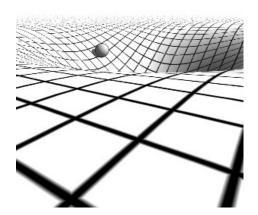
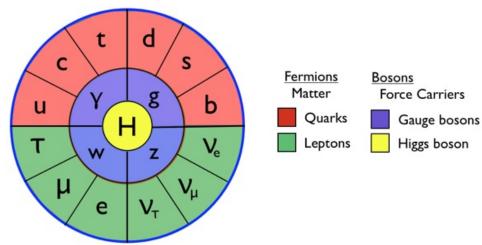
Looking Beyond the Standard Model at the EIC

Hooman Davoudiasl

HET Group, Brookhaven National Laboratory


Electromagnetic Interactions with Nucleons and Nuclei (EINN 2025)


October 28-November 1, 2025, Paphos, Cyprus

State of the art:

- Gravity: still General Relativity (> 100 years!)
- Subatomic phenomena: Standard Model

Particles of the Standard Model

- There are some, often modest and transient, anomalies

SM and GR: consistent with all "settled" tests

However, we are not done!

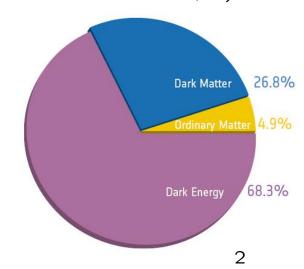
The Case for New Physics

- Despite great success of SM+GR, new physics is needed
- There is strong experimental evidence for this inference:

\Rightharpoonup Neutrino flavor oscillations $o m_ u eq 0$

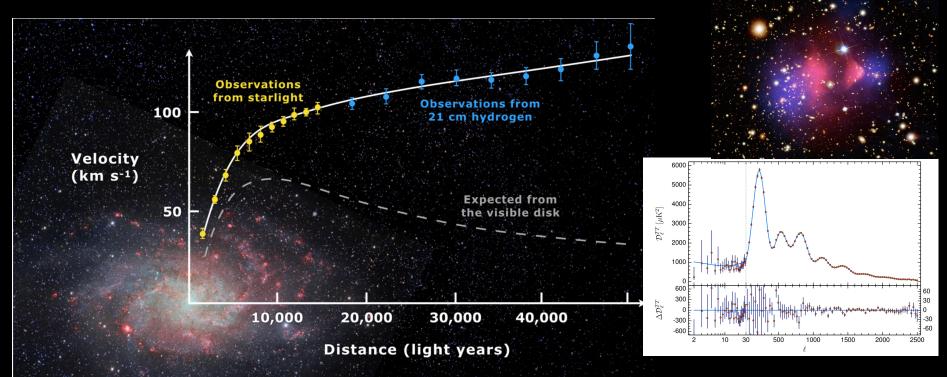
- Adding right-handed neutrinos (over a broad range of masses) can explain this
- Nature of m_{ν} unknown

★ Cosmology


- What is accelerating cosmic expansion? (dark energy; may be vacuum energy)
- What is holding galaxies together? (dark matter; may have its own sector)
- What caused ordinary matter asymmetry? (requires more CP violation,...)

95% of the Universe is unknown to us!

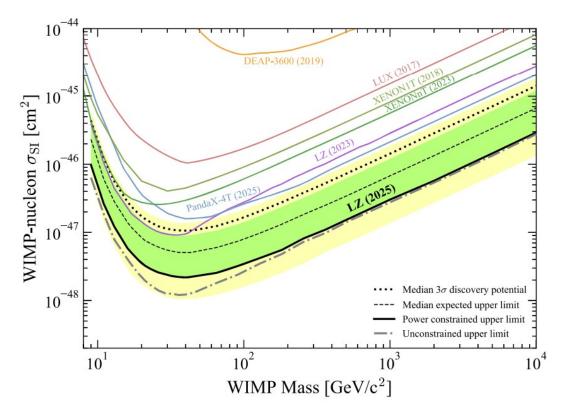
Planck


- There are also theoretical hints
- Why is gravity so weak?
- Why is CP violation so suppressed in QCD?

• . . .

