µ2mπ − 4µ3) . (23)

Inserting this mass-spectrum into eq.(2) one obtains finally a repulsive isovector central po-
tential which can be expressed in terms of a simple exponential-function multiplied by a
polynomial,

W̃ (IX)
C (r) =

2g6A
(16πf 2

π)
3

e−3mπr

r7
(1 +mπr)(4 + 5mπr + 3m2

πr
2) . (24)

We have also evaluated the imaginary parts of the isoscalar and isovector spin-spin and tensor
NN-amplitudes arising from the four diagrams shown in Fig 5. In these cases there appear
again singular terms proportional to (1−z2)−3/2 in the integrands such that the double-integral∫∫

z2≤1 dω1dω2 diverges. Consequently, we may conclude that only the central potentials gen-
erated by the 3π-exchange diagrams proportional to g6A (shown in Figs. 4,5) exist in the static
limit (M → ∞) while all spin-spin and tensor potentials diverge. This is a somewhat unex-
pected feature of the 3π-exchange NN-potential.

In Table 1, we present numerical results for the coordinate space NN-potentials generated
by the 3π-exchange graphs of classV, VI, VII, VIII and IX for internucleon distances 0.6 fm≤
r ≤ 1.4 fm. We use the parameters fπ = 92.4MeV, mπ = 138MeV (average pion mass) and
gA = gπNfπ/M = 1.32 employing the Goldberger-Treiman relation together with gπN = 13.4.
The choice gA = 1.32 is most natural in the present context since the pion-nucleon coupling is
the relevant here and not the axial-vector coupling. One observes that the isovector spin-spin
and tensor potentials from classesV and VI (scaling with g4A) are a factor 3 to 10 larger than

the (largest) potential W̃ (III)
S,T (r) found in our previous work [1] on the chiral 3π-exchange

diagrams scaling with g2A. The most striking result is that the isoscalar central potentials

from classVIII and IX cancel each other, Ṽ (V III)
C (r) + Ṽ (IX)

C (r) = 0, and this cancellation is
found to happen with high numerical precision. From the double-integral representation in
eqs.(17,21) it is not at all obvious that the relation ImV (V III)

C (iµ)+ImV (IX)
C (iµ) = 0 holds, at

least we have not yet found a simple analytical proof. Consequently, we can conclude that the
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class-I:

class-II:

class-III:

class-IV:

class-V:

class-VI:

class-VII:

class-VIII:

class-IX:

Fig.1: 3π-exchange diagrams of classX proportional to g2A. Solid and dashed lines represent
nucleons and pions, respectively. The heavy dot symbolized an insertion from second order
chiral πN-Lagrangian. The combinatoric factor of these diagrams is 1/2. Diagrams for which
the role of both nucleons is interchanged are not shown. They lead to the same NN-potential.

Note that we are considering here only the finite-range Yukawa-parts of the 1π-exchange
and we disregard all zero-range δ3(r⃗ )-terms. Transformed into momentum space the latter
become polynomials in q2 with possible contributions from higher-derivative operators. From
an inspection of the spin- and isospin factors occurring in the diagrams of classX one finds
immediately that only non-vanishing isovector spin-spin and tensor NN-amplitudes WS,T will
be obtained. We find the following imaginary parts from classX (dropping from now on the
argument iµ),

ImW (X)
S =

g2A
(4fπ)6π2µ3

∫ µ−mπ

2mπ

dw
√
w2 − 4m2

π

{[
2C13(w) +

c2
3
(w2 − 4m2

π)
]
λ(w)

+
c4
3
(w2 − 4m2

π)
[
(w2 −m2

π)
2 + µ2(2m2

π + 2w2 − 3µ2)
]}

, (7)

ImW (X)
T =

1

µ2
ImW (X)

S +
g2A

(4fπ)6π2µ5

∫ µ−mπ

2mπ

dw
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w2 − 4m2

π

{[
4C13(w) +

2c2
3
(w2 − 4m2

π)
]

× (µ2 +m2
π − w2)

[
µ2 +m2

π − w2 + 2µ2(2w2 − µ2)(µ2 −m2
π)

−1
]

+
2c4
3
(w2 − 4m2

π)λ(w)(m
2
π + 3µ2)(m2

π − µ2)−1
}
, (8)

where we have introduced the abbreviations C13(w) = 4c1m2
π + c3(w2 − 2m2

π) and λ(w) =
w4+µ4+m4

π − 2w2µ2− 2w2m2
π − 2µ2m2

π. The variable w denotes the invariant mass of a pion-
pair and its kinematically allowed range is 2mπ ≤ w ≤ µ −mπ. The dw-integrals in eqs.(7,8)
could of course be solved easily in terms of square-root and logarithmic functions. However,
we want to avoid the resulting rather lengthy expressions.

Fig.2: 3π-exchange diagrams of classXI proportional to g2A. These give a vanishing contribution
to the NN-potential.

Next, we consider the diagrams of classXI shown in Fig.2. Each of them gives a vanishing
contribution to the NN T-matrix for the following reason. Since the leading order (Weinberg-
Tomozawa) ππNN -vertex is of isovector nature (i.e. proportional to ϵabcτ c) a non-zero isospin-
factor is obtained only from the spin-dependent isovector term in eq.(2) proportional to c4.

4
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When combined with the spin-independent Weinberg-Tomozawa vertex on the other side of the
bubble-type sub-diagram one finds immediately that the pertinent 1-loop integral is zero in the
heavy baryon formalism (basically because the spin-vector σ⃗ has no time-component).

Fig.3: 3π-exchange diagrams of classXII proportional to g2A. For further notation, see Fig. 1.

