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Motivation

We have an incredible theory to describe 34 of what
is observable with (almost) no flaws
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Still, some shameful stains persist...

Probably the most unpleasant ones are the strong CP problem
and dark matter

Let’s focus on the first one for a second. 8 # 0 naturally gives
rise to a relatively large neutron Electric Dipole Moment.

Meanwhile: 108 , , , | | , ,
10°® o ORNL, Harvard
As if the only contribution ¢ - ® MIT, BNL
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The idea is very simple (to “clean up” the strong CP-problem):

1) Postulate a new U(1) symmetry (Peccei-Quinn)
2) Spontaneously break it at some scale 4
3) The (pseudo)-Goldstone boson cancelling 0 is called axion:

b

a

A Gy GY,

Ltotal - ['SM +
The exact mechanism of axion-gluon coupling is model-

dependent, but typically through quark triangle or
mixing with pion

Two “benchmark” models (along with their variations) are
widely used:

Steven Weinberg Frank Wilczek

In both models scale A is the q
only dimensonfull parameter, , .
mg X A, coupling to SM ’

particles < 1/41
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KSVZ: heavy, electrically neutral quarks carrying PQ charge

DFSZ: SM quarks carry PQ charge, additional Higgs doublet
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Axion-Like Particles

Dark
Beyond QCD-motivated benchmark models = Roi Energy
Axion-Like Particles - broader theory framework! o —
KLOE » ses——
BESIII - —p—
. . SND20 = 1
Mass and coupling are generally independent CMD3 il
T H—+—O—F—H
Lattice HVP :\\";.',, 1 k *—— Neutrinos Dark
Relevant to variety of problems: T 0% &%

FNAL-25
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1) Initial motivation is to cancel QCD 0 , , , " e &
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. 1(]1“ X (aﬁf\l _ a;’lxp) l%]BILLIONYEARSAGO
2) Some are potentially dark matter ’
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6) General feature Of Stl'iﬂg t]]EOI?'BS QCD axion ‘S.te.nle u‘ I WIMP H (_Zomposme/Macroscopm _DM .
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7) | Ultralight scalar field | Gravitino |
| Dark photon | Light DM |
Many Fhanks to_ Fred Jegerlehner, Vladlmlr Pasc.alutsa and_ Slmo.ne Wave-like Particle-like L
Bacchio for their extremely comprehensive reviews on this subject
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Where Do We Look for ALPs

Chandra

Dark matter
decay

\
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Axion-photon coupling [GeV 1]

yeV zeV aeV feV peV neV peV meV eV  keV MeV GeV TeV
Axion mass [eV]

Strong astrophysical bounds (model-independence from low to moderate)
in the low-mass region are in contrast with the high-mass region
QCD axion stands for original KSVZ/DFSZ models

Credits for the figure to https://cajohare.github.io/
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Where Do We Look for ALPs

A “striking” gap - few hundred MeV to GeV mass

This domain almost entirely relies on e*e™ colliders.
A lot of attention during the past few years!
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Existing Constraints

Our objective is to systematically search for ALP signals y
at e*e™ colliders. Generic CP-even coupling to fermions: y

b - - - S
gaff hy> g-\‘\/\-’-}JJ
L=— d,a - Yy yH + . a
2m; ¥ e / " W o

In the domain of interest QCD couplings typically lead to
severely constrained flavour-changing processes - they can
only be subdominant M. Dolan et al. JHEP 171 (2015)

Lepton coupling is much less constrained and must be taken

into account, but off-diagonal couplings seem to be ruled out
M. Bauer et al. JHEP 44 (2017)
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Existing Constraints

Our objective is to systematically search for ALP signals y
at e*e™ colliders. Generic CP-even coupling to fermions: ,

b > — - S
gaff Dy > ?\-\’\I\J’f’)
L=— d,a - Yy yH + . a
2m; ¥ e / o W 7

In the domain of interest QCD couplings typically lead to
severely constrained flavour-changing processes - they can
only be subdominant M. Dolan et al. JHEP 171 (2015)

aF,,Z* \

cc-9ur,p pu  Jarz
Lepton coupling is much less constrained and must be taken

into account, but off-diagonal couplings seem to be ruled out
M. Bauer et al. JHEP 44 (2017)

Lowest-order coupling to Electroweak sector:

_ 2 . 2
Jayy = Japp €08~ Oy, + goyy SIN” 6y,

Yayz = (Gaww — Gapp) Sin 6y, cos 6, /

_ YaBB suy Jaww =
L=- 4 aB,, B* — aw ,, W* 0,, - Weinberg angle. Flavour constraints also require
~ E. Izaguirre et al.
wv — cafuv K
Where T €77 Tap Jaww S5 GaBB b oo Rev. Lett. 118 (2017)
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Constraints from Lepton Magnetic Moments

Yukawa type Barr-Zee type

Other vital constraints are from lepton dipole moments:
tight bounds on CP-odd couplings

Lepton universality = derivative coupling (Goldstone
theorem) = enhanced ALP-muon coupling

my,

auu = m, Yaee

= resolving (g — 2), without spoiling (g — 2),
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Constraints from Lepton Magnetic Moments

Barr-Zee type

Yukawa type

Other vital constraints are from lepton dipole moments:

tight bounds on CP-odd couplings

Lepton universality = derivative coupling (Goldstone
theorem) = enhanced ALP-muon coupling

my,

auu = m, Yaee

= resolving (g — 2), without spoiling (g — 2),
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The left (Yukawa-like) diagram from leptonic coupling
gives a negative contribution to the (g — 2);:

(1-2)°

z+mimz*(1—z)

1
2 2
Gau my f
2

Aal = —
: 8m?mg
0

2dz<0

The right diagram is proportional to g,;; g4y, and its
positive contribution can dominate:

Jaumy
812

AGB? 4sin?0,, — 1 >
BZ ~

4 sin 6,, cos

A requires UV-complete theory. However, large A means
bigger effects and more stringent bounds
We set A = 1 TeV - conservative estimate

W.]. Marciano et al., Phys. Rev. D 94 (2016)
A. Pustyntsev and M. Vanderhaeghen, Phys. Rev. D 110 (2024)
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Searches at e e~ Colliders

* The width I' is much smaller than the experimental
resolution =

narrow width approximation shrinks the phase
space

* We look for a narrow spike in m,,, or a recoil
photon

 Different scaling of two couplings = the left
diagram is less important when mZ « s

Aleksandr Pustyntsev JGU Mainz
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Searches at e e~ Colliders

* The width I' is much smaller than the experimental More contributions # better constraints, they are
resolution = weakened by the branching ratio!
narrow width approximation shrinks the phase
space At high energies resonant ALP-production at Z-pole
becomes possible: 5
* We look for a narrow spike in m,,, or a recoil _ ©
1. Orders-of-magnitude
photon
enhancement over other
contributions 7

 Different scaling of two couplings = the left
diagram is less important when mZ « s

2. Huge statistics from LEP
et Y

Aleksandr Pustyntsev JGU Mainz EINN 2025 8/18




Searches at Vector Meson Decays

BESIII applies a different search strategy, relying on
J/Y¥ — 3y decays, which produces a comparable signal
strength to the non-resonant searches:

L. Merlo et al. JHEP 91 (2019)

Advantages:

1) Lepton couplings enter only via branching ratio

*BESIII, Phys. Lett. B 838 (2022),

2) Easily scalable — BESIII dataset keeps growing*, 10
BESIII, Phys. Rev. D 110(2024)

billion decays in 2024 vs. 2.7 billion decays in 2022

Aleksandr Pustyntsev JGU Mainz
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Searches at Vector Meson Decays

BESIII applies a different search strategy, relying on
J/Y¥ — 3y decays, which produces a comparable signal
strength to the non-resonant searches:

L. Merlo et al. JHEP 91 (2019)

» This type of search could exploit the large luminosity

collected at /s = my(4s) at Belle Il and potentially
provide one of most stringent limit of a photon
coupling

2) Easily scalable — BESIII dataset keeps growing*, 10 “BESIIL, Phys. Lett. B 838 (2022),
s : . . BESIII, Phys. Rev. D 110(2024)
billion decays in 2024 vs. 2.7 billion decays in 2022

Advantages:

1) Lepton couplings enter only via branching ratio
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Background Summary

« High-mass ALPs decay into di-photon pair with a
wide opening angle - clear signal, dominant
background - QED 3-photon annihilation
e - VYV U U v The 95% c.l. Signal over
background ratio

OALP 2

S v ep /L - 0gep

Reach[ggy,] x VL - huge luminosity L to get a signal and
an optimized event selection procedure

* A small portion of background also arises from
ete™ » eTey, etc

* The search is additionaly complicated by peaking
backgrounds from pseudoscalar mesons m?, 7, ...