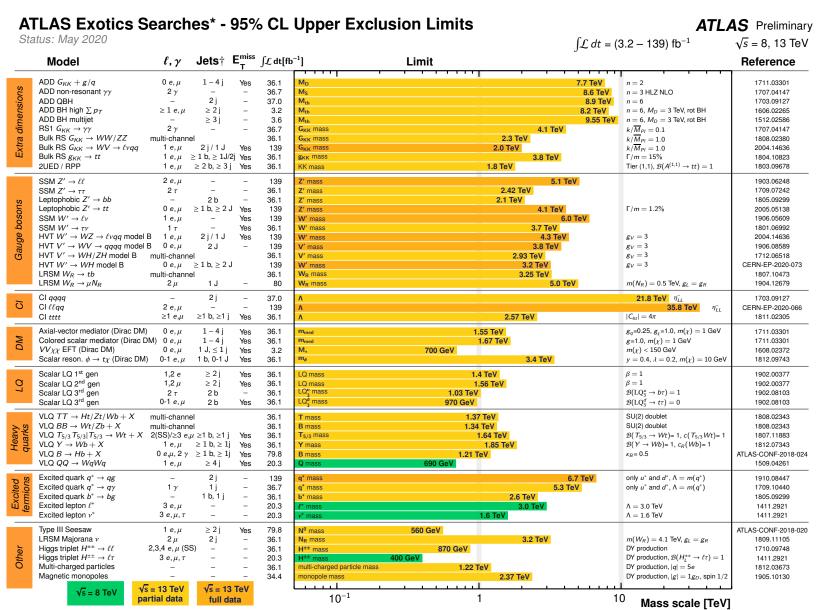
Dark matter (DM)

- Robust evidence from cosmology and astrophysics
- Rotation curves of galaxies, CMB, Bullet Cluster, ...


Mario De Leo, CC BY-SA 4.0, via Wikimedia Commons

Planck Collaboration; 1807.06209

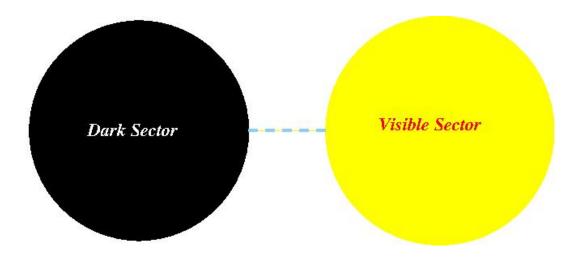
- $\bullet \sim 27\%$ of energy density
- Feeble interactions with atoms, photons
- Self-interactions not strong ($\sigma \lesssim 1$ barn)
- Not explained in SM


Weak Scale and DM

- Weakly interacting massive particles (WIMPs)
- Longtime search targets
- Motivation: physics of the Higgs potential
- $M_{\text{new}} \gtrsim M_H \approx 125$ GeV (weak scale); natural thermal relics

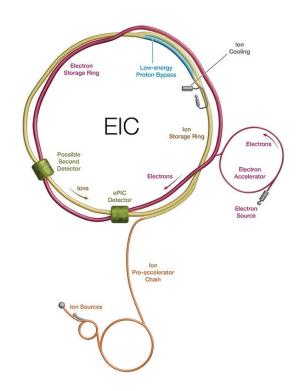
J. Aalbers et al., LUX-ZEPLIN (LZ) Collab., PRL 135 (2025) 1, 011802

• New physics not close to M_H (sample below, LHC Run 2)



^{*}Only a selection of the available mass limits on new states or phenomena is shown.

[†]Small-radius (large-radius) jets are denoted by the letter j (J).


Dark Sectors

- With lack of evidence for new physics near weak scale (M_H) , alternatives to WIMPs have been put forth in recent years
- DM could be light ($m \lesssim {\rm GeV}$), not associated with EW symmetry breaking (EWSB)
- DM may reside in a separate sector with its own forces
- Analogy with SM, the "visible sector"
- Visible and dark sectors connected by feeble interactions
- Mediators could be light, accessible to low energy experiments ($\sqrt{s} \lesssim 100$ GeV)

The Electron Ion Collider (EIC) 2103.05419, EIC Yellow Report

- EIC, to be built at BNL: next collider with relatively large \sqrt{s} , luminosity
- Up to $E_e=18$ GeV, 275 GeV proton beam
- Large nuclei (high Z): e.g. gold, lead
- 110 GeV per nucleon ion beam, e.g. Au
- Fixed target equivalent of \sim 4 TeV e-beam
- $\sim 100~{\rm fb^{-1}}/A$ possible
- New frontier in studying hadronic systems
- E.g. spin composition and parton distribution in nucleons,....
- Unique capability: $\sim 70\%$ polarized e and p beams

What can we learn about new physics at the EIC?*

* This talk: only a sample of possibilities; unfortunately many interesting works not covered

EIC and New Physics

- We will consider two large classes of beyond SM (BSM) physics:
 - (I) Heavy physics, indirect signals
 - (II) Light physics, perhaps from dark/hidden sectors, direct signals
- Class (I) signals generally require precision
 - Could be formulated in the language of SM effective field theory (SMEFT)
 - Beam polarization can be leveraged
- Class (II) physics could lead to direct detection of new particles
 - A variety of models
 - Access to new states around the GeV scale
 - Large atomic number ions can provide \mathbb{Z}^2 enhanced coherent cross sections

