Composite Higgs Models and their Signatures

Natascia Vignaroli

Higgs@Capri2025

Georgi, Kaplan, 1984

- EWSB triggered by a new Strong Dynamics, composite at the TeV scale
- Higgs: composite + pGB of global invariance (G) of the strong sector

Inspired by QCD- (chiral symmetry)-EW phenomena

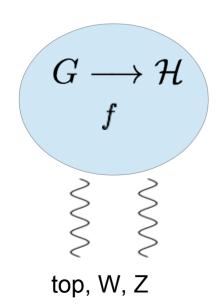
$$W \sim \pi W \qquad m_W^{(QCD)} = rac{g}{2} f_\pi$$

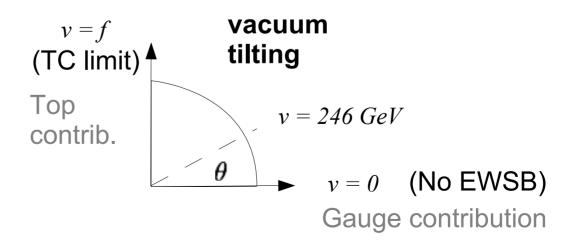
Pion is the pGB of chiral symmetry breaking

$$m_{\pi} \ll \Lambda_{QCD}$$

Georgi, Kaplan, 1984

- EWSB triggered by a new Strong Dynamics, composite at the TeV scale
- Higgs: composite + pGB of global invariance (G) of the strong sector


$$\Delta m_h^2 \sim \Lambda^2$$


Physical cutoff set by the compositeness scale

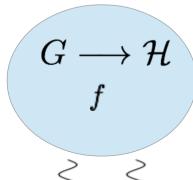
$$\Lambda \sim 4 \pi f$$

$$m_h^2 \sim \left(\frac{v}{f}\right)^2 m_*^2 \frac{1}{16\pi^2}$$

Higgs naturally light

Georgi, Kaplan, 1984

- EWSB triggered by a new Strong Dynamics, composite at the TeV scale
- Higgs: composite + pGB of global invariance (G) of the strong sector


Higgs naturally light

$$\Delta m_h^2 \sim \Lambda^2$$

Physical cutoff set by the compositeness scale

$$\Lambda \sim 4 \pi f$$

$$m_h^2 \sim \left(\frac{v}{f}\right)^2 m_*^2 \frac{1}{16\pi^2}$$

top, W, Z

Interactions of the Strong sector with an "elementary" sector (≈ the SM) explicitly break G. V(h) is generated radiatively

$$V(h) \sim \frac{1}{16\pi^2} \left(-a h^2 + b \frac{h^4}{2f^2} \right)$$

$$v^2=rac{a}{b}f^2$$
 Fine-tuning of the order but $a\sim b$ Fine-tuning of $m_{t'}\lesssim 1\,{
m TeV}$

Georgi, Kaplan, 1984

- EWSB triggered by a new Strong Dynamics, composite at the TeV scale
- Higgs: composite + pGB of global invariance of the strong sector

Higgs naturally light

$$\Delta m_h^2 \sim \Lambda^2$$

Physical cutoff set by the compositeness scale $\Lambda \sim f$

$$m_h^2 \sim \left(\frac{v}{f}\right)^2 m_*^2 \frac{1}{16\pi^2}$$

top, W, Z

MCHM Agashe, Contino, Pomarol, NPB 719 (2005)

$$SO(5) \rightarrow SO(4) \sim SU(2)_L \times SU(2)_R$$

 $4\text{GB}: h + W_L^{\pm}, Z_L$

Minimal realization including custodial symmetry

LHC (and other experiments) are already testing the composite Higgs paradigm

directly

Limits on top-partners

$$m_{t'} \gtrsim 1.4 \, {\rm TeV}$$

 $(v/m_{t'})^2 \sim 3\%$

and vector resonances

$$m_V \gtrsim 3-4 \text{ TeV}$$

indirectly

EWPD
$$\Delta S \sim (v/f)^2$$

ATLAS + CMS, JHEP 08, 045 (2016)

Modification of Higgs couplings →

diboson couplings

 $\sin \theta < 0.56$

ATLAS, JHEP 11, 206 (2015)

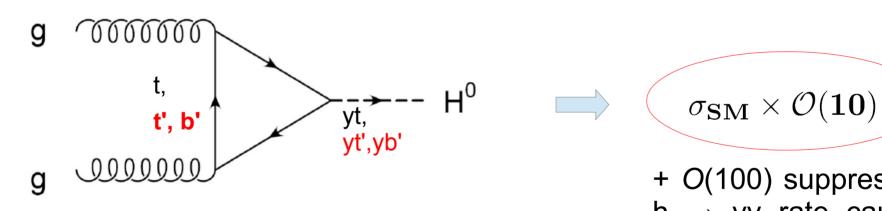
Including modification of the top coupling: $g_{htt} = \cos \theta \, g_{htt}^{SM}$

$$\sin \theta < 0.35$$

Flavor Physics

A new generation of quarks?

Data already tell us that new quarks are likely to be of vector-like type


L-H and R-H components transform in the same way under the symmetry group of the theory

A chiral 4th family of quarks (and leptons) is excluded by LHC Higgs results

also dis-favored by electroweak precision data (S/T) and flavor observables

Chiral 4th generation

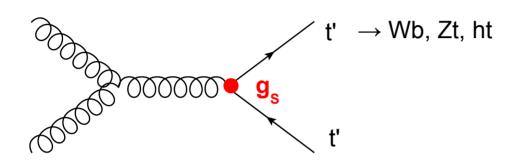
$$\mathbf{y_{t'}} \mathbf{\bar{t'}_L} \mathbf{H} \mathbf{t'_R} \quad \mathbf{M_{t'}} \mathbf{\bar{t'}_L} \mathbf{t'_R}$$
 $\mathbf{y_{b'}} \mathbf{\bar{b'}_L} \mathbf{H} \mathbf{b'_R} \quad \mathbf{M_{b'}} \mathbf{\bar{b'}_L} \mathbf{b'_R}$

$$\sigma \sim \big|\sum \frac{y_{ii}}{M_i} A(m_h^2/M_i^2)\big|^2 \sim \frac{\partial}{\partial v} \ln(\det \mathcal{M}) \quad \text{the t',b' destruction} \\ \text{interference with the W}$$

$$\sigma_{ extbf{SM}} imes \mathcal{O}(extbf{10})$$

+ O(100) suppression to $h \rightarrow \gamma \gamma$ rate caused by the t',b' destructive

Higgs measurements completely rule out a chiral 4th generation [Kuflik et al., .., PRL 110 (2013)]


VLQ (t')

Example:
$$\mathbf{t'}_{L}$$
, $\mathbf{t'}_{R}$ \longrightarrow 2 of $\mathrm{SU(2)}_{L}$ $\mathbf{y_{t'}} \mathbf{t'}_{L} \mathbf{H} \mathbf{t'}_{R}$ $\mathbf{y_{t'}} \mathbf{t'}_{L} \mathbf{H} \mathbf{t'}_{R}$ $\mathbf{y_{t'}} \mathbf{t'}_{L} \mathbf{H} \mathbf{t'}_{R}$ $\mathbf{y_{t'}} \mathbf{t'}_{L} \mathbf{t'}_{R}$