Aleksandr Pustyntsev JGU Mainz
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Background Summary

* Low-mass ALPs are highly boosted, the decay
photons merge into one - very challenging. The
main obstacle in accessing the low-mass ALP region

« High-mass ALPs decay into di-photon pair with a
wide opening angle - clear signal, dominant
background - QED 3-photon annihilation

10!

EER

¢ - VeV W i The 95% c.l. Signal over 102 248
background ratio

Belle II

The strongest
limit in this region
so far is from LEP
constraints for

Z -2y

OALP 2

T
> 104
0] .
ot > v QED /L - 0gep 3
e
?\
S

Reach[ggy,] x VL - huge luminosity L to get a signal and
an optimized event selection procedure

* A small portion of background also arises from

ete™ - e+e_)/, etc. 106 107 08100 100
mg [eV]

Requires further technical advancements or a
complementary experiments in the low-energy region

EINN 2025 10/18
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* The search is additionaly complicated by peaking
backgrounds from pseudoscalar mesons m?, 7, ...
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Results for Pseudoscalar — before 2025 (g — 2),

Projection onto the (mg, g4y, ) plane
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Despite a significant improvement in the near future, still no full access (g — 2) ,-relevant parameter space

BESIII and Belle II access to the lower mass region is limited by the spatial resolution of a di-photon pair
Lepton universality is assumed for collider bounds and (g — 2),
LEP data at Z-pole are still highly competitive

Aleksandr Pustyntsev

A. Pustyntsev and M. Vanderhaeghen,
Phys. Rev. D 110 (2024)
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Results for Pseudoscalar — after 2025 (g — 2),

Projection onto the (mg, g,4,, ) plane

Say = 1073
1072

Projection onto the (g g 9ayy) plane

m, = 0.4 GeV

m, = 5 GeV
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S
S
10_4;
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arXiv:2506.17750
(accepted for

1073
§ L
S0 .
10_4\—/
— Belle Il 2018 -
.-« Belle Il future — BESIII . — Belle II 2018 — BESIII
LEP (pyp) —_ (g-2), - --- Belle Il future —_ (g—2),
— LEP (3y) — (8-2), 10~ LEP (77) . g
107 e —r 105 10~ 1073 102 1071
m, [GeV'] 8auu
1. If (g — 2), discrepancy is solved within the SM = one of the most stringent constraints on the BSM parameter space
2. No specific model assumption to derive these bounds
3. Error Aa = 63.7 x 107! is dominated by the theory uncertainity
4. Similar strength constraints can be found for a scalar particle

Aleksandr Pustyntsev

JGU Mainz

publication in PRD)
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A Note on Dark Photons

—_ il -2 N
Dark photons, mediating gauge forces within the dark 10 : iR
sector, are another commonly discussed BSM scenario i
e 0
e
_ : : 1
— . A M. Fabbrichesi et al., : 5 s
L=ce-pyA)yY arXiv:2005.01515 PR
1 -3 BRI o AT
agzmlz 22(1 — Z) 10 "":":Ij.‘.":-: 'n:;' X !
a= 5 5 dz >0 -
T mizz +m5;(1 —2z) o
° v L -es NA4S
el
EEE LHCb
€ is a mixing parameter between dark and SM photons APEX
—4
0= < ... KLOE
Pseudovectors are also of interest in many models N - Al — (g-2), vector
(Aa enhanced by the axial anomaly) 4 ==+ BaBar (g=2). vector
- BESIII — (g-2), axial vector
_ T 5 , == NAG4 — (g —2) axial vector
L=ce Py (yAYY s, TET
2 10 10 1 10
m
2 2 1z(1-2)(4—2)+2—L28 my [GeV]
ae“m; mj
Aa = — 22 > dz <0 . . .
T mpz + mj (1 — Z) While beam dump and collider bounds often rely on specific
0 model assumptions, (g — 2),; constraints are assupmtion-free
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BSM Searches at MESA

MESA beam dump setup is perfect for MAInz G e ek
_ p pisp Target EXperiment please see the talk of
scanning the low-energy range for the New MAGIX A Sebastian Stengel

Physics:

1) VeI‘y hlgh intenSity Mainz Energy-

2) State-of-the-art precision = OMELY _
Superconducting
3) Uncertainties are under control Accelerator
Ubiquitous way to probe various quantum
numbers, an insight < 100 MeV mass range DarkMESA
L 1 AR P > K D can be (pseudo)scalar,
(pseudo)vector, ...
I I I
= + Weak interacting = stable =
b g — - — > - tiny decay width, bump search
) , ’,frr in the invariant mass
! P o p P distribution
Timelike production Spacelike production