Next, we consider the diagrams of classXII shown in Fig.3. The isoscalar contribution
comes exclusively from the c4-term in eq.(2). Altogether one obtains the following imaginary
parts of the isoscalar and isovector spin-spin and tensor NN-amplitudes from classXII,
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Fig.4: 3π-exchange diagrams of class XIII proportional to g4A. For further notation, see Fig. 1.

Next, we turn to the diagrams of classXIII shown in Fig.4. The technique to separate off the
iterative part from the first two reducible diagrams has been explained in ref.[10]. The iterative
(or reducible) part is defined here (entirely) within perturbation theory as that part which
carries in the numerator the large scale enhancement factor M , the nucleon mass. Such an
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(or reducible) part is defined here (entirely) within perturbation theory as that part which
carries in the numerator the large scale enhancement factor M , the nucleon mass. Such an
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iterative part does therefore not obey the naive chiral power counting rules (see also section 4.3
in ref.[6] on the so-called iterated 1π-exchange). A detailed discussion of possible ambiguities
showing up in (non-perturbative) iterations to infinite orders (e.g. via a Schrödinger equation)
can be found in ref.[17]. The isovectorial spin-dependent contact vertex proportional to c4 (and
in fact only this one) produces now also a central NN-amplitude. Interestingly, its isoscalar
and isovector components come with a fixed ratio. The corresponding imaginary parts read
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Furthermore, the isoscalar and isovector spin-spin and tensor NN-amplitudes generated by the
diagrams of classXIII have the following imaginary parts,
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Fig.5: 3π-exchange diagrams of classXIV proportional to g4A. For further notation, see Fig. 1.

Finally, we consider the (irreducible) diagrams of classXIV shown in Fig.5. In this case
the isovectorial c4-term in eq.(2) does not make a contribution to the isovector NN-amplitudes
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class-X:

class-XI:

class-XII:

class-XIII:

class-XIV:
N3LO N4LO

First, calculated the corresponding energy denominators, e.g.: 
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Found the corresponding 4-dim expressions by matching and used the same method as  
Norbert (Cutkosky rules) to calculate the spectral functions.  
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where



 3π-exchange using the Method of UT

For example, for the class-VI:

Next, we come to the diagrams of classVI shown in Fig. 2. The isospin factor of the first
and second graph is 4τ⃗1 · τ⃗2 − 6 while that of the third and fourth graphs is −4τ⃗1 · τ⃗2 − 6.
The last two graphs are irreducible whereas the first two contain the iteration of 1π-exchange
and 2π-exchange (triangle subgraphs). This iterative part has to be separated off in the
construction of the NN-potential. A closer inspection reveals that the two types of diagram
differ only by some signs in nucleon propagators. The first two diagrams carry a factor
−[(iv⃗ ·k⃗1+ϵ)(iv⃗ ·k⃗1−ϵ)]−1 in comparison to a factor (iv⃗ ·k⃗1+ϵ)−2 from the last two (irreducible)
diagrams. The irreducible part of the first two diagrams is obtained by switching the sign of
one ϵ-term (−ϵ → +ϵ) such that the expression agrees with that of the irreducible diagrams.

Fig.2: 3π-exchange diagrams of classVI proportional to g4A. Diagrams for which the role
of both nucleons is interchanged are not shown. They lead to the same contribution to the
NN-potential. The (irreducible) isoscalar NN-amplitudes sum up to zero.

In order to make this procedure more understandable consider the following integrals:∫ 1
−1 dx[(x+ iϵ)(x− iϵ)]−1 = π/ϵ−2+O(ϵ2) and

∫ 1
−1 dx(x+ iϵ)−2 = −2+O(ϵ2). The difference

between both diverges as 1/ϵ for ϵ → 0+. According to the definition in eq.(6) one has
ϵ ∼ M−1 and from the (non-relativistic) Lippmann-Schwinger equation [5] it is known that
the iteration of the potential leads to a contribution proportional to the nucleon mass M .
Therefore the 1/ϵ-term which gets subtracted by switching the sign (of one ϵ) corresponds
indeed to the iterative part. In the case of 2π-exchange all this has been worked out in detail
in ref.[2] and as already mentioned the present methods allow to reproduce exactly the results
of ref.[2] for the irreducible 2π-exchange.

After subtracting the iterative part the first two and the last two diagrams in Fig. 2 become
equal up to a minus-sign. Combining this with the isospin factors one obtains again only a
non-vanishing contribution to the isovector spin-spin and tensor NN-amplitudes WS,T . We
find the following imaginary parts from classVI,
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In the chiral limit (mπ = 0) one gets now a repulsive isovector spin-spin potential and an
attractive isovector tensor potential of the form,
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— Norbert finds the only non-vanishing contributions: 
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phenomenological implications still to be explored…

5 Discussion of the results
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Figure 5.1: Plots of the isovector spin and tensor part in coordinate space. We introduced
the short hand notation MUT for method of unitary transformation and SMM
for S-matrix matching. The results for SMM, indicated by the dashed blue
line, are based on Ref. [9]. The solid orange line represents the result using
the MUT.