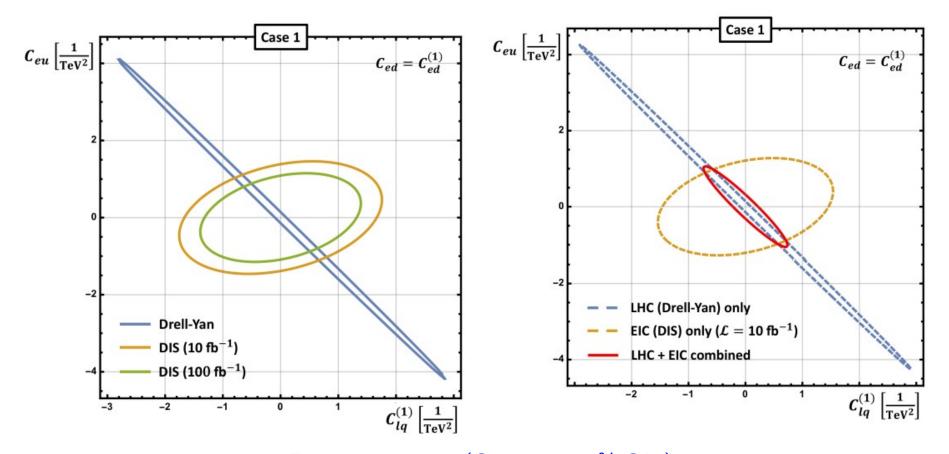
We will mostly focus on Class (II) in this talk.

Heavy New Physic and SMEFT

- Physics above weak scale, may be accessible to LHC, future colliders
- Integrate out heavy states: higher-dimension operators (point-like interactions)
- BSM encoded in SMEFT: $\Lambda > \langle H \rangle$ scale of new physics

$$\mathcal{L} = \mathcal{L}_{SM} + c_5^1 \frac{HLHL}{\Lambda} + \sum_i c_6^i \frac{O_i}{\Lambda^2} + \dots$$

• Wilson coefficients c_d^i ; operators O_i of dimension $d \geq 5$, made of SM fields

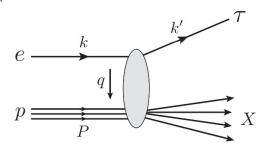

Example: SMEFT Constraints at LHC and EIC Boughezal, Petriello, Wiegand, 2004.00748

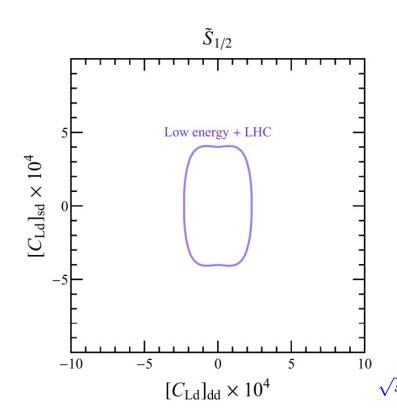
- 4-fermion operators: deep inelastic scattering (DIS) and Drell-Yan processes
- Drell-Yan: $pp \to l\bar{l} \ (q\bar{q} \to l\bar{l})$, LHC ; DIS: $lp \to l'X \ (lq \to l'q')$, EIC

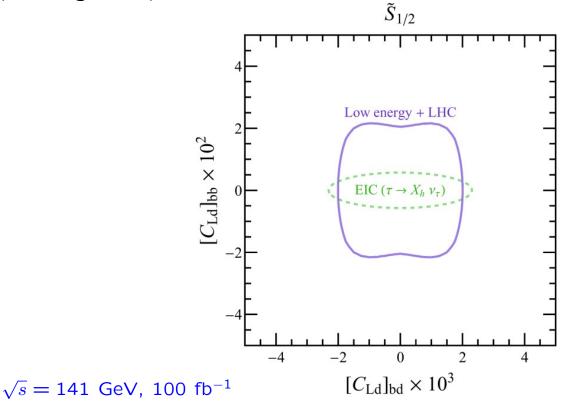
$$\begin{array}{c|ccc}
\mathcal{O}_{lq}^{(1)} & (\bar{l}\gamma^{\mu}l)(\bar{q}\gamma_{\mu}q) & \mathcal{O}_{lu} & (\bar{l}\gamma^{\mu}l)(\bar{u}\gamma_{\mu}u) \\
\mathcal{O}_{lq}^{(3)} & (\bar{l}\gamma^{\mu}\tau^{I}l)(\bar{q}\gamma_{\mu}\tau^{I}lq) & \mathcal{O}_{ld} & (\bar{l}\gamma^{\mu}l)(\bar{d}\gamma_{\mu}d) \\
\mathcal{O}_{eu} & (\bar{e}\gamma^{\mu}e)(\bar{u}\gamma_{\mu}u) & \mathcal{O}_{qe} & (\bar{q}\gamma^{\mu}q)(\bar{e}\gamma_{\mu}e) \\
\mathcal{O}_{ed} & (\bar{e}\gamma^{\mu}e)(\bar{d}\gamma_{\mu}d) & & & & \\
\end{array}$$