BSM Searches at MESA

(Pseudo-)scalar, B at 30° out-of-plane (Pseudo-)vector, B at 30° out-of-plane

Spectrometers A and B are positioned 1 !
to minimize the background, but...
0.100- 1 0.100
1) Bottlenecked by luminosity (factor
. . . |
of two improvement = sixteen times woto. |\ . ootol
more collected data) . ~ :
& ~ _ // w
. . 0.001 B - 0.001)
2) Out-of-plane kinematics for best — v oo B = 27pe
signal-over-background ratio / A =90°, B =270° A =900, B = 3450
1074 o A =90° B =345° | 107 — BaBar ]
3) Challenging to improve upon the — BaBar — (& = 2),, vector
. . — (g — 2), — (g - 2),, axial vector
BaBar bounds on missing energy and 105 . . ‘ . 105l ‘ | ‘ ‘
20 40 60 80 100 20 40 60 80 100
(.g — z)e my [MeV] my [MeV]
{
i v - ko > K
100 days of beam time for all
b I b projections (preliminary results)
= +
b ki > > — > - 181T3 target (Z = 73), similar to A1l
,rr/ analysis Phys. Rev. Lett. 112 (2014)
! v P o p i

Aleksandr Pustyntsev JGU Mainz
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Searches in Bhabha Scattering

JLab is to launch the high-energy polarized positron beam e e~ e~ e~
* Scattering against atomic electrons, /s ~ 80 MeV
« BSM particles can be exchanged I, " " .

* Allows for much more efficient and less luminosity-dependent strategy via measuring spin asymmetries

Aleksandr Pustyntsev JGU Mainz
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Searches in Bhabha Scattering

JLab is to launch the high-energy polarized positron beam e e~ e~ e~

Scattering against atomic electrons, /s ~ 80 MeV

BSM particles can be exchanged - " 4 N

Allows for much more efficient and less luminosity-dependent strategy via measuring spin asymmetries

Utilizing C, P and T invariance, we parameterize:

Only 5 independent amplitudes
M = z Ai(S t) . 17'1} v-ul; u’ entering this process!
i=SPV,AT

]:'9:1[, Fp=]/5, I"szﬂ, 1'1'4:]/5]/11, FT:O-MV

A Single spin asymmetry: No contribution from

/ a pseudoscalar (?)

o1 — 0} stu
B, = = Im[(Ag — Ay)(Ay + 24;
= T = (s — A + 247)




Searches in Bhabha Scattering

Master student project:
Muthubharathi Subbulakshmi

o1 — 0y stu

By,

= = [ Ac — A (A5 + 2475
o+ 0,  4mso, m[( S A)( 1 T)]

Requires at least full one-loop calculation

e e
s
e’ et
e” - - - e”
+ others
et - - - ol

Aleksandr Pustyntsev
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- Scalar
40 Vector
- Axial Vector
20
S SE———
\ /
: /
/
\ /’
N
-40
0 50 100 150
6 [deg]
Jsee =107%,  £=10"% /s =78.3 MeV

QED contribution: C. Fronsdal and
B. Jaksi¢, Phys. Rev. 121,916 (1961)
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Conclusions

* Axions and ALPs in the MeV-GeV mass range are viable
BSM candidates, with current constraints leaving open a
lot of parameter space

* Further improvements anticipated from both theory and
experiment perspectives

* Measurements of (g — 2); remains a key benchmark for
any potential BSM scenario

A lot of possible directions for further analyses: | \‘
« BSM search at MESA from e~Z — e~ Ze~e™: ubiquitous way to probe mediators with various quantum numbers

« JLab polarized positrons program - setting tighter bounds via beam asymmetry measurements

Aleksandr Pustyntsev JGU Mainz
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4 Photon-photon interactions in gy
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Exploiting the discovery potential from MESA to the LHC | Niked

EINN 2025

JG’U October 28, 2025

Aleksandr Pustyntsev JGU Mainz



Cancellation vs Enahcement

ms =1 GeV

m; =1 GeV
1 - T T T T 1 L
0.01} 0.01"
2 2
O, O,
S .n-d S ol
3 10 & 10
1076+ 1076
10-¢ | 107 0.01 | 1 | 10-¢
Gapy

Red refers to gx,,9xyy > 0 scenario, blue stands for to gx,,9x,, > 0. The visible thin line represents the

Aleksandr Pustyntsev

10~ | 0.01
Gspp

situation where the two contributions cancel each other out. Cancellation provides weaker constraints

JGU Mainz
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Why So Heavy?