Table 5.1: Results for Class VI using the Method of Unitary Transformation.
r [fm] 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

V (V I)

S
[MeV] 5.46 2.26 1.03 0.5052 0.2631 0.1435 0.0814 0.0477 0.0287

V (V I)

T
[MeV] 137.61 44.33 16.40 6.74 3.00 1.43 0.7190 0.3778 0.2061

W (V I)

S
[MeV] 12.81 3.41 0.9919 0.2946 0.0816 0.0154 ≠0.004 ≠0.008 ≠0.007

W (V I)

T
[MeV] ≠117.93 ≠38.10 ≠14.14 ≠5.83 ≠2.61 ≠1.24 ≠0.6269 ≠0.3302 ≠0.1806

in Fig. 5.1. For W (V I)

S (r) we start for both methods in a region smaller than 0.3 MeV.
In comparison, the 2fi≠exchange potential for the isoscalar spin part (eq. 44 from Ref.
[5] without 1/M -corrections) is with roughly 16 MeV for 1 fm much stronger. For the
long range part (2 fm < r < 3 fm) we see that the potential has a completely di�erent
behaviour when comparing the MUT and the S-matrix matching approach. Whereas the
MUT approaches zero from the negative side, the S-matrix matching comes from the
positive side. Due to the negligible strength of the potential, these di�erences may not be
measurable for observables. We continue with the isovector tensor part. Here, the curve
of the potential using the MUT is a factor of 4 larger. This holds for the intermediate
region as well as for the long range part. Nevertheless, for r = 1 fm, the isovector tensor
part of class VI is a small quantity with ≠2.6 MeV. In Table 5.3, we give the values for
the deviations. Whereas the values for ”W (V I)

S (r) seem to be rather small in contrast to
”W (V I)

T (r), they are in relation to the corresponding potential not.
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Chiral symmetry and peripheral n↵ scattering
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Low-energy peripheral neutron-↵ scattering is governed by the two-pion exchange components of
the nuclear force, which are determined in a parameter-free way by the chiral symmetry of QCD and
experimental information on the pion-nucleon system. Here, we present ab-initio quantum Monte
Carlo calculations of the neutron-↵ D-wave phase shifts using two- and three-nucleon forces derived
in chiral e↵ective field theory up to third order (N2LO). We show that the longest-range three-
nucleon force stemming from the two-pion exchange plays a crucial role in the proper description of
the neutron-↵ D-wave phase shifts. Our study demonstrates the predictive power of chiral symmetry
on the few-body level in a clean way and opens a new direction for probing and constraining the
chiral three-nucleon forces.

Chiral e↵ective field theory (EFT) [1, 2] provides a
solid foundation for understanding the interactions be-
tween protons and neutrons, one of the fundamental
problems in physics. The method relies on the spon-
taneously broken approximate chiral symmetry of QCD,
which allows one to connect nuclear forces with the un-
delying theory of the strong interactions between quarks
and gluons [3] in a theoretically clean way [4–6]. In par-
ticular, the long-range behavior of nuclear forces and cur-
rent operators is determined in a parameter-free manner
by the chiral symmetry and its breaking pattern, along
with the experimental information on the pion-nucleon
(⇡N) system needed to pin down the corresponding low-
energy constants (LECs) [7].

In the two-nucleon (NN) sector, peripheral neutron-
proton scattering has been traditionally used to probe the
long-range behavior of the nucleon force and test conver-
gence of the chiral EFT expansion [8–10]. Furthermore,
clear evidence of the parameter-free chiral two-pion ex-
change (TPE) was seen in NN scattering data using the
last-generation high-precision chiral EFT NN potentials
in Refs. [11, 12]. On the other hand, the long-range be-
havior of the strong nuclear force is dominated by the
one-pion exchange (OPE), whose form is, in fact, not re-
stricted by chiral symmetry in contrast to that of the
TPE. Indeed for the OPE potential, the pseudovector
⇡N coupling dictated by chiral symmetry is well known
to be on-shell equivalent to the chiral-symmetry-breaking
pseudoscalar one. Thus, probing the implications of chi-
ral symmetry becomes complicated by the dominance of
the OPE interaction at large distances.

In contrast to the NN interaction, three-nucleon forces
(3NFs) are still poorly understood and have become an
important frontier in low-energy nuclear physics [13–
15]. Modeling 3NFs is made more di�cult by the high
complexity of the possible spin-isospin-momentum struc-
tures and the sheer amount of information needed to
parametrize their most general form. Here, chiral EFT
is expected to o↵er decisive advantages relative to more

phenomenological aproaches by providing parameter-free
predictions for the large-distance behavior of the 3NF.
While the dominant contributions to the 3NF at N2LO
are already well-established [16, 17] and have been tested
in ab-initio calculations of nuclear structure and reac-
tions, see [15] and references therein, higher-order cor-
rections are currently under investigation [18, 19]. Based
on the experience in the 2N sector, the development of
accurate and precise 3NFs will likely require the chiral
EFT expansion to be pushed to fifth order (i.e., N4LO).
Here, an important challenge will be the determination
of LECs in the short-range part of the 3NF and estab-
lishing clean ways to probe and constrain the long- and
intermediate-range parts of the 3NF.
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FIG. 1. (Color online). Diagrams (a) and (b) show the dom-
inant contributions to low-energy peripheral neutron-↵ scat-
tering. The OPE process (c) is forbidden by the isospin selec-
tion rule for the isospin T = 0 ↵-particle. Iterated OPE con-
tributions in diagram (d) are suppressed in the tight-binding
limit. Solid and dashed lines denote nucleons and pions, re-
spectively, while green-shaded ellipses denote the correspond-
ing ⇡N amplitudes.