 $\sigma \sim \left|\sum rac{\mathbf{y_{ii}}}{\mathbf{M_i}} \mathbf{A} (\mathbf{m_h^2/M_i^2}) \right|^2 \sim rac{\partial}{\partial \mathbf{v}} \ln(\det \mathcal{M}) \Longrightarrow \sigma_{\mathbf{SM}} imes \left(\mathbf{1} + \mathcal{O}(\mathbf{v^2/f^2})\right)$

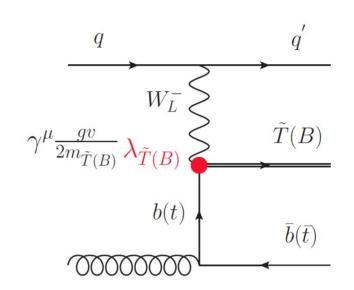
Indirect probes on vlqs from Higgs measurement and EW precision data

Direct search for VLQs: QCD pair production

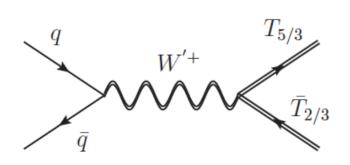
BRs dictated by t' EW quantum numbers, in minimal scenarios

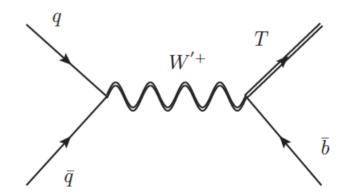
but this can change significantly in more complex phenomenological scenarios: for example if new resonances in which t' can decay are sub-threshold

 $\frac{\text{Model-independent}}{\text{(the coupling is g}_{\text{s}}, \text{ it is determined by QCD gauge symmetry)}}$

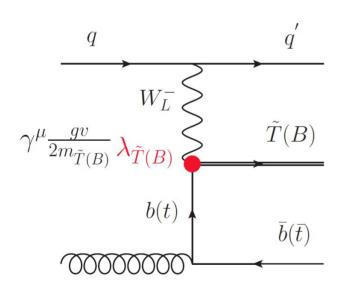


Robust bounds on VLQs


Direct search for VLQs: increasing the LHC reach


VLQ single production

NV, PRD 86 (2012) 075017; JHEP 1207 (2012) 158

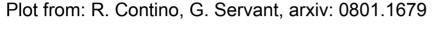

VLQ production through decays of vector resonances

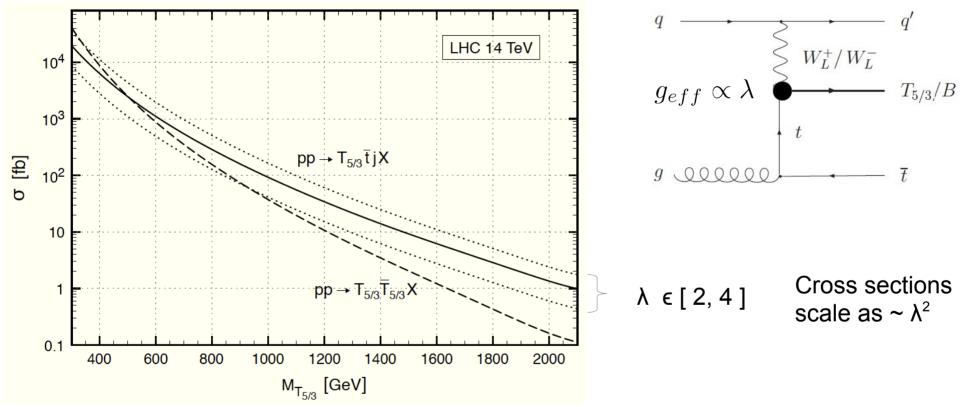
EW single production

NP effects: Dirac mass terms, new fields with non-SM gauge charges (RH SU(2)_L doublets) lead to EW interactions which are off-diagonal in the mass basis (even for neutral currents: there is no GIM protection) and mix VLQs with SM quarks

PROS

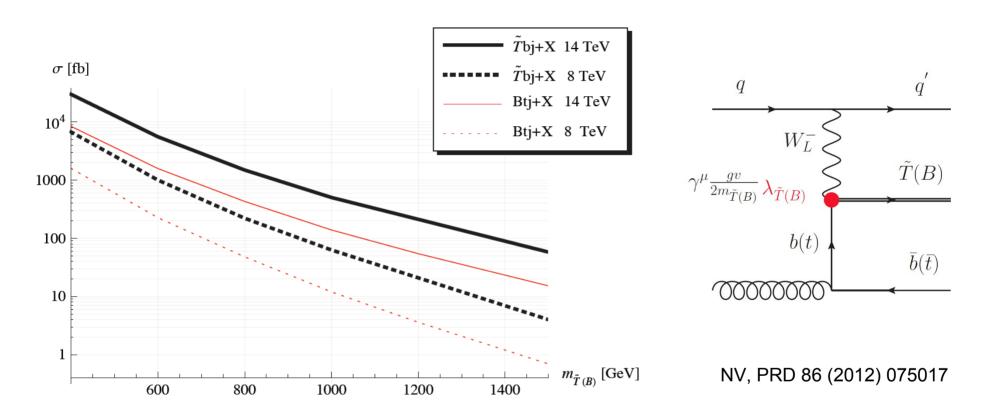
Typically higher cross section, compared to pair production, at high vlq mass


Peculiar topology


Possibility to measure the coupling \rightarrow information on the EWSB sector

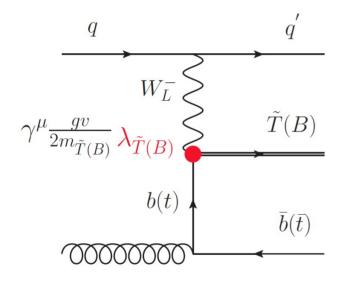
CONS

Model-dependent (but "under control" in the high mass regime that will be explored at the LHC-13/14)


EW Single production vs QCD pair production

t-channel enhancement of the cross-section at high mass

b-mediated vs t-mediated EW Single production



About 4 times larger cross sections for t_R-partners as an effect of the b (instead of top) intermediate exchange

EW single production kinematics

Same as Single-(SM)top

C.-P. Yuan '90 Stelzer, Sullivan, Willenbrock, '97

Forward-jet tag (low-virtuality W leads to forward jet)

Possibility of measuring the coupling

Composite Higgs / RS Models

A simple Two-Site description

Contino et al. hep-ph/0612180

 $\mathcal{G}_{SM} \equiv SU(2)_L \times U(1)_Y$

STRONG EWSB Sector

 $\begin{array}{c} \mathcal{G} \longrightarrow \mathcal{H}_1 \supset \mathcal{G}_{SM} \\ \mathbf{H} \end{array}$