From 2004.00748

- \sim 20 fb $^{-1}$ of ATLAS data at $\sqrt{s}=$ 8 TeV (1606.01736)
- EIC: $\sqrt{s} \approx$ 140 GeV, 70% e,p polarization
- EIC integrated luminosity: 10 and 100 fb^{-1}
- DIS cross section: taking advantage of both e and p polarizations

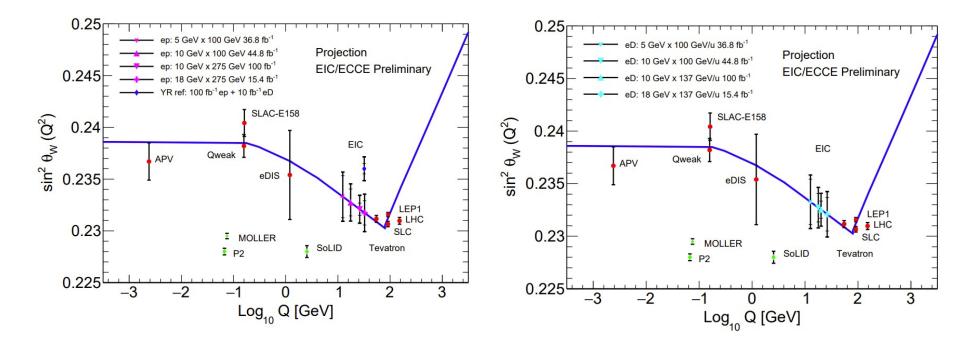

From 2004.00748 (Contours: 68% C.L.)


Charged Lepton Flavor Violation (LFV)


- Could be mediated by, e.g., t channel heavy (> 1 TeV) leptoquarks at EIC Early work by: Gonderinger, Ramsey-Musolf, 2010
 - Leptoquark: color charged; couples to quarks and lepto

Cirigliano, Fuyuto, Lee, Mereghetti, Yan, 2102.06176 (figures)

- Bounds on the induced dim-6 4-fermion operators
 - Bounds from LHC, low energy $(\tau, B, \text{ decays})$
 - Competitive EIC bounds, depending on operator



SM Electroweak Parameters; $\sin^2 \theta_W$

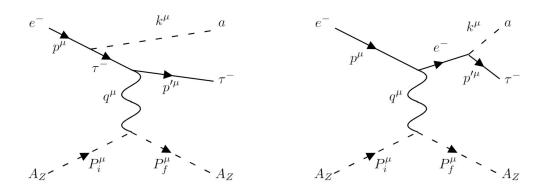
- Running $\sin^2 \theta_W(Q^2)$: fundamental parameter of SM electroweak sector
- Has been measured in atomic, fixed target, and Z-pole measurements
- ullet EIC offers access to intermediate Q^2 regime

From Boughezal et al., 2204.07557

Electron beam polarization: 80% with 1% uncertainty

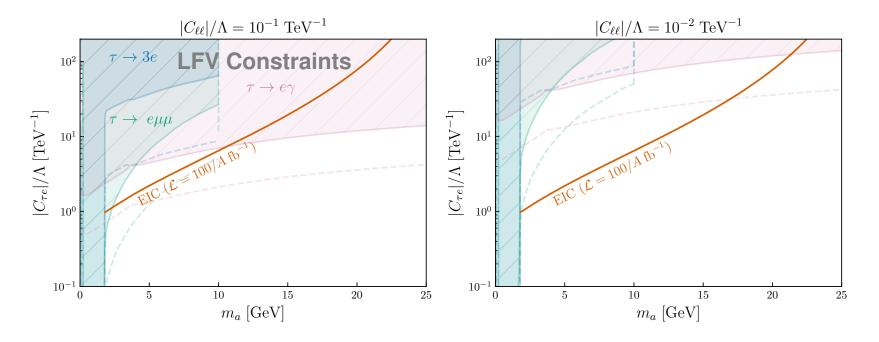
Direct Detection of New GeV Scale Physics