MeV-GeV mass range is typically not associated with axions, D)l < il (oo i g s ol

but this is just a question of a clever model-building: Yasunori Nomura and Jesse Thaler
Berkeley Center for Theoretical Physics, University of Cualifornia, Berkeley, CA 94720 and

Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

1) A Viable Strong CP problem Solution iS not Only pOSSible Motivated by the galactic positron excess seen by PAMELA and ATIC/PPB-BETS, we propose

that dark matter is a TeV-scale particle that annihilates into a pseudoscalar “axion.” The positron
Wlth MeV mass axion excess and the absence of an anti-proton or gamma ray excess constrain the axion mass and branching
ratios. In the simplest realization, the axion is associated with a Peccei-Quinn symmetry, in which

2) . But alSO can Simultaneously generate enough baryon case it has a mass around 360 — 800 MeV and decays into muons. We present a simple and predictive

supersymmetric model implementing this scenario, where both the Higgsino and dark matter obtain
asymmetry masses from the same source of TeV-scale spontaneous symmetry breaking.

3) Just a right amount of dark matter is included

4) Interesting interplays with Higgs physics for even heavier
ALPS Daniele S. M. Alvesb?3* and Neal Weiner!

A viable QCD axion in the MeV mass range

ICenter for Cosmology and Particle Physics,

Department of Physics, New York University, New York, NY 10003
ABSTRACT: We demonstrate that the observed cosmological excess of matter over anti- ?Department of Physics, Princeton University, Princeton, NJ 08544
matter may originate from a heavy QCD axion that solves the strong CP problem but has ?Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
a mass much larger than that given by the Standard Model QCD strong dynamics. We (Dated: September 15, 2020)
investigate a rotation of the heavy QCD axion in field space, which is transferred into a
baryon asymmetry through weak and strong sphaleron processes. This provides a strong
cosmological motivation for heavy QCD axions, which are of high experimental interest. “Give me an axion, andI'll find a
The viable parameter space has an axion mass m, between 1 MeV and 10 GeV and a decay model forit”
constant f, < 10° GeV, which can be probed by accelerator-based direct axion searches
and observations of the cosmic microwave background.
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Loop-Induced Effects

Y
e 0 This has important implications for the physics of ALPs
5 in hot and dense environments, such as supernovae
a 7
Vs 0 ————
Ny ! ! Ate" e collider energies the effect, however, becomes
negligible - the correction is too small
1

et v \[s =10.58 GeV

...Nevertheless, it

10—3,
i reminds us that we

An important observation is that couplings at 1 and 2 are — RelF(0, 0)] o
p only have sensitivity
: . . . Re[F (0, 5)]

essentially different couplings, as the correction to g4, 104 N to effective

. . . =Im[F(0, 5)] 1 !

induced by the electron triangle is Related to the s couplings

Passarino-Veltman 107
1/m, enhancement

ag triangle function C, _ _
8Gayy = —— 1+ F(q%,43)] p 0 0gayy Is also
mm, 107 meaningless unless
\ the tree-level gg,,
Is significantly different depending on whether a 1077 coupling is fixed
Primakoff-like process occurs, involving an off-shell
photon, g = 0, g5 # 0, or the ALP decays into a photon 107 ' , A-Pustyntsevand
yd1 y 42 ) . . 1 10 M. Vanderhaeghen,
pair with g2 = g% = 0 Fé;&l‘ffé-of;ezr)rggg et. al m, [GeV) EP] C 84, 546 (2024)
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Photon Fusion

. / Another potential search channel is photon fusion:
-
gl
1) ALPs production at rest is enhanced - two photons are back-to-back
_a 2) Most photons end up in the electromagnetic calorimeter
3) And, most importantly, at low m, it dominates over the other ALP
N production contributions Oeeal Oyas ‘j; = 3.77 GeV
- h W.]. Marciano et al., Phys. Rev. D 20;
€ 94 (2016) _
18
Despite all of that, not investigated so far - extremely complicated event _
selection and large backgrounds, but at the same time very promising 16
14
Same challenges as before: M. Dolan et al. JHEP 94 (2017) -
12
1) Charged tracks reconstruction - to be improved, multiple challenges
2) Irreducible peaking backgrounds from m, production 10
Addressing these issues could significantly tighten bounds on ALP-photon 8
coupling in the region where the existing constraints are especially loose mg, [GeV]
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