In this Letter we demonstrate that peripheral neutron-
↵ scattering can serve as a particularly clean probe of the
long-range tail of the 3NF. This process is advantageous
compared to other few-body scattering processes, due
to the high inelastic threshold and the isoscalar nature
of the ↵-particle that suppresses the OPE [20, 21], see
Fig. 1. However, an ab initio study of a five-body scatter-
ing is a challenging task from the numerical perspective.
The first ab initio study of n↵ scattering using realis-
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In this Letter we demonstrate that peripheral neutron-
↵ scattering can serve as a particularly clean probe of the
long-range tail of the 3NF. This process is advantageous
compared to other few-body scattering processes, due
to the high inelastic threshold and the isoscalar nature
of the ↵-particle that suppresses the OPE [20, 21], see
Fig. 1. However, an ab initio study of a five-body scatter-
ing is a challenging task from the numerical perspective.
The first ab initio study of n↵ scattering using realis-
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 Probing χ symmetry in peripheral n-α scattering

Calculate the  GS energy  in a harmonic trap (for ) and 
use the Busch formula: 

5Hel ϵl l = 2

Busch et al., Found. Physical. 28 (2008) 549; 

Suzuki et al., PRA 80 (2009) 033601

Use VMC with a neural network [Y. L. Yang, P. W. Zhao, 2404.04203]  

to prepare an accurate 5He trial state to be used in Diffusion 
MC calculation. 

Yilong Yang, School of Physics, Peking University

P-wave phase shifts

27

NLO

N2LO

• The present calculations reproduce the low-energy P-wave phase shifts 

from the previous work.

Yilong Yang, EE, Jie Meng, Lu Meng, Pengwei Zhao, PRL 135 (25) 172502

k2l+1 cot δl(ϵl) = (−1)l+1(4μω)l+1/2
Γ[(3 + 2l)/4 − ϵl /(2ω)]
Γ[(1 − 2l)/4 − ϵl /(2ω)]

Use local NN interaction up to N2LO [Gezerlis et al. PRC90 (2014)]  
and locally regularized 3NF [Lynn et al. PRC96 (2017)] with the  
softest r-space cutoff  fm (sign problem…) R = 1.2

Benchmarks for P-waves
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Here, R = (r1, r2, . . . , rA) and Ôp=2-6
ij

are two-body spin-

isospin operators, Ôp=2-6
ij

= ⌧i · ⌧j ,�i · �j ,�i · �j⌧i ·
⌧j , Sij , Sij⌧i · ⌧j , with Sij = 3�i · rij�j · rij � �i · �jr2ij .
The central correlation functions U ,V are represented by
a permutation-invariant neural network [46, 47]. The
distances of nucleon pairs are used as inputs to ensure
the translational and rotational invariance of the trial
wave function [48]. The spin-isospin dependent correla-
tion function W takes the following form

Wp

ij
(R) = ⇢pW

 
AX

k=1

�W(rij , rik, rjk)

!
(7)

Here, the generalized backflow transformation is imple-
mented to take into account correlation e↵ects [52], which
has been shown to augment the performance of neural-
network wave function for nuclei [49, 50].

In present calculations, all the feed-forward neural net-
works (⇢s and �s) are comprised of one fully connected
hidden layer with 32 nodes each. The output dimensions
of �s are also taken to be 32. The output dimension is
1 for ⇢U,V and 5 for ⇢W , the latter corresponding to the
five two-body spin-isospin operators with p = 2-6. The
parameters in the neural networks are trained by varia-
tional Monte Carlo (VMC), i.e., minimizing the energy
expectation iteratively [51].

Starting from the trained neural-network wave func-
tion, we carry out the GFMC calculations to project out
the lowest J⇡ = 5

2

+
eigenstate via the imaginary time

propagation [22],

lim
⌧!1

e�H⌧ | T iJ⇡ ! | 0iJ⇡ . (8)

It is carried out by a sequence of short-time propaga-
tion e�H�⌧ using a branching random walk algorithm
with importance sampling [53, 54]. When performing the
GFMC propagation, one has to deal with the sign prob-
lem that causes large statistical fluctuations at large ⌧ .
Following the previous GFMC calculations of n↵ scatter-
ing [23], we use a transient estimate to mitigate the sign
problem. We first perform the constrained-path propaga-
tion [54], which suppresses the sign problem, and then re-
lease the constraints to obtain the final result. Such tran-
sient estimates result in significantly improved estimates
compared to those without performing constrained-path
propagation at first. See Supplemental Material [55] for
more details on the present GFMC calculations with
neural-network wave functions.

Figure 2 depicts the D-wave n↵ phase shifts predicted
with the chiral nuclear Hamiltonian from LO to N2LO, as
functions of the center-of-mass energy Ecm. Each point
in the figure corresponds to a single GFMC calculation
using a HO trap. The values of HO frequency ! are cho-
sen such that the oscillator lengths b =

p
2/(mN!) are

in the range of b = 4-6 fm, much larger than the NN in-
teraction range and the size of ↵ particle. We have tested

FIG. 2. (Color online). Phase shifts for n↵ scattering in the
2D 5

2
channel as a function of the center-of-mass energy ob-

tained from LO to N2LO. The empty symbols are the GFMC
computed results and their error bars include the GFMC
statistical uncertainty and the estimated uncertainty of the
BERW formula. The bands are fits of the GFMC computed
results described in the text. The stars are from an R-matrix
analysis of the experimental n↵ elastic scattering data [45].

that the BERW formula with HO traps b = 4-6 fm yield
quite accurate D-wave phase shifts for the NN scatter-
ing with only ⇠ 10% relative error [55]. We include this
relative error in the uncertainty estimate for each point,
in addition to the GFMC statistical uncertainty. The
smallness of the phase shifts suggests that the scattering
in the 2D 5

2
channel is perturbative. Therefore, we fit the

computed phase shifts using

tan �n↵(k) = �a2k
5 +O(k7) (9)