SM + NP

elementary/composite mixing

light SM particles [mainly elementary]

heavy resonances (Top-partners, W*, G*, ..)
[mainly composite]

top-partners in Composite Higgs / RS Models

Linear mass mixing terms [Kaplan '91]

PARTIAL COMPOSITENESS

Rotation (Mixing angles:
$$s_{i}$$
, s_{R})

Rotation (Mixing angles:
$$s_{_L}$$
, $s_{_R}$) $egin{array}{c} \mathbf{t_L} = \mathbf{c_L} \mathbf{t_L^{el}} + \mathbf{s_L} \mathbf{T_L} \ \mathbf{t_R} = \mathbf{c_R} \mathbf{t_R^{el}} + \mathbf{s_R} \mathbf{\tilde{T}_R} \end{array}$

 $s_{\scriptscriptstyle \parallel}/s_{\scriptscriptstyle \parallel}$ are the $t_{\scriptscriptstyle \parallel}/t_{\scriptscriptstyle \parallel}$ degree of compositeness

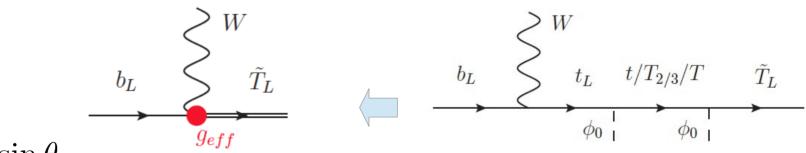
$$m m_t \simeq Y_* s_L s_R rac{v}{\sqrt{2}}$$

EW VLQ Couplings

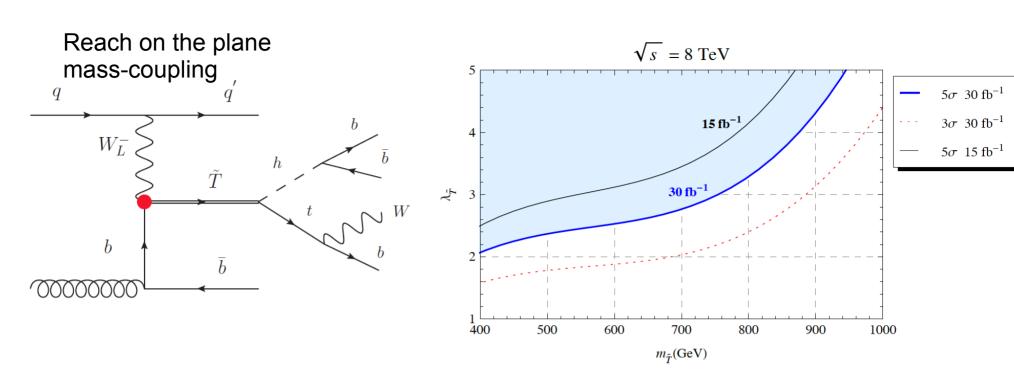
Yukawa interactions among composite states: Top partners - Higgs / $W_{\scriptscriptstyle L}$ / $Z_{\scriptscriptstyle L}$

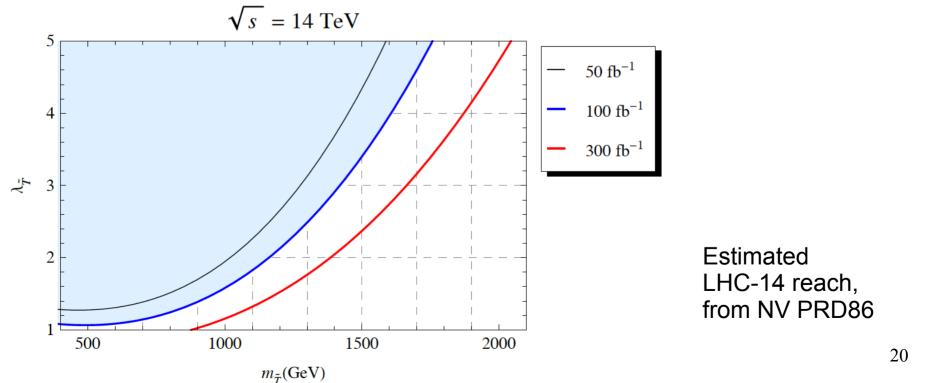
$$\mathcal{L}^{comp} \propto \mathcal{L}^{YUK} = Y_* \operatorname{Tr}\{\bar{Q}\mathcal{H}\}\tilde{T}$$

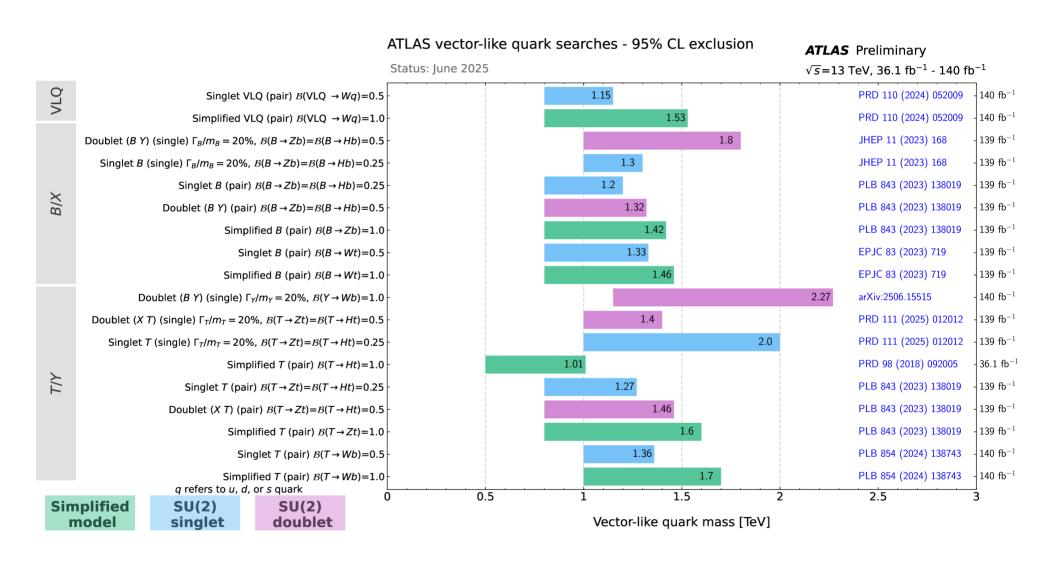
- Y* is the Yuakawa coupling among composites, which is expected to be large $1 < Y_* \ll 4\pi$
- $\mathcal{H} = \begin{bmatrix} \phi_0^\dagger & \phi^+ \\ -\phi^- & \phi_0 \end{bmatrix} \qquad \text{Higgs and would-be Goldstone bosons}$ $(\mathbf{W_L}, \mathbf{Z_L}) \text{ matrix}$
- $\mathcal{Q} = \left[\begin{array}{cc} T & T_{5/3} \\ B & T_{2/3} \end{array}\right] \quad \mbox{is the matrix of $t_{\rm L}$ partners} \\ \mbox{(T, B) directly couple to ($t_{\rm L}$, $b_{\rm L}$); ($T_{5/3}$, $T_{2/3}$) are} \\ \mbox{effects of the custodial symmetry in the composite sector}$
- $ilde{T}$ is the EW singlet, partner of $\mathsf{t}_{_{\mathsf{R}}}$


$$\mathcal{L}^{YUK} = Y_* \operatorname{Tr} \{ \bar{Q} \mathcal{H} \} \tilde{T}$$