- Dark vector bosons
- Simplest case: dark $U(1)_d$, analogue of visible electromagnetism
- Dark photon (kinetic mixing) and dark Z (mass mixing)
 - Coupled to SM via a small mixing parameter
- Gauge bosons with tiny gauge couplings: e.g. $L_e L_\tau$,... (anomaly free)
- Dark scalars
- Axion-like particles (ALPs), analogues of QCD pions (pseudo-scalars)
 - Like pions, manifestations of spontaneously broken approximate global symmetries
 - QCD pions: broken chiral symmetry (approximate due to small quark masses)
 - ALPs can arise in a variety of models, naturally "light" (massless for exact symmetries)
- Could be a regular scalar, a "dark Higgs"


Charged LFV via ALPs at the EIC H.D., Marcarelli, Neil, 2112.04513

EFT for ALP interactions

$$\mathcal{L}_{\ell} = \frac{C_{\ell\ell'}}{\Lambda} a \sum_{\ell\ell'} \bar{\ell} \left(m^{-} \sin \theta_{\ell\ell'} - m^{+} \cos \theta_{\ell\ell'} \gamma_{5} \right) \ell' + \text{H.C.} \quad ; \quad m^{\pm} \equiv m_{\ell} \pm m_{\ell'}$$


See, e.g., Bauer, Neubert, Renner, Schnubel, Thamm, 2019; Cornella, Paradisi, Sumensari, 2019

- $\theta_{\ell\ell'}=0$: P even; maximal PV for $\theta_{\ell\ell'}=\pi/4,3\pi/4$ (only L, R coupling)
 - Probed via polarized e-beams
- Search for $e-\tau$ LFV in coherent $eA_Z \to \tau A_Z a$; $A_Z = \mathrm{Au}$; Z = 79

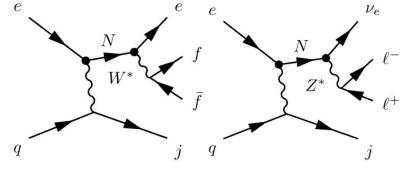
- Main decay channels: (i) $a \to \tau^- \tau^+$, (ii) $a \to \tau^- e^+$, (iii) $a \to \tau^+ e^-$
- Consider $a(\to e^+\tau^-)\tau^-$ final state; veto on e^-
- Three-pronged au decays; efficiency $\epsilon_{ au} pprox 1\%$ from Zhang et al., 2207.10261
 - Other decay modes and veto of ion break-up can enhance the search

- ullet Main background from au pairs through Bethe-Heitler process
- Estimated from τ pair production in rock by cosmic ray muons Bulmahn, Reno, 2008
- Good EIC prospects for probing charged LFV ALPs, especially with diagonal couplings suppressed
- Weakened au decay constraints
- Adding μ detection may improve the search (τ identification)

Solid line BABAR, dashed line Belle II with 50 ab⁻¹; tree-level $a\gamma\gamma$ ignored

Heavy Neutral Leptons at the EIC Batell, Ghosh, Han, Xie, 2210.09287

• HNLs arise in a variety of models; good example type I seesaw for $m_{\nu} \neq 0$


Coupling to SM: yHLN

H Higgs doublet L lepton doublet in SM; N HNL

After EWSB: N mixes with SM neutrinos

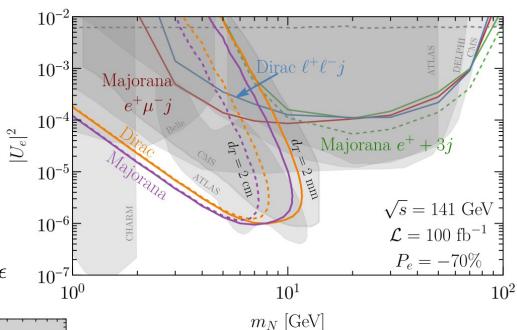
$$\rightarrow \ell W N$$
, $\nu_{\ell} Z N$ couplings $(\ell = e, \mu, \tau)$

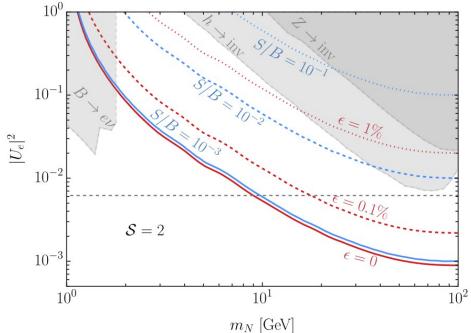
- Production in $e + p/A \rightarrow N + X$:
- Through charged current
- Depends on e-flavor mixing parameter U_e
- Simplified setup: one HNL and only $U_e \neq 0$

From 2210.09287

- Phenomenological approach: mass m_N and mixing U_e free parameters
- Both Dirac and Majorana N considered
- N decays: Prompt and displaced, as well as invisible (dark sector)

