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➢ Rapid growth of AI tools across science, including astro, nuclear & particle physics.

➢Common uses in data-driven applications:

✓ data analysis & classification (e.g. LHC event tagging, astro object classification, anomaly detection)                                                           

✓ simulation surrogates (e.g. Lattice QCD interpolators, fast detector sims, cosmo emulators)

✓ parameter inference & fitting (e.g. parton distribution functions, photometry)

Sokratis Trifinopoulos 

AI for Theoretical Physics?

✘ BUT, limited adoption in formal theory when analytic results are available.
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➢Microscopic origin: strong force + electromagnetism ; yet only macroscopic 

observables accessible (e.g. masses, radii, decay rates, cross sections).

➢Theory challenge: due to the complexity of the nuclear force & quantum many-body 

nature of the nucleus, ab initio calculations are very challenging

➢Phenomenological models: simple yet effective and computationally inexpensive; 

an “approximate ground truth”.

Sokratis Trifinopoulos 

The case of low-energy Nuclear Physics

✓ ideal environment for AI interpretability studies!

Precision is still required: there are open problems in physics 

that could be resolved if we had more precise nuclear input!
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Physics for AI & AI for Physics
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Predictions
large set of nuclear observables Multi-Task Learning

achieve world-leading precision Large-scale Optimization

Reliability understand the AI causative mechanisms Latent Space Topography

Interdisciplinary 
Research

address open problems in particle,   
nuclear & astrophysics

Domain Knowledge
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Towards a general-purpose AI for Nuclear Physics

Objectives Tasks Methods

NuCLR is an interpretable deep-learning model that predicts various nuclear observables.
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An IAIFI saga

NuCLR: Nuclear Co-Learned 

Representations

Kitouni, Nolte, Trifinopoulos, 

Kantameni, Williams 2307.01457 
(ICML SynS & ML 2023)

The DNA of Nuclear Physics: 

How AI predicts nuclear masses

Richardson, Trifinopoulos, Williams 

2508.08370 

From Neurons to Neutrons: A 

Case Study in Interpretability

Kitouni, Nolte, Perez-Diaz, 

Trifinopoulos, Williams 2405.17425 
(ICML 2024)

https://inspirehep.net/literature/2667551
https://inspirehep.net/literature/2667551
https://inspirehep.net/literature/2667551
https://inspirehep.net/literature/2667551
https://inspirehep.net/literature/2667551
https://arxiv.org/abs/2508.08370
https://arxiv.org/abs/2508.08370
https://inspirehep.net/literature/2790836
https://inspirehep.net/literature/2790836
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 I. The model

                 

 II. Interpretability

 III. (Re)discovering Physics
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Outline
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➢Binding energy: break apart a nucleus into its nucleons, fundamental observable

➢Charge radius: root-mean-square radius of the proton distribution.

➢Separation energies: remove a specific number of nucleons, measure of stability.

Sokratis Trifinopoulos 

Tasks: nuclear observables

When training, we must avoid prediction biases e.g. correlations    

between separation energies and binding energies of neighboring nuclei.
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The architecture

neutrons (N)

protons (Z)

+

+

+
+

Residual Blocks:
Targets (nuclear observables):

Input:

Readout

Embedding 

layer (3x1024)

loss of relational 

properties

trainable

parameters

~107 parameters

➢The algorithmic choice aligns 

with our goal of interpretability.
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➢Training simultaneously on all tasks exploits 

data correlations over multiple tasks and 

leverages joint information, improving 

generalization compared to single-task 

learning (MT > ST).

➢Novel: the tasks become also trainable 

embeddings (MTE).

➢The embedding space encodes task-

independent information!

Sokratis Trifinopoulos 

More Tasks, More Information!

A proof of concept via a toy model:

The model can make inferences for all tasks 

corresponding to a (Z,N) pair, for which there 

exist at least one task with a measured value.

regime of limited 

data (400/task)
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🗹 World-leading accuracy
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➢The achieved accuracy for charge radii 𝜎𝑅𝑀𝑆

= 0.01 fm is better than all theoretical and ST NN 

models, i.e. 0.02 fm & 0.015 fm, respectively.

𝑍, 𝑁 > 8

Database (energies):  Wang et al (AME2020), Phys. Lett. B, 734: 215–219, 2014

Database (charge radii):  Angeli & Marinova,  Atom. Data Nucl. Data Tabl., 

99(1):69–95, 2013

RMS = 130 keV

RMS = 3 MeV
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 I. The model

                 

 II. Interpretability (embeddings)

 III. (Re)discovering Physics
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Outline
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Interpretability by Construction

➢The success of MT gives the first hint towards the potential of internalizing the fundamental 

laws governing the nucleus. BUT we infer this from the RMS score.. is that enough?
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What are NN models actually learning?

➢Manifold hypothesis: Real-world data are 

expected to concentrate in the vicinity of a 

manifold of much lower dimensionality, embedded 

in high dimensional input space.