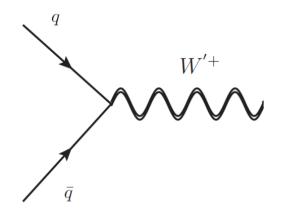
After elementary/composite mixing + EWSB:


Interactions among SM quarks - h (W_1 , Z_1) - Top partners


$$\mathcal{L}^{\mathbf{YUK}} = +\mathbf{Y}_{*}\mathbf{s_{L}}\mathbf{c_{R}}\left(\overline{\mathbf{t}_{L}}\phi_{\mathbf{0}}^{\dagger}\widetilde{\mathbf{T}_{R}} - \overline{\mathbf{b}_{L}}\phi^{-}\widetilde{\mathbf{T}_{R}}\right) + \dots \qquad \lambda_{\widetilde{\mathbf{T}}} = \mathbf{Y}_{*}\mathbf{s_{L}}\mathbf{c_{R}}$$
Ele-composite mixing

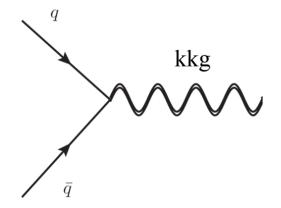

$$\mathbf{g_{eff}} = \frac{\mathbf{g}}{\sqrt{2}} \sin \theta$$

Is the superposition
$$\mathbf{t_L}$$
 - $\mathbf{\tilde{T}_L}$; $\sin \theta(\mathbf{LO}) = \frac{\lambda_{\mathbf{\tilde{T}}} \mathbf{v}}{\sqrt{2} \mathbf{M_{\tilde{T}}}}$ Weak-mixing approximation



Current LHC bounds on VLQs

Searches for Vector Resonances

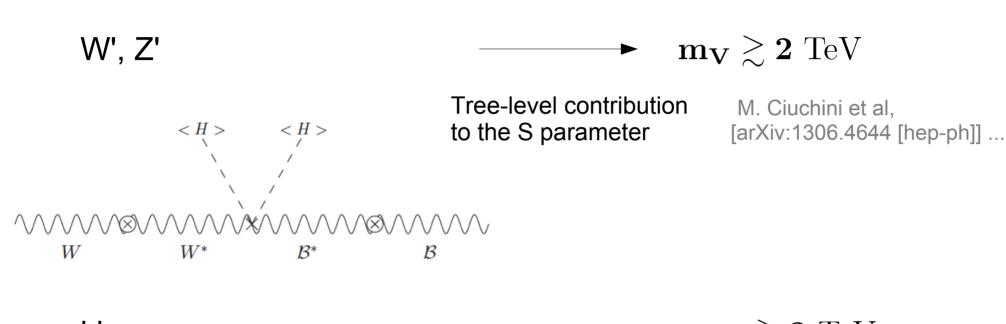


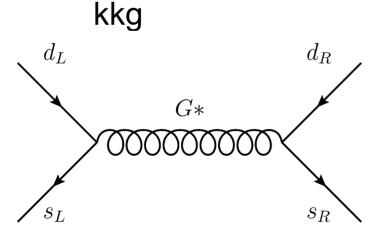
- $\rightarrow l\nu$
- $\to jj$
- $\rightarrow WZ, Wh$

Benchmarks:

- SSM
- HVT

 (more appropriate for diboson channel)




- $\to jj$
- $\rightarrow t\bar{t}$

Benchmark:

RS
[Note that MCHM is dual to Warped Extra-Dimensional scenario]

Indirect Constraints on Vector Resonances

 $m_{G^*}\gtrsim 3~{
m TeV}$

Tree-level contribution to FV processes (K-Kbar mixing: ε_{k})

In NMFV composite flavor structure

(Ex. Barbieri et al JHEP 1305 (2013) 069)

Data+Naturalness suggest to look at "cascade topologies"

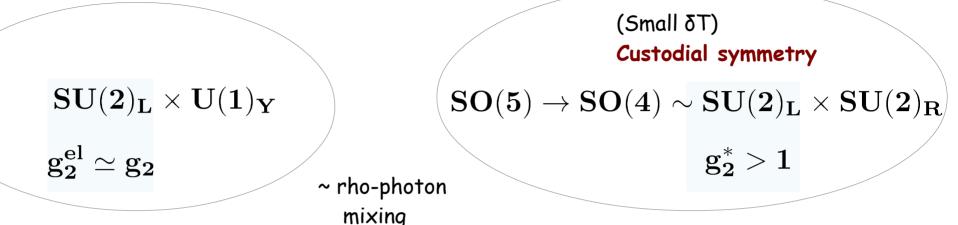
naturalness Top-partners control Higgs mass quantum corrections

A ~125 GeV Composite Higgs implies <u>Top-partners below 1 TeV</u>

G. Panico, M. Redi, A. Tesi and A. Wulzer, [arXiv:1210.7114 [hep-ph]]

.

EWPT


V-prime above ~ 2 *TeV*

Flavor Obs. G^* above $\sim 2-3$ TeV

In the "natural param. space" <u>vector-resonances decay to vector-like top</u> <u>partners</u>

A TS model for the W' pheno, including the decays to VLQs [NV Phys.Rev. D89 (2014) 9]

W-prime in Composite Higgs / RS Models

$$\mathbf{W^a_{el}} \in (\mathbf{3},\mathbf{1})$$

$$\mathbf{W_{com}^{'a}} \in (3,1)$$

$$\cot \theta_{2} = \frac{\mathbf{g_{2}^{*}}}{\mathbf{g_{2}^{el}}} \quad \mathbf{g_{2}} = \mathbf{g_{2}^{el}} \cos \theta_{2} = \mathbf{g_{2}^{*}} \sin \theta_{2}$$

$$\mathbf{W'} = \cos \theta_{2} \mathbf{W'_{com}} + \sin \theta_{2} \mathbf{W_{el}}$$

Controls the strength of W' interactions More strongly-coupled EW sectors correspond to larger $\cot \theta_{\alpha}$

top-partners in Composite Higgs / RS Models

Linear mass mixing terms [Kaplan '91]

PARTIAL COMPOSITENESS

Rotation (Mixing angles:
$$s_{l}$$
, s_{R})

Rotation (Mixing angles:
$$s_{_L}$$
, $s_{_R}$) $egin{array}{l} \mathbf{t_L} = \mathbf{c_L} \mathbf{t_L^{el}} + \mathbf{s_L} \mathbf{T_L} \ \mathbf{t_R} = \mathbf{c_R} \mathbf{t_R^{el}} + \mathbf{s_R} \mathbf{\tilde{T}_R} \end{array}$