•
$$\sqrt{s}=$$
 141 GeV, $\mathcal{L}=$ 100 fb $^{-1}$, $P_e=$ 70%

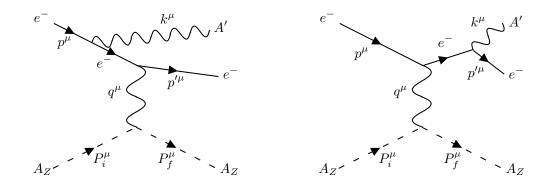

Figures from 2210.09287


- Unpolarized PDFs, proton beam

- Visible decays:
- prompt (95% CL)
- displaced (5 events)
- Invisible decays: mono-jet

$$-S = S/\sqrt{B + (\epsilon B)^2}$$

- fractional systematic uncertainty ϵ



Displaced Hidden Vectors at the EIC

H.D., Marcarelli, Neil, 2307.00102

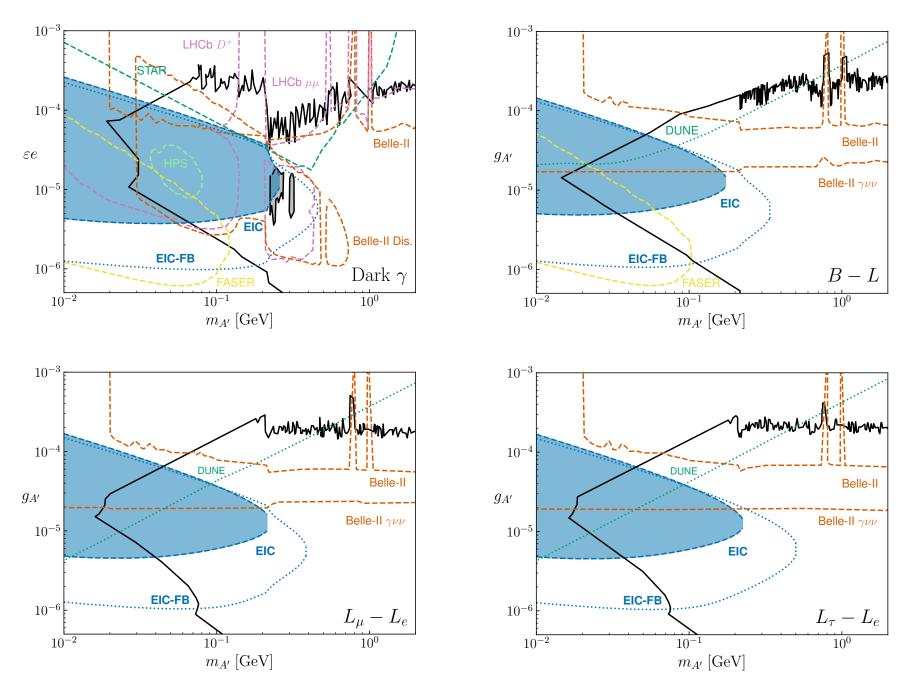
- Coherent production from gold ion, Z = 79: $eA_Z \rightarrow eA_ZA'$ $(Z_d \leftrightarrow A')$
- $q^2 \lesssim \mathcal{O}(100 \text{ MeV})$
- ullet Large Z^2 enhancement of electromagnetic scattering

- Probability of detection of displaced decay: $P_{\rm disp} = e^{-d_{\rm min}/(\gamma_k v_k \tau)} e^{-d_{\rm max}/(\gamma_k v_k \tau)}$
- ullet d_{min} from detector resolution, d_{max} from geometry γ_k boost, v_k velocity, au lifetime
- Kinematic variables: laboratory frame
- Signal cross section: $\sigma_{\text{sig}}(g_{A'}) = \int P_{\text{disp}} \frac{d\sigma}{d\gamma_k d\eta_k} d\gamma_k d\eta_k \mathcal{B}(A' \to e^+e^-)$
- We take $E_e = 18$ GeV and $E_A = 110$ GeV/nucleon

Signal Selection:

- Assumed EIC Comprehensive Chromodynamics Experiment (ECCE) detector arXiv:2209.02580 [physics.ins-det]
- Now the ePIC (Electron-Proton/Ion Collider) detector, similar capabilities
- ullet Signal requires both e^+ and e^- from vector decay

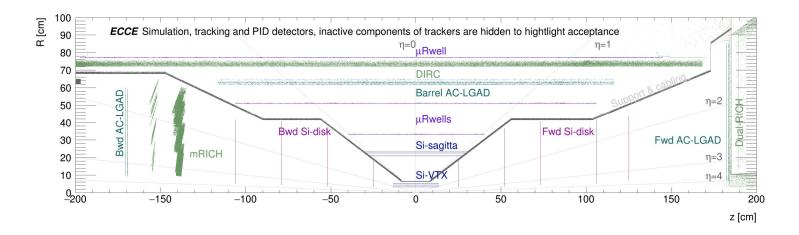
 $\mu^+\mu^-$ also available for much of the parameter space