, where a2 stands for the scattering “length” and k =p
2µEcm is the n↵ relative momentum with µ = 4mN/5

the reduced mass.
We compare the predictions of the D-wave n↵ phase

shifts to those from an R-matrix analysis of the exper-
imental n↵ elastic scattering data [45]. The LO chi-
ral Hamiltonian gives vanishing D-wave n↵ phase shifts.
This is expected as the one-pion exchange between the
neutron and the ↵ particle is suppressed since, consid-
ering the n↵ scattering being perturbative, an insertion
of the one-pion exchange vanishes between the isoscalar
initial and final ↵ states. The leading nonvanishing con-
tribution appears at NLO when the chiral TPE NN
force enters, but significantly overestimates the R-matrix
phase shifts. The N2LO corrections significantly reduce
the predicted phase shifts and bring the theoretical pre-
dictions closer to the R-matrix phase shifts.
The N2LO corrections consist of the subleading chiral

TPE NN force and the leading chiral 3N forces. Fig-
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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many-body forces [26], the feature, that has always been assumed but could be justified only in the
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immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
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 Probing χ symmetry in peripheral n-α scattering
Yilong Yang, EE, Jie Meng, Lu Meng, Pengwei Zhao, PRL 135 (25) 1725023

Here, R = (r1, r2, . . . , rA) and Ôp=2-6
ij

are two-body spin-

isospin operators, Ôp=2-6
ij

= ⌧i · ⌧j ,�i · �j ,�i · �j⌧i ·
⌧j , Sij , Sij⌧i · ⌧j , with Sij = 3�i · rij�j · rij � �i · �jr2ij .
The central correlation functions U ,V are represented by
a permutation-invariant neural network [46, 47]. The
distances of nucleon pairs are used as inputs to ensure
the translational and rotational invariance of the trial
wave function [48]. The spin-isospin dependent correla-
tion function W takes the following form

Wp

ij
(R) = ⇢pW

 
AX

k=1

�W(rij , rik, rjk)

!
(7)

Here, the generalized backflow transformation is imple-
mented to take into account correlation e↵ects [52], which
has been shown to augment the performance of neural-
network wave function for nuclei [49, 50].

In present calculations, all the feed-forward neural net-
works (⇢s and �s) are comprised of one fully connected
hidden layer with 32 nodes each. The output dimensions
of �s are also taken to be 32. The output dimension is
1 for ⇢U,V and 5 for ⇢W , the latter corresponding to the
five two-body spin-isospin operators with p = 2-6. The
parameters in the neural networks are trained by varia-
tional Monte Carlo (VMC), i.e., minimizing the energy
expectation iteratively [51].

Starting from the trained neural-network wave func-
tion, we carry out the GFMC calculations to project out
the lowest J⇡ = 5

2

+
eigenstate via the imaginary time

propagation [22],

lim
⌧!1

e�H⌧ | T iJ⇡ ! | 0iJ⇡ . (8)

It is carried out by a sequence of short-time propaga-
tion e�H�⌧ using a branching random walk algorithm
with importance sampling [53, 54]. When performing the
GFMC propagation, one has to deal with the sign prob-
lem that causes large statistical fluctuations at large ⌧ .
Following the previous GFMC calculations of n↵ scatter-
ing [23], we use a transient estimate to mitigate the sign
problem. We first perform the constrained-path propaga-
tion [54], which suppresses the sign problem, and then re-
lease the constraints to obtain the final result. Such tran-
sient estimates result in significantly improved estimates
compared to those without performing constrained-path
propagation at first. See Supplemental Material [55] for
more details on the present GFMC calculations with
neural-network wave functions.

Figure 2 depicts the D-wave n↵ phase shifts predicted
with the chiral nuclear Hamiltonian from LO to N2LO, as
functions of the center-of-mass energy Ecm. Each point
in the figure corresponds to a single GFMC calculation
using a HO trap. The values of HO frequency ! are cho-
sen such that the oscillator lengths b =

p
2/(mN!) are

in the range of b = 4-6 fm, much larger than the NN in-
teraction range and the size of ↵ particle. We have tested

FIG. 2. (Color online). Phase shifts for n↵ scattering in the
2D 5

2
channel as a function of the center-of-mass energy ob-

tained from LO to N2LO. The empty symbols are the GFMC
computed results and their error bars include the GFMC
statistical uncertainty and the estimated uncertainty of the
BERW formula. The bands are fits of the GFMC computed
results described in the text. The stars are from an R-matrix
analysis of the experimental n↵ elastic scattering data [45].

that the BERW formula with HO traps b = 4-6 fm yield
quite accurate D-wave phase shifts for the NN scatter-
ing with only ⇠ 10% relative error [55]. We include this
relative error in the uncertainty estimate for each point,
in addition to the GFMC statistical uncertainty. The
smallness of the phase shifts suggests that the scattering
in the 2D 5

2
channel is perturbative. Therefore, we fit the

computed phase shifts using

tan �n↵(k) = �a2k
5 +O(k7) (9)

, where a2 stands for the scattering “length” and k =p
2µEcm is the n↵ relative momentum with µ = 4mN/5

the reduced mass.
We compare the predictions of the D-wave n↵ phase

shifts to those from an R-matrix analysis of the exper-
imental n↵ elastic scattering data [45]. The LO chi-
ral Hamiltonian gives vanishing D-wave n↵ phase shifts.
This is expected as the one-pion exchange between the
neutron and the ↵ particle is suppressed since, consid-
ering the n↵ scattering being perturbative, an insertion
of the one-pion exchange vanishes between the isoscalar
initial and final ↵ states. The leading nonvanishing con-
tribution appears at NLO when the chiral TPE NN
force enters, but significantly overestimates the R-matrix
phase shifts. The N2LO corrections significantly reduce
the predicted phase shifts and bring the theoretical pre-
dictions closer to the R-matrix phase shifts.
The N2LO corrections consist of the subleading chiral