 $s_{\scriptscriptstyle \parallel}/s_{\scriptscriptstyle \parallel}$ are the $t_{\scriptscriptstyle \parallel}/t_{\scriptscriptstyle \parallel}$ degree of compositeness

$$m m_t \simeq Y_* s_L s_R rac{v}{\sqrt{2}}$$

26

top-partners in Composite Higgs / RS Models

Linear mass mixing terms [Kaplan '91]

$$egin{array}{c} t_{R}^{el} & \longrightarrow & ilde{T}=(1,1)_{2/3} \ & \left(egin{array}{c} t_{L}^{el} \ b_{L}^{el} \end{array}
ight) & \longrightarrow & \left[egin{array}{c} T_{5/3} \ T_{2/3} \end{array}
ight]=(2,2)_{2/3} \end{array}$$

Custodians are expected to be lighter than the other VLQs, Much lighter in the limit of large top degree of compositeness $(s_i \rightarrow 1, c_i \rightarrow 0)$

Model parameters: W' mass, $ct\theta_2$, (s_L)

 $ct\theta$, controls the production and BR

W' couplings to <u>composite</u> modes (W_Lh, W_LZ_L, top-partners) W' couplings to <u>elementary</u> modes (lv, jj)

$$\propto g_2 \cot \theta_2$$

$$\propto g_2 \tan \theta_2$$

Suppressed decays to leptons and di-jet for more strongly-interacting EW sectors

s, dependence:

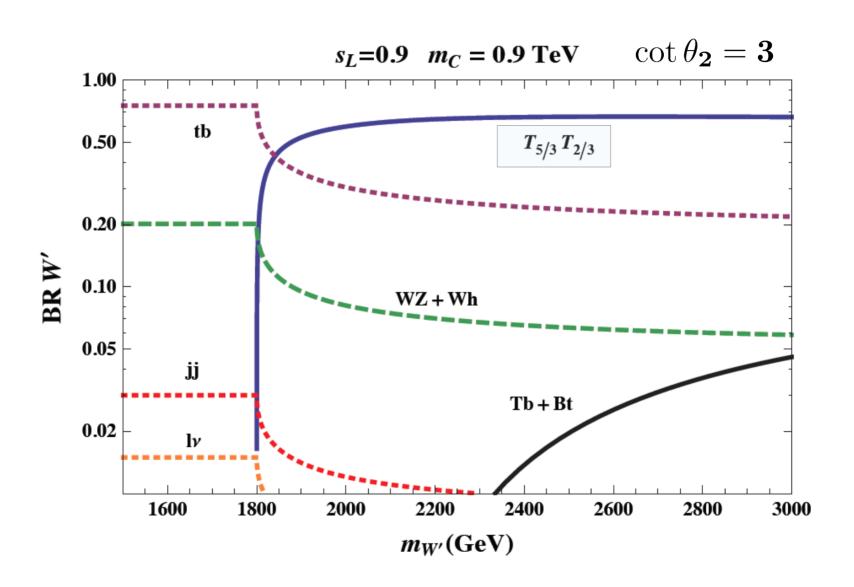
s₁ mainly affects the relative importance of the decay channels:

$$W' \rightarrow tb (larger s_L) W' \rightarrow T b (smaller s_L)$$

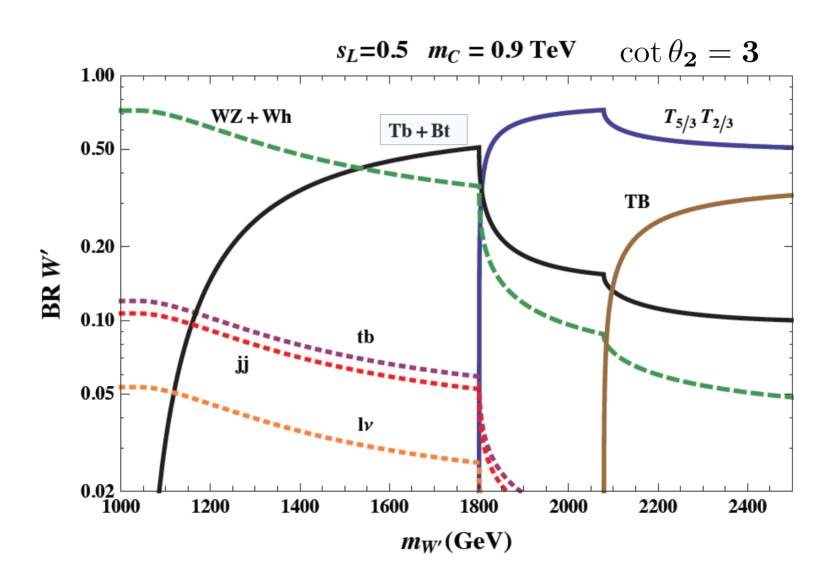
Results could be presented in the W' mass vs coupling $(\mathbf{m}_{w'}, \mathbf{ct}\theta_2)$ param. space for some s_L values (i.e. 0.5, 0.9)

Comparison with "standard" benchmarks

<u>Sequential-SM</u> [Altarelli, Mele, Ruiz-Altaba '89]: W' interactions with SM particles identical to those of the SM W


The SSM is obtained for:

- Decoupled top-partners
- $ct\theta_2 = 1$
- $S_L = 0$


HVT Model B [Pappadopulo, Torre, Tham, Wulzer '14]: MCHM with decoupled top-partners and universal couplings to fermions

- Decoupled top-partners
- $s_L = 0$

W' BRs as functions of mW'

W' BRs as functions of mW'

Best W' Search Channels

• At high W' mass (the region favored by EWPT)

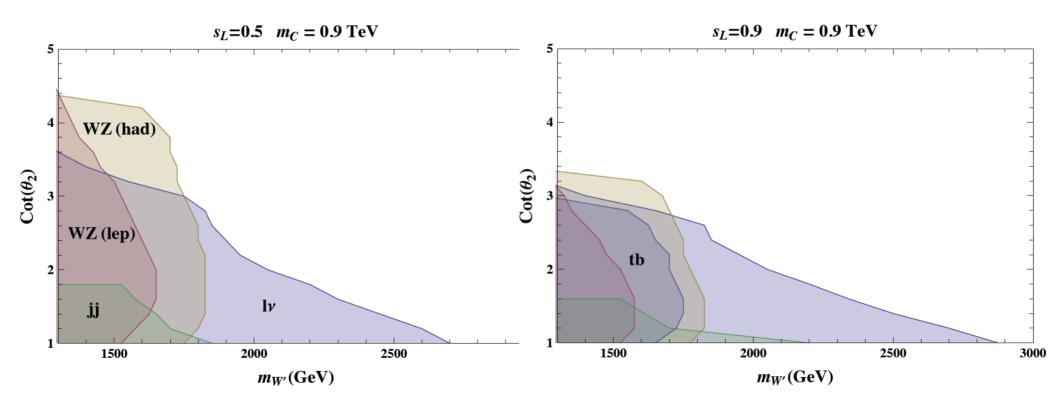
$$\mathbf{W'} \rightarrow \mathbf{T}_{5/3} \mathbf{T}_{2/3}$$