➢Mechanistic Interpretability (MI) encompasses  

techniques of identifying low-rank structures in 

high-D datasets, and uncovering the algorithms 

that are implemented.

Bengio, Courville, Vincent 1206.5538M  I
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Latent space topography (LST) is an MI procedure which consists of the following 

steps:

1) extract high quality features of the NN using a dimensionality 

reduction method on the latent space,

2) identify the emergent geometry in the first PC dimensions using 

domain knowledge,

3) classify trained networks according to the algorithms they implement.

Sokratis Trifinopoulos 

Interpretable AI via: Latent Space Topography
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LST on the embedding space

➢LST Step 1: extract high 

quality features of the NN 

using a dimensionality 

reduction method on the 

latent space; here: principle 

component (PC) analysis:

Ԧ𝑍 → Ԧ𝒵,    𝑁 → 𝒩

➢NN model: 𝑁 → 𝑁, 𝑍 → Ԧ𝑍  ⇒ 𝐸𝑏 = 𝐹𝑁𝑁 𝑁, Ԧ𝑍, Ԧ𝜃  , where we consider a 

simplified case with isospin-symmetric data: 𝐸𝑏= 𝛼𝑣𝐴 −  𝛼𝑎
(𝑁−𝑍)2

𝐴
 

embeddings PCs

volume assymetry
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The nuclear double helix

Embedding

layers

LST Step 2: Identify the emergent geometry in the first PC dimensions;     

here: robust helices that align symmetrically in the 3D PC space.

Ԧ𝒵 helix

𝒩 helix

bonds
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The nuclear double helix (real data)
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Stability of the nuclear DNA
Ԧ𝒵 helix

𝒩 helix

bonds nucleotide 

bases

Loss function:

goodness of fit   / van der Waals forces

regularization   / hydrophobic pressure

sugar 

phospate
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➢The volume term is the dominant term. This leads to 𝒵1 ≈  𝛽𝑍, 𝒩1 ≈ 𝛽𝑁.

➢NN prediction: 𝐹𝑁𝑁 𝑁, Ԧ𝑍, Ԧ𝜃 =
𝛼𝑣

𝛽
𝒩1 + 𝒵1 = 𝛼𝑣 𝛢. The regularization wants to drive 

𝛽 → 0, but the constraint at the loss minimum 𝐹 Ԧ𝜃 =
𝛼𝑣

𝛽
 prevents this.

Sokratis Trifinopoulos 

Deciphering the nuclear helix I

𝒵1 ⟶ 1 ± 𝛿 𝒵1
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➢The asymmetry coefficient is encoded in the radius:

Sokratis Trifinopoulos 

Deciphering the nuclear helix II
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➢LST Step 3: Classify trained networks according to the algorithms they implement.

➢Let’s consider first a toy problem: (𝐴 + 𝐵) mod 𝑝. 

➢LST was used to study grokking. It was found that: i) generalization coincides with structure 

formation ii) and identified classes of predictive algorithms that the NN employs.

Sokratis Trifinopoulos 

Excurse: Interpretable Algorithms

Liu et al 2205.10343, Zhong et al 2306.17844

Clock Algorithm:
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 I. The model

                 

 II. Interpretability (embeddings) 

 III. (Re)discovering Physics 
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Outline
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Is the machine thinking (exactly) like humans?

Penultimate

layer

PC 1

Weizsäcker, Bethe (Nobel 1967)

Gamow, Goeppert-Mayer (Nobel 1963) 
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Not exactly..

➢First three PCs: smooth functions; contain most of the information of the LD.

BUT, they do not have to map 1-1 to the human-derived terms. 

➢PC3 plotted against the isospin 𝐼 = 𝑍 − 𝑁  motivates the 

term: ℰ𝑏,3 ≈ 𝛼3|𝑍 − 𝑁|/𝐴.                           

rarely used in popular macroscopic models 

➢   But all the rest of the PCs are discrete functions of 𝑍 & 𝑁!

    

𝐼

ℰ
𝑏

,3
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➢The lesser PCs can be thought as the microscopic corrections of 

our analytic model (LD+PC3+DM).

➢They take the simple form, we refer to as Jaffe factorization:

➢Consequence of the nuclear-shell model: single-nucleon energy 

levels do not vary much around small regions of the nuclear plane:

Sokratis Trifinopoulos 

However, it is thinking exactly like Bob Jaffe!

Garvey,Gerace Jaffe, Talmi, Kelson Rev.Mod.Phys. 41 (1969)
*(Jaffe’s Junior Paper in Princeton)

Garvey-Kelson relations
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➢Based on the Jaffe factorization we (re)discover the optimal interpolation method.

Sokratis Trifinopoulos 

Isoto(p,n)ic neighbors > distance-based kernels

Jaffe Corrected Models
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A new symbolic SOTA & the future!

