

Digital twins for intelligent production of submarine optical fibers

Author:

Ph.D. Student eng. Giuseppe Laudani

Tutors:

Prof. Michele Calì

Dr. Giorgio Riccobene

Study methodology

Graphs of S(x), Bm(x) and $\sigma_{\rm Von\ Mises}$ for different depths

Dipartimento di Ingegneria Elettrica Elettronica e Informatica

Department of Electrical, Electronic and Computer Engineering – INFN/LNS

Università

di Catania

SR

Study Model: Supported

Elettronica e Informatica

 $k = 10^{6} N/m$

٠

Study Model: Full Contact (sandy soil)

w(x) = vertical displacement of the beam

 $EI\frac{d^4w(x)}{dx^4} + q_v(x) = q_{est}(x) \rightarrow Winkler$

•
$$P_s = P_0 + \rho g h$$

• $P_i = P_0 + \rho g (h + D_n)$
• $dP = \rho g D_n$
• $F = dP \cdot A_L$
• $q = \frac{F}{L}$
• $A_L = \pi D_n L$
• $\beta = \sqrt[4]{\frac{k}{EI}}$

In our case, the solution is:

	$w(x) = A\cos(\beta x) + B\sin(\beta x) + Ce^{-\beta x} + De^{\beta x}$
	• $B_m(x) = -EI \frac{d^2 w(x)}{dx^2}$
)	• $S(x) = -EI \frac{d^3 w(x)}{dx^3}$
	• $\sigma_x = \frac{B_m(x) \cdot y}{I}$ and $\tau_{xy} = \frac{S(x) \cdot Q}{I \cdot t}$
	Boundary Conditions
	• $w(0) = 0$ and $w(L) = 0$
	• $\frac{d^2 w(x)}{dx^2} \bigg _{x=0} = 0$ and $\frac{d^2 w(x)}{dx^2} \bigg _{x=L} = 0$

Von Mises' Stress (two-dimensional case)

$$\sigma_{VM} = \sqrt{\sigma_x^2 + 3\tau_{xy}^2}$$

 $q_{v}(x) = w(x) \cdot k$

 $q_{est}(x) = q_0$

٠

٠

Study Model: Full Contact (sandy soil)

 $EI\frac{d^4w(x)}{dx^4} + q_v(x) = q_{est}(x) \to Winkler$

- w(x) = vertical displacement of the beam
- $q_v(x) = w(x) \cdot k$

Department of Electrical, Electronic and Computer Engineering – INFN/LNS

In our case, the solution is:

 $w(x) = A\cos(\beta x) + B\sin(\beta x) + Ce^{-\beta x} + De^{\beta x}$ • $B_m(x) = -EI \frac{d^2 w(x)}{dx^2}$ • $S(x) = -EI \frac{d^3 w(x)}{dx^3}$ • $\sigma_x = \frac{B_m(x) \cdot y}{I}$ and $\tau_{xy} = \frac{S(x) \cdot Q}{I \cdot t}$ Boundary Conditions • w(0) = 0 and w(L) = 0• $\frac{d^2 w(x)}{dx^2} \Big|_{x=0} = 0$ and $\frac{d^2 w(x)}{dx^2} \Big|_{x=0} = 0$

 $ax | x = 0 \qquad ax | x = L$

Von Mises' Stress (two-dimensional case)

$$\sigma_{VM} = \sqrt{\sigma_x^2 + 3\tau_{xy}^2}$$

Study Model: Basement (sandy soil)

Dipartimento di Ingegneria Elettrica Elettronica e Informatica

Thank you for your attention