• For lighter W'

$$\begin{array}{c} \text{Larger ct}\theta_2\\ \text{(more natural param. space)} \end{array} \qquad \begin{array}{c} W' \to \text{ tb (large s}_L), \, \textbf{Tb (intermediate s}_L)\\ W' \to W_L Z_L \,\,, \, W_L \,\, h \end{array}$$

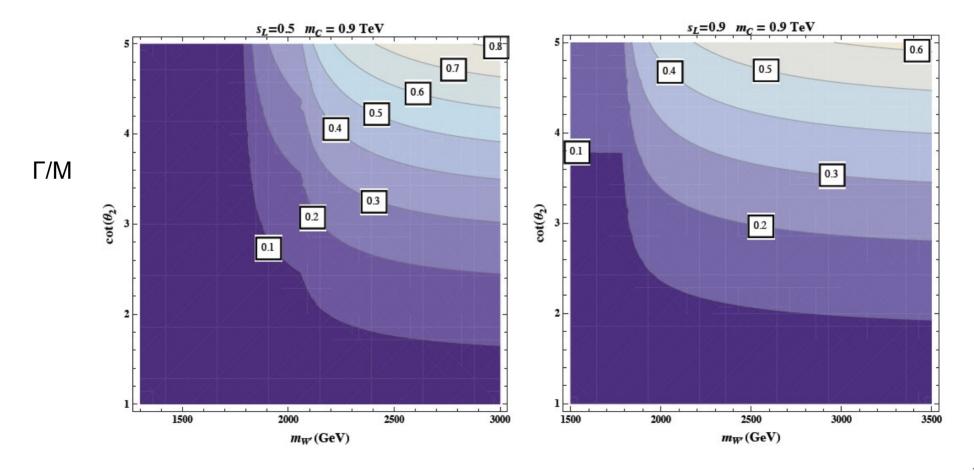
$$\begin{array}{c} W' \to \text{ ln}\\ W' \to \text{ jj} \end{array} \qquad \begin{array}{c} \text{Channels suppressed in the scenario of strongly-interacting EW sector} \end{array}$$

LHC-8 LIMITS


Iv CMS-PAS-EXO-12-060; ATLAS-CONF-2014-017

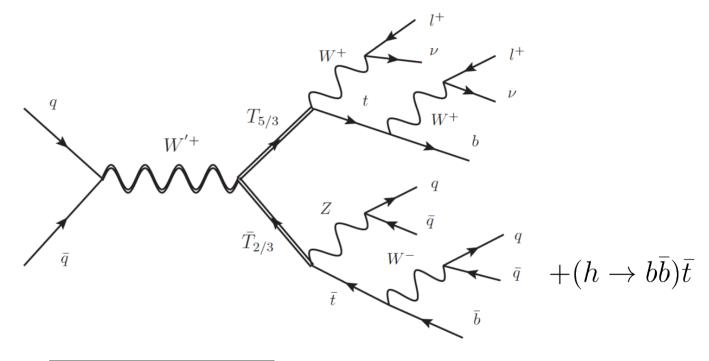
jj CMS-PAS-EXO-12-059; ATLAS-CONF-2012-148

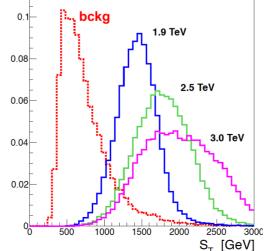
WZ (fully had) CMS-PAS-EXO-12-024


tb CMS-PAS-B2G-12-010; ATLAS-CONF-2013-050

WZ (fully lep) CMS-PAS-EXO-12-025; ATLAS-CONF-2014-015

Limitation of the NWA

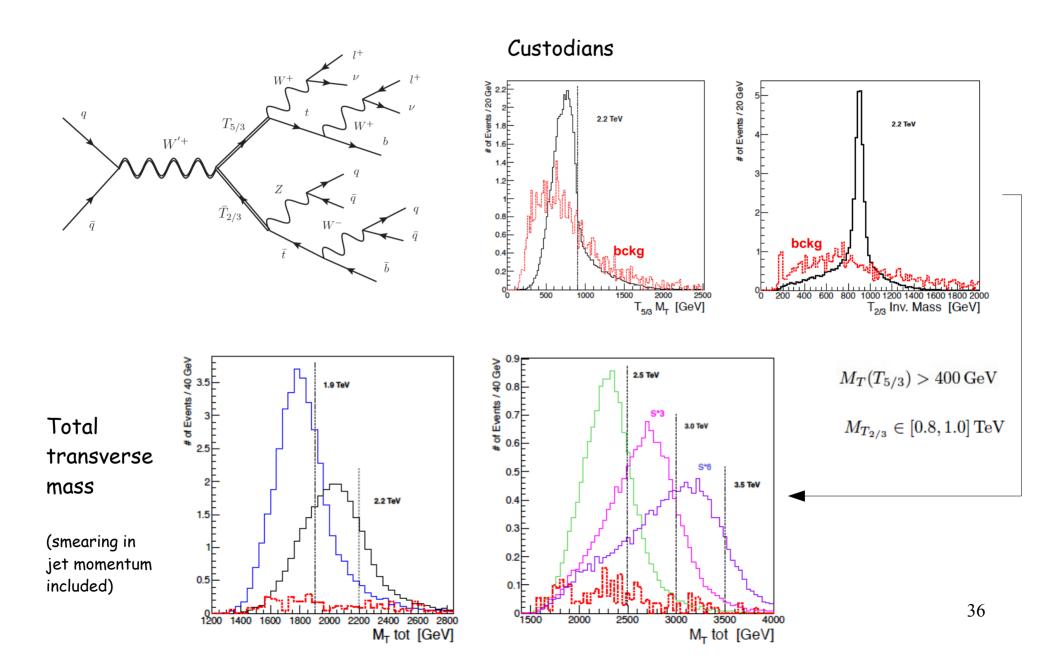

• Limits obtained with the NWA from ATLAS and CMS analyses which consider Sequential-Standard-Model cannot be directly applied to the CHM/RS scenario in the (Large Mass, Large coupling) parameter space



The custodian channel in the same-sign dilepton final state

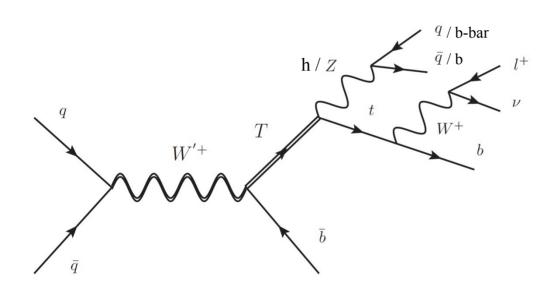
LHC-14 xsec(fb)