TPE NN force and the leading chiral 3N forces. Fig-
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
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many-body forces [26], the feature, that has always been assumed but could be justified only in the
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
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which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
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all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Here, R = (r1, r2, . . . , rA) and Ôp=2-6
ij

are two-body spin-

isospin operators, Ôp=2-6
ij

= ⌧i · ⌧j ,�i · �j ,�i · �j⌧i ·
⌧j , Sij , Sij⌧i · ⌧j , with Sij = 3�i · rij�j · rij � �i · �jr2ij .
The central correlation functions U ,V are represented by
a permutation-invariant neural network [46, 47]. The
distances of nucleon pairs are used as inputs to ensure
the translational and rotational invariance of the trial
wave function [48]. The spin-isospin dependent correla-
tion function W takes the following form

Wp

ij
(R) = ⇢pW

 
AX

k=1

�W(rij , rik, rjk)

!
(7)

Here, the generalized backflow transformation is imple-
mented to take into account correlation e↵ects [52], which
has been shown to augment the performance of neural-
network wave function for nuclei [49, 50].

In present calculations, all the feed-forward neural net-
works (⇢s and �s) are comprised of one fully connected
hidden layer with 32 nodes each. The output dimensions
of �s are also taken to be 32. The output dimension is
1 for ⇢U,V and 5 for ⇢W , the latter corresponding to the
five two-body spin-isospin operators with p = 2-6. The
parameters in the neural networks are trained by varia-
tional Monte Carlo (VMC), i.e., minimizing the energy
expectation iteratively [51].

Starting from the trained neural-network wave func-
tion, we carry out the GFMC calculations to project out
the lowest J⇡ = 5

2

+
eigenstate via the imaginary time

propagation [22],

lim
⌧!1

e�H⌧ | T iJ⇡ ! | 0iJ⇡ . (8)

It is carried out by a sequence of short-time propaga-
tion e�H�⌧ using a branching random walk algorithm
with importance sampling [53, 54]. When performing the
GFMC propagation, one has to deal with the sign prob-
lem that causes large statistical fluctuations at large ⌧ .
Following the previous GFMC calculations of n↵ scatter-
ing [23], we use a transient estimate to mitigate the sign
problem. We first perform the constrained-path propaga-
tion [54], which suppresses the sign problem, and then re-
lease the constraints to obtain the final result. Such tran-
sient estimates result in significantly improved estimates
compared to those without performing constrained-path
propagation at first. See Supplemental Material [55] for
more details on the present GFMC calculations with
neural-network wave functions.

Figure 2 depicts the D-wave n↵ phase shifts predicted
with the chiral nuclear Hamiltonian from LO to N2LO, as
functions of the center-of-mass energy Ecm. Each point
in the figure corresponds to a single GFMC calculation
using a HO trap. The values of HO frequency ! are cho-
sen such that the oscillator lengths b =

p
2/(mN!) are

in the range of b = 4-6 fm, much larger than the NN in-
teraction range and the size of ↵ particle. We have tested

FIG. 2. (Color online). Phase shifts for n↵ scattering in the
2D 5

2
channel as a function of the center-of-mass energy ob-

tained from LO to N2LO. The empty symbols are the GFMC
computed results and their error bars include the GFMC
statistical uncertainty and the estimated uncertainty of the
BERW formula. The bands are fits of the GFMC computed
results described in the text. The stars are from an R-matrix
analysis of the experimental n↵ elastic scattering data [45].

that the BERW formula with HO traps b = 4-6 fm yield
quite accurate D-wave phase shifts for the NN scatter-
ing with only ⇠ 10% relative error [55]. We include this
relative error in the uncertainty estimate for each point,
in addition to the GFMC statistical uncertainty. The
smallness of the phase shifts suggests that the scattering
in the 2D 5

2
channel is perturbative. Therefore, we fit the

computed phase shifts using

tan �n↵(k) = �a2k
5 +O(k7) (9)

, where a2 stands for the scattering “length” and k =p
2µEcm is the n↵ relative momentum with µ = 4mN/5

the reduced mass.
We compare the predictions of the D-wave n↵ phase

shifts to those from an R-matrix analysis of the exper-
imental n↵ elastic scattering data [45]. The LO chi-
ral Hamiltonian gives vanishing D-wave n↵ phase shifts.
This is expected as the one-pion exchange between the
neutron and the ↵ particle is suppressed since, consid-
ering the n↵ scattering being perturbative, an insertion
of the one-pion exchange vanishes between the isoscalar
initial and final ↵ states. The leading nonvanishing con-
tribution appears at NLO when the chiral TPE NN
force enters, but significantly overestimates the R-matrix
phase shifts. The N2LO corrections significantly reduce
the predicted phase shifts and bring the theoretical pre-
dictions closer to the R-matrix phase shifts.
The N2LO corrections consist of the subleading chiral

TPE NN force and the leading chiral 3N forces. Fig-
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
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It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
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Fig. 9 Predictions for ground state energies of selected nuclei with A = 4–12 at NLO and N2LO
for L = 450 MeV using the ab-initio No-Core Configuration Interaction method (NCCI). Black
error bars indicate the NCCI uncertainties, while shaded bars refer to the EFT truncation errors
(not shown for incomplete N2LO calculations based on 2NF only). See Ref. [42] for details.

the many-body forces and currents have been worked out using dimensional regu-
larization (DR), see Tab. 1, the existing expressions can not be directly employed
in few-nucleon calculations due to the inconsistencies caused by combining the di-
mensional and cutoff regularizations [7]. Below, an explicit example will be given
to demonstrate such an inconsistency for the 3NF regularized in a naive way using
both (semi-) local and nonlocal cutoffs.