➢The AI interpretability study has not sacrificed 

precision for understanding..

We have achieved both!

➢The most important PCs are ordered   

hierarchically and are faithful to human knowledge!

➢Architectural choice ⟹ Symbolic

➢Can we repeat this for other nuclear observables? 

Can we automatize this process?

Symbolic Regression?

Richardson, Trifinopoulos, Williams 2508.08370 
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Thank you!

Questions?
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Backup slides

Sokratis Trifinopoulos 
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Principle Component Analysis

➢Goal: Reduce the dimensionality of data while preserving as much variance as possible.

➢Procedure:

1. Center the data (𝑥𝑖  → 𝑥𝑖 − ҧ𝑥) and calculate the covariance matrix 𝐶 =
1

𝑛−1
XT X.

2. Solve the EV problem: 𝐶 𝐯𝑖  = 𝜆𝑖𝐯𝑖 .

3. Project the data onto the PC space:  ෠𝑋 = 𝑋 𝐕.

➢ Interpretation: The first PC 𝐯1 (with the highest EV 𝜆1) captures most of the data's 

variance, i.e. 𝐯1 = argmax
𝐯 =1

(𝐯T𝐶𝐯), the second captures most of the variance of the 

transformed data ෠𝑋1 = 𝑋 − (𝑋 𝐯1) 𝐯1
T, and so on.
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Excurse: Nuclear Models for 𝑬𝒃

Weizsäcker, Zeitschrift  

für Physik, 96(7):431–458,     

Jul 1935.c

𝑅ch ≅ 𝑟0𝐴1/3

volume surface Coloumb assymetry pairing

➢The liquid drop (LD) model treats the nucleus as a highly dense incompressible fluid 

formed by the interplay of nuclear force, electromagnetism, and Pauli Exclusion Principle.

➢Micro-macro models: output of a simplified quantum many-body calculation + symbolic 

expression; record holder is the Weizsäcker-Skyrme (WS4) model with RMS = 279 keV.

Wang, Liu, Wu, Meng1405.2616
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Deciphering the nuclear helix

bonds

Here: we project the vectors   on the PC2-PC3 plane and perform 

the non-linear transformation of the the clock algorithm:
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➢The models encodes the difference (𝑍 − 𝑁) in the vector: 

➢The asymmetry coefficient is encoded in the radius:

Sokratis Trifinopoulos 

Learning the asymmetry term
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Garvey-Kelson (GK) relations

(𝑍, 𝑁)

…

In a small region around 𝑍, 𝑁 :
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MTE architecture
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ST architecture
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➢Scientific Reasons:  

–  Training data might be biased 

–  Overfitting on specific features

–  Generalization away from the specific context

–  Limited ability for independent validation

➢Sociological Reasons: 

–  Skepticism of statistical reasoning

–  Accountability of decision making

–  Desire to manage unforeseen risks

Sokratis Trifinopoulos 

Why we want AI to be “Interpretable”?

Interpretability

Accuracy
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➢We perform PC analysis also on the penultimate layer. The final prediction is 

a linear combination of the penultimate layer PCs (features).

➢The features capture most of the performance!

Sokratis Trifinopoulos 

Meaningful features
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The Cabibbo Angle anomaly: Discrepancies 

betweena different determinations of Vus.

➢Depending on the input from nuclear β decays we 

obtain 1-5σ! Ref.                         showed that recoil 

corrections in the tree-level charged weak decay 

(which scale as ~𝑞2𝑅CW
2  ) could alleviate the tension.

➢Limited knowledge of 𝑅CW, but it can be inferred 

from the charge radii of nuclear isotriplets! But, 𝑅Cℎ 

data are also scarce.

Sokratis Trifinopoulos 

A (personal favourite) application to particle physics

[Coutinho et al] 1912.08823 

[Grossman et al] 1911.07821

[Seng] 2212.02681

NuCLR can help!If not nuclear physics then.. New Physics!

Belfatto, Trifinopoulos 2302.14097

Marzocca, Trifinopoulos 2104.05730
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Seng’s prescription:

1. Define the matrix element

1. Expand the form factor ҧ𝑓+

1. Relate 𝑅Cℎ
2  =

to 𝑅CW
2  via nuclear isotriplets:

➢ Superallowed β decays are Fermi transitions (S=0, ΔJ=0) 

between isobaric analogue states with no parity change (Δπ =1).

➢ What’s new? 

Superallowed β decays

Universal contribution: 

EW corrections

The uncertainty of ΔR is dominated by the 

hadronic contribution to the Wγ box.

New analyses using dispersion relations and hybrid 

lattice QCD result in a shift of |Vud|.

[Seng et al] 1812.03352, 2107.14708 [Czarnecki et al] 1907.06737

“corrected” half-life: factoring 

out nucleus-dependent parts 

[Seng] 2212.02681
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