Same-Sign Dilep	acceptance
$m_{W^{'}}=1.9~{\rm TeV}$	0.82
$m_{W^{\prime}} = 2.2 \; \mathrm{TeV}$	0.52
$m_{W^{\prime}} = 2.5 \; \mathrm{TeV}$	0.29
$m_{W^{\prime}} = 3.0 \; \mathrm{TeV}$	0.11
$m_{W^{'}} = 3.5~{\rm TeV}$	0.041
$W^+tar{t}$	4.1
W^+W^+	1.5
$W^{+}W^{+}W^{-}$	0.6
Total background	6.2



	CUT-1	CUT-2
$p_T l(1)$	90	
$p_T l(2)$	30	
$p_T \ j(1)$	160	
$p_T \ j(2)$	100	
H_T	550	700
S_T	1100	1400

 $S_T \equiv H_T + p_T$


The custodian channel in the same-sign dilepton final state

The custodian channel in the same-sign dilepton final state

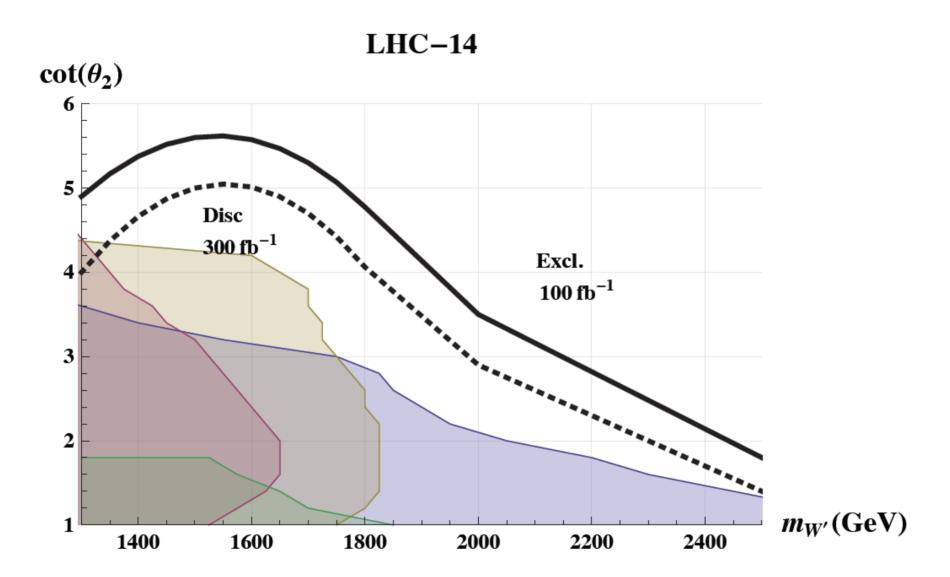
$$(v/f < 1 o \cot \theta_2 \lesssim \frac{m_{W'}}{g_2 v})$$
 5 σ LHC-14 $\cot(\theta_2)$ 100 fb⁻¹ 300 fb⁻¹ 3 $\cot \theta_2 \lesssim \frac{m_{W'}}{g_2 v}$ 100 fb⁻¹ 100 fb⁻

The heavy-light Tb channel, for $s_1 = 0.5$

Neutrino, top and T recostruction

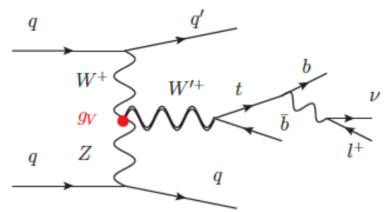
$$S_T > 1.1 \,\mathrm{TeV}$$

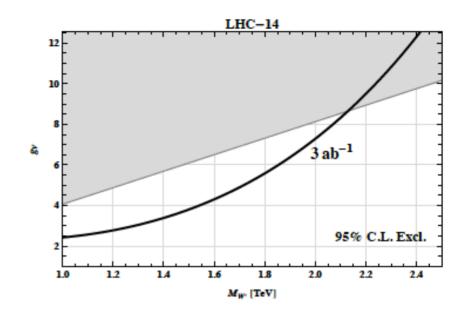
 $(t\,,\,b\,,\,Z/h\,,\,T\,)\,p_T > 150 \,\mathrm{GeV}$


T inv mass cut

 $pp \to l^+ + n \text{ jets} + \cancel{E}_T$ $n \ge 3$, at least 2 b-tag

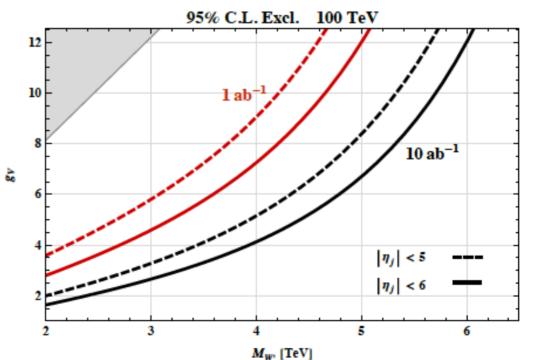
xsec(fb)


LHC-14	acceptance			
$m_{W^{\prime}} = 1.3 \; \mathrm{TeV}$	9.1			
$m_{W^{\prime}} = 1.5 \mathrm{TeV}$	7.5			
$m_{W^{\prime}} = 1.7 \; \mathrm{TeV}$	5.0			
$m_{W^{'}} = 2.0~{\rm TeV}$	0.70			
$m_{W^{'}} = 2.5~{\rm TeV}$	0.11			
WWbb	19000			
Wbb+jets	1600			
W+jets	560			
Total background	21000			