Statement of the problem

Both the 2NF and 3NF need to be regularized in order to obtain a well defined
solution of the Faddeev equations. High-momentum components in the integrals
appearing in the iterations of the Faddeev equation generate contributions involv-
ing positive powers and logarithms of the cutoff which diverge in the L ! • limit
and are supposed to get absorbed by the available short-range interactions. The mo-
mentum dependence of such contact interactions beyond the 2N sector is, however,
severely constrained by the spontaneously broken chiral symmetry of QCD. In par-
ticular, in the limit of exact chiral symmetry (i.e., for Mp ! 0), only derivative pion
couplings are allowed in the effective Lagrangian according to the Goldstone theo-
rem. In the 2N sector, the tree-level short range interactions do not involve any pion
couplings, and their momentum dependence is therefore not restricted by the chiral

Predictions for light p-shell nuclei

LENPIC Collaboration, PRC 103 (21);  PRC 106 (22)
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this

0.1

1.0

10.0

-0.25

-0.50

0

0.25

0.50

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

d� /d� [mb/sr]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0 45 90 135 180 0 45 90 135 180
�CM [deg] �CM [deg]

0.25

0

0.50

0.75

1.00

-0.75

-0.50

-0.25

0

0.25

Ad
y

AxxAxz
NLO (1σ)
NLO (2σ)

N2LO (1σ)
N2LO (2σ)

100 120 1400

0.2

0.4

Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

Axx
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ydσ/dΩ [mb/sr]

Axz

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

New
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this

0.1

1.0

10.0

-0.25

-0.50

0

0.25

0.50

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

d� /d� [mb/sr]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0 45 90 135 180 0 45 90 135 180
�CM [deg] �CM [deg]

0.25

0

0.50

0.75

1.00

-0.75

-0.50

-0.25

0

0.25

Ad
y

AxxAxz
NLO (1σ)
NLO (2σ)

N2LO (1σ)
N2LO (2σ)

100 120 1400

0.2

0.4

Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

Axx

Ad
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

More results using the leading 3NF
LENPIC Collaboration, PRC  103 (2021), PRC 106 (2022),  see also Endo, EE, Naidon, Nishida, Sekiguchi, Takahashi, EPJA 61 (2025) 9
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the many-body forces and currents have been worked out using dimensional regu-
larization (DR), see Tab. 1, the existing expressions can not be directly employed
in few-nucleon calculations due to the inconsistencies caused by combining the di-
mensional and cutoff regularizations [7]. Below, an explicit example will be given
to demonstrate such an inconsistency for the 3NF regularized in a naive way using
both (semi-) local and nonlocal cutoffs.

Statement of the problem

Both the 2NF and 3NF need to be regularized in order to obtain a well defined
solution of the Faddeev equations. High-momentum components in the integrals
appearing in the iterations of the Faddeev equation generate contributions involv-
ing positive powers and logarithms of the cutoff which diverge in the L ! • limit
and are supposed to get absorbed by the available short-range interactions. The mo-
mentum dependence of such contact interactions beyond the 2N sector is, however,
severely constrained by the spontaneously broken chiral symmetry of QCD. In par-
ticular, in the limit of exact chiral symmetry (i.e., for Mp ! 0), only derivative pion
couplings are allowed in the effective Lagrangian according to the Goldstone theo-
rem. In the 2N sector, the tree-level short range interactions do not involve any pion
couplings, and their momentum dependence is therefore not restricted by the chiral

Predictions for light p-shell nuclei
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this

0.1

1.0

10.0

-0.25

-0.50

0

0.25

0.50

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

d� /d� [mb/sr]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0 45 90 135 180 0 45 90 135 180
�CM [deg] �CM [deg]

0.25

0

0.50

0.75

1.00

-0.75

-0.50

-0.25

0

0.25

Ad
y

AxxAxz
NLO (1σ)
NLO (2σ)

N2LO (1σ)
N2LO (2σ)

100 120 1400

0.2

0.4

Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

New
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

Axx

Ad
ydσ/dΩ [mb/sr]
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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the many-body forces and currents have been worked out using dimensional regu-
larization (DR), see Tab. 1, the existing expressions can not be directly employed
in few-nucleon calculations due to the inconsistencies caused by combining the di-
mensional and cutoff regularizations [7]. Below, an explicit example will be given
to demonstrate such an inconsistency for the 3NF regularized in a naive way using
both (semi-) local and nonlocal cutoffs.

Statement of the problem

Both the 2NF and 3NF need to be regularized in order to obtain a well defined
solution of the Faddeev equations. High-momentum components in the integrals
appearing in the iterations of the Faddeev equation generate contributions involv-
ing positive powers and logarithms of the cutoff which diverge in the L ! • limit
and are supposed to get absorbed by the available short-range interactions. The mo-
mentum dependence of such contact interactions beyond the 2N sector is, however,
severely constrained by the spontaneously broken chiral symmetry of QCD. In par-
ticular, in the limit of exact chiral symmetry (i.e., for Mp ! 0), only derivative pion
couplings are allowed in the effective Lagrangian according to the Goldstone theo-
rem. In the 2N sector, the tree-level short range interactions do not involve any pion
couplings, and their momentum dependence is therefore not restricted by the chiral

Predictions for light p-shell nuclei

LENPIC Collaboration, PRC 103 (21);  PRC 106 (22)
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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ried out in an automated way by numerically perform-
ing the required angular integrations as described in
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ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this