- We estimated: $d_{\min} \approx \gamma_k(\mathsf{DCA}_{2\mathsf{D}}^{\min})/(v_k \cos \theta_k^{\mathsf{lab}})$
- \bullet For pions: DCA $_{2D}^{min} < 100~\mu m$
- $\Rightarrow d_{\text{min}} \gg 0.1 \text{ mm}, d_{\text{max}} = 1 \text{ m}$

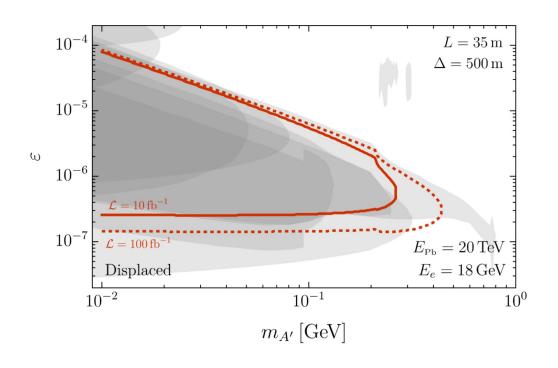
DCA: distance of closest approach

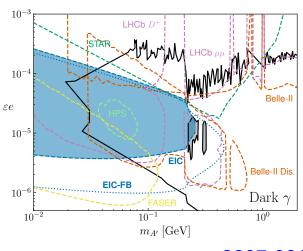
- ECCE tracking: $|\eta| < 3.5$
- We also considered a detector at z = -5 m

Further details of the current detector design may push this farther back; also a possibility for second detector


- Assumed: $DCA_{2D}^{min} = 200 \,\mu\text{m}$, $d_{max} = 5 \,\text{m}$
- Covering far backwards (FB): $-6 < \eta < -4$

From H.D., Marcarelli, Neil, 2307.00102


Background considerations


- We assumed zero background
- Photon conversion: sparse backwards detector systems Adkins et al., 2209.02580
- Si disks separated by \sim 25 cm: cut out thin regions from signal

- ullet Misidentified pions as electrons: electron end cap fake rate $\sim 10^{-4}$
- Requiring both e^+ and e^-
- Additional signals if muon detectors added
- Losing signal events down the beam pipe: our estimate \sim (20-30) %, manageable
- These are (theorist) projections, using rough approximations
- Detailed and more realistic simulations required for definitive results

Also Balkin et al., 2310.08827, JHEP 02 (2024) 123

ullet eN
ightarrow eNA', coherent scattering from Pb

2307.00102

- Dark photon decay $A' \to \mu^+ \mu^-$ (to reduce background)
- Decay volume $\Delta=500$ m long (shielded) at L=35 m from interaction point
- Does not exceed current bounds
 - Our work assumed much smaller (\gtrsim mm) displacement
 - Worthwhile to determine efficiency of our suggested background suppression

- Work on ALP-photon coupling using coherent scattering at the EIC
- Z^2 enhanced From Balkin et al., 2310.08827

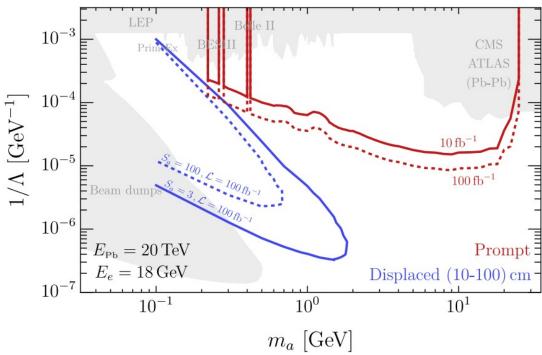


Figure 7: The EIC projections from the ALP searches with $E_e = 18 \,\mathrm{GeV}$ and $E_{\mathrm{Pb}} = 20 \,\mathrm{TeV}$. The solid (dashed) red lines show the prompt search results with 10 (100) fb⁻¹ integrated luminosity. The solid (dashed) blue lines show the displaced search results with $S_a = 3$ ($S_a = 100$) with 100 fb⁻¹ integrated luminosity, assuming the diphoton spatial resolution $L_R = 10 \,\mathrm{cm}$ and the distance between the interaction point and the EM calorimeter $L_{\mathrm{EM}} = 100 \,\mathrm{cm}$.

See also Liu, Yan, 2112.02477, Chin.Phys.C 47 (2023) 4, 043113 (e, p initial states)

 p_N

Discovering Invisible Dark Bosons at the EIC

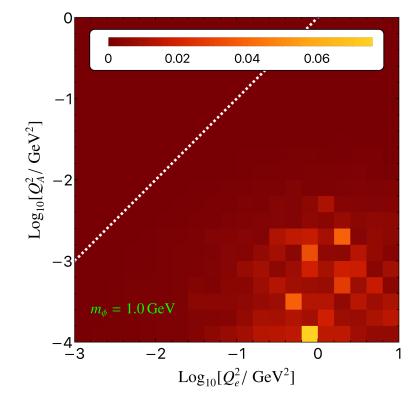
H.D., Liu, 2505.08871

- ullet Consider dark bosons in \sim 10 MeV-10 GeV mass regime
- Weakly coupled to electrons, $\mathcal{O}(1)$ invisible branching fraction:
 - B-L, L_e-L_i with $i=\mu,\tau$, dark Z, ...
 - Significant invisible branching fraction from ν or "dark sector" final states
- Basic models

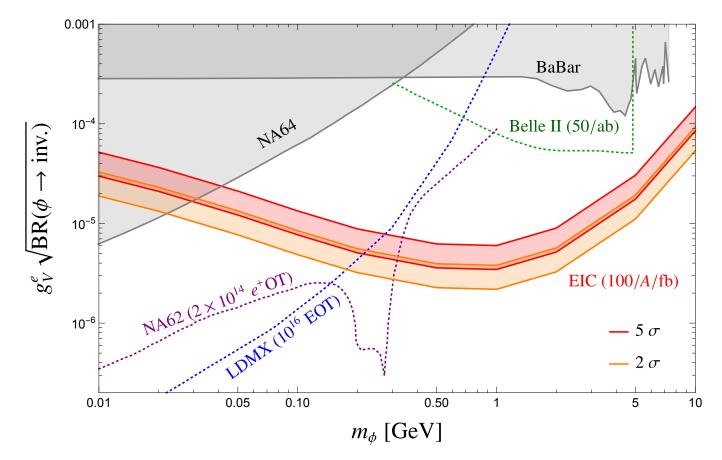
$$\mathcal{L}_S = g_S^e \phi \bar{e} e + g_S^{\chi} \phi \bar{\chi} \chi$$

$$\mathcal{L}_{V} = g_{V}^{e} \phi_{\mu} \bar{e} \gamma^{\mu} e + g_{V}^{\chi} \phi_{\mu} \bar{\chi} \gamma^{\mu} \chi$$

- ϕ (ϕ_{μ}) a scalar (vector)
- χ : ν or dark fermion; $\phi \to \bar{\chi}\chi$ allowed on-shell
- We consider coherent e-Au scattering
- $E_e = 18$ GeV, $E_A = 100$ GeV per nucleon


Kinematics

- ullet Emitted ϕ takes most of the electron beam energy
- ullet Momentum transfer Q^2 mostly on the electron side
- ullet SM background marked by soft and similar Q^2 from either beam



- Red curves: after cuts
- We focus on the vector case

- A main background: coherent $e^-A \rightarrow e^-A \gamma$, with γ missed
- Cuts: $|\eta_e| <$ 3.5, $p_T^e >$ 1.2 GeV, $E_e <$ 10 GeV, $Q_e^2 >$ 4 GeV 2

- E_e cut o background E_γ mostly > 5 GeV, Inefficiency $10^{-6} \le \epsilon \le 10^{-4}$
 - for $|\eta_{\gamma}| <$ 3.5 (assumed missed otherwise) Maeda *et al.*, 1412.6880; Fry *et al.*, 2501.14827
 - Background: $70 \times \epsilon/10^{-4}$ pb
- Taking similar ϵ for hard jets, DIS background $e^-A \to e^-Xj$ also suppressed
 - Jet central ($|\eta_j|$ < 3.5), E_j > 8 GeV
 - Background $\lesssim Z imes 0.2 imes \epsilon/10^{-4}$ pb (smaller than bremsstrahlung, but not negligible)
 - Additional leverage from Zero Degree Calorimeter to veto incoherent scattering

Concluding Remarks

- Open fundamental questions strongly imply the need for new physics
- There are currently no solid hints about the nature and scale of new particles
- Longstanding theory arguments challenged, no new consensus has emerged
 - Motivates looking at a wide range of testable ideas
 - Any new facility that can help along should be leveraged
- The EIC can be a tool to probe new phenomena
 - Imprints of high scale phenomena may leave a trace (encoded via EFTs)
 - Low mass dark sectors
- We only sampled some ideas for BSM at EIC; good to have more
- Further studies are warranted and can provide
 - Optimized scientific impact for the EIC
 - Science case for extensions, e.g. a second detector
 - A nexus of collaboration for the high energy and nuclear physics communities