0.1

1.0

10.0

-0.25

-0.50

0

0.25

0.50

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

d� /d� [mb/sr]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0 45 90 135 180 0 45 90 135 180
�CM [deg] �CM [deg]

0.25

0

0.50

0.75

1.00

-0.75

-0.50

-0.25

0

0.25

Ad
y

AxxAxz
NLO (1σ)
NLO (2σ)

N2LO (1σ)
N2LO (2σ)

100 120 1400

0.2

0.4

Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

New
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

Axx

Ad
ydσ/dΩ [mb/sr]
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this

0.1

1.0

10.0

-0.25

-0.50

0

0.25

0.50

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

d� /d� [mb/sr]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0 45 90 135 180 0 45 90 135 180
�CM [deg] �CM [deg]

0.25

0

0.50

0.75

1.00

-0.75

-0.50

-0.25

0

0.25

Ad
y

AxxAxz
NLO (1σ)
NLO (2σ)

N2LO (1σ)
N2LO (2σ)

100 120 1400

0.2

0.4

Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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DANGER: momentum cutoff for pions breaks chiral symmetry!

Why?  A lattice regulator seems straight forward: 

• Σ on each site 
• chirally invariant hopping term: Σn† Σn+1 
• SU(2) invariant Haar path integral measure

…but a momentum cutoff on the pion field violates chiral symmetry:
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corrections. For many applications it is most convenient to use the mass-independent MS renormalization scheme.
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the Weinberg expansion for the two-nucleon interaction, for example, at leading order one must solve the Schrödinger
equation for the nucleons in the one pion exchange (OPE) potential. This potential is singular; in the S = 0 channel,
the singularity behaves as a �-function at the origin which poses no challenges to renormalize, but in the S = 1 channel
the singularity behaves as 1/r3 at the origin, a potential which has no ground state even if one adds local counterterms,
which behave at the origin as a �-function or its derivatives. Regulating the theory by imposing a UV cuto↵ on the
momenta of the pions makes the calculation finite, but causes new problems since such a regulator violates chiral
symmetry, necessitating a complicated procedure to restore the symmetry by adding appropriate counterterms at each
order in the chiral expansion. Such cuto↵s are used in practice, but the literature is somewhat obscure as to whether
this procedure is indeed been carried out in a way that preserves the chiral symmetry in the high order expansions
of nuclear interactions being used today. If not one has lost the main advantage of using the chiral e↵ective theory
— having a systematic way to estimate theoretical errors at each order in the calculation. In this paper I construct a
regularization procedure that e↵ectively provides a gaussian cuto↵ on the momenta of exchange pions, while explicitly
preserving chiral symmetry.

It might seem counterintuitive that a momentum cuto↵ on the pion fields violates chiral symmetry. After all, it is
evident that one can implement a nonlinear sigma model on the lattice. One defines a unitary matrix-valued nonlinear
sigma field as

⌃ = e
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at each lattice site, where f⇡ is the pion decay constant, and ⇡
a(x) are the pion fields; one then includes hopping

terms in the action, and integrates over the SU(2) invariant Haar measure. In this procedure the pion momenta are
evidently limited by |k|  ⇡/a, where a is the lattice spacing. It is tempting to assume then that if a lattice regulator
can be chirally invariant, so can a momentum cuto↵ regulator in the continuum, but that is not true. A simple way
to see this is to consider the continuum pion field configuration ⇡1 = ⇡2 = 0, ⇡3 = A cos kx. We impose a momentum
cuto↵ ⇤ and choose k . ⇤. Under an infinitesimal chiral transformation �⌃ = i✓/2{�1,⌃} we find the pions transform
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and we see that the transformed ⇡1 field must contain an infinite tower of harmonics with wave numbers
0,±2k,±4k, . . .. However this chiral transformation cannot be realized since we have imposed a momentum cut-
o↵ ⇤, as all of the harmonics except the k = 0 mode are excluded by the cuto↵. it makes no qualitative di↵erence
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π3 = plane wave ⇒ δπ1 involves all harmonics…cannot satisfy if require k ≤ Λ
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 Chiral EFT using gradient flow
Gradient flows: methods for smoothing manifolds  
(e.g., Ricci flow used in the proof of the Poincaré conjecture)
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Local field theory in 5d Smeared (non-local) theory in 4d
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Introduce generalized pion fields , , that fulfills the covariant gradient flow equation. 
Regularization is achieved by requiring N to „live“ at a fixed :  

ϕ(τ) ϕ(0) = π
τ ℒπN → ℒϕN(τ)

ℒϕN(τ) ℒτ
πN

Krebs, EE, PRC 110 (2024) 044004; PRC 110 (2024) 04405

Chiral EFT using gradient flow
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Chiral EFT using gradient flow

LENPICHas been re-derived using Gradient Flow regularization

Partial-wave decomposition in progress 
Kai Hebeler, Andreas Nogga, Kacper Topolnicki, … 
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Chiral EFT using gradient flow

LENPICHas been re-derived using Gradient Flow regularization

Partial-wave decomposition in progress 
Kai Hebeler, Andreas Nogga, Kacper Topolnicki, … 

First (preliminary) results for 3H
using SMS 2NF@N4LO+,  MeV:Λ = 450

 (repulsive)δB3H = − 315 keV

  (attractive)δB3H = 308 keV



Summary and outlook

Thank you for your attention

Chiral symmetry and its breaking pattern play the key role for 
understanding low-energy nuclear physics

Chiral EFT has already become a precision tool in the NN sector

Symmetry-preserving Gradient Flow regularization puts chiral EFT 
on a firm basis and opens the avenue for precision calculations 
beyond the 2-body system 