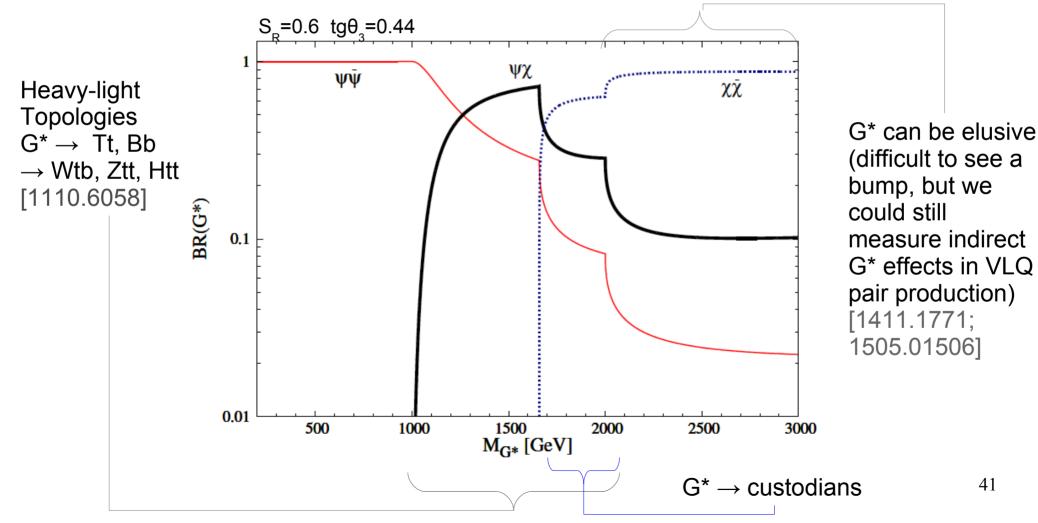

The heavy-light Tb channel, for $s_{L}=0.5$

VBF production

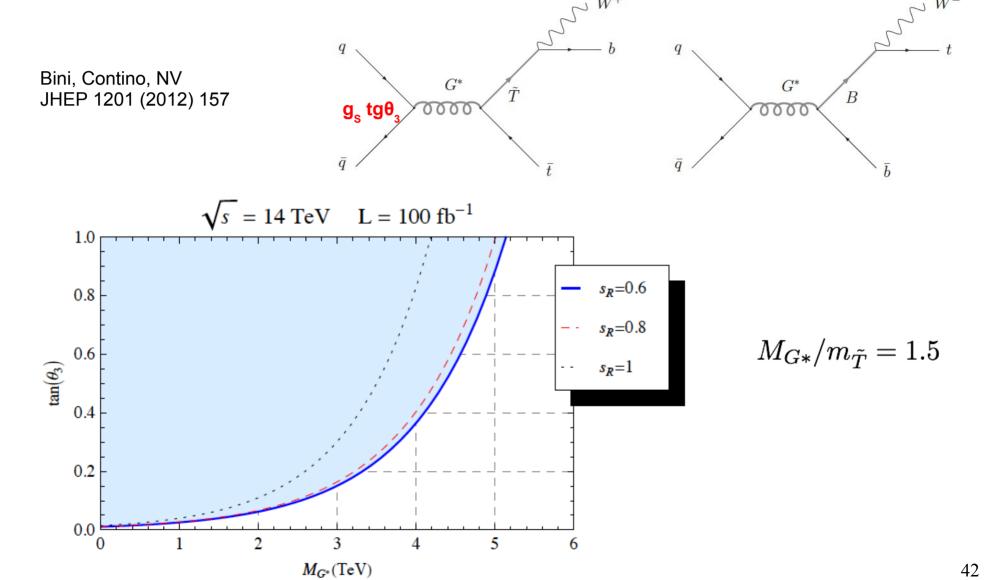
Test the more strongly-coupled regime



$$g_V = g_2 \cot \theta_2$$


important to consider at future colliders

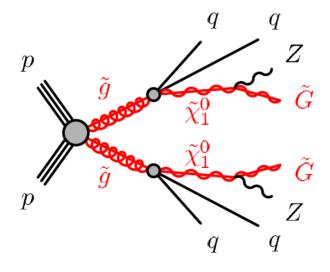
K. Mohan, NV JHEP 1510 (2015) 031



Similar phenomenology for the G*

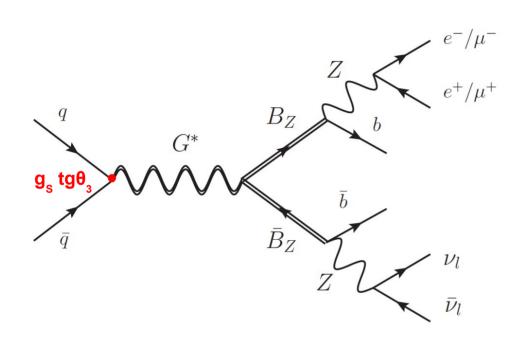
The only relevant difference with the W' is that G* could be broader, and thus ELUSIVE, in the heavy mass regime (above threshold for decays into pairs of VLQs)

The heavy-light decay channel


An example of the importance to consider vector resonance decays to VLQs

ATLAS 1503.03290

3 sigma excess in


Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector

On-Z Region	$E_{ m T}^{ m miss}$ [GeV]	H _T [GeV]	n _{jets}	m _{tt} [GeV]	SF/DF	$E_{\mathrm{T}}^{\mathrm{miss}} \mathrm{sig}.$ [$\sqrt{\mathrm{GeV}}$]	$f_{ m ST}$	$\Delta \phi(\mathrm{jet}_{12}, E_{\mathrm{T}}^{\mathrm{miss}})$
Signal regions	S							
SR-Z	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	-	-	> 0.4

But a **non-susy** explanation is also possible (GGM does not fit well the observed jet multiplicity distribution)

An example of the importance to consider vector resonance decays to VLQs

NV. 1504.01768

G* decays to VLQs (bottom partners)

Bottom partners included to explain the bottom mass generation

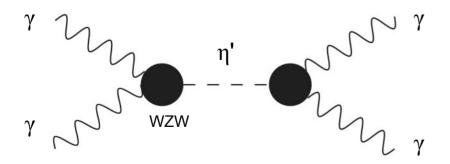
$$Q' = \begin{pmatrix} B_{-1/3} & T' \\ B_{-4/3} & B' \end{pmatrix} = (\mathbf{3}, \mathbf{2}, \mathbf{2})_{-1/3}$$

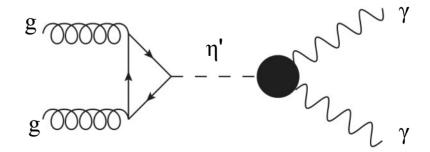
Custodial symmetry leads to two kinds of peculiar bottom-partners

$$B_H = \frac{1}{\sqrt{2}}(B_{-1/3} + B')$$
 $B_Z = \frac{1}{\sqrt{2}}(B_{-1/3} - B')$

$$B_Z = \frac{1}{\sqrt{2}} (B_{-1/3} - B')$$

100% decays to hb


100% decays to Zb


HIGH RATE for ZZbb hhbb final states

Composite Scalars and Topological Sectors

- η'-like states (related to U(1) axial anomaly)
- WZW anomalous couplings to EW gauge bosons, in particular to diphoton
- Diphoton channel very powerful to test strong dynamics

E. Molinaro, F. Sannino, NV *Mod. Phys. Lett. A* 31 (2016) 26, 1650155 *Nucl. Phys. B* 911 (2016) 106-126

Minimal models

MCHM Agashe, Contino, Pomarol, NPB 719 (2005)

$$SO(5) \to SO(4) \sim SU(2)_L \times SU(2)_R$$

(2,2) 4GB: $h + W_L^{\pm}, Z_L$

Minimal realization including custodial symmetry

Cannot be realized by an underlying fundamental fermionic matter theory

$$SU(4)/Sp(4) \sim SO(6)/SO(5)$$

$$(2,2) + (1,1)$$
 5 GB: $W_L^{\pm}, Z_L + h + \eta$

Includes custodial symmetry

underlying fundamental fermionic matter theory

N_f=2 techni-fermions in a Pseudo-Real of the underlying gauge dynamics. Condensate in a 2index antisymmetric₄₆

rep. of SU(4)

Unveiling a new BSM strong dynamics via anomalous interactions Molinara Sanning Thomas

Molinaro, Sannino, Thomsen, NV, Phys. Rev. D 96 (2017) 7, 075040

ANOMALY: an invariance of the classical theory is no longer present after quantization

➤ Inspiration from QCD

$$\partial_{\mu}J_{A}^{\mu} = \frac{e^{2}N_{C}}{96\pi^{2}}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma} + \dots$$

$$J_A^{\mu} = \frac{1}{2} \left(\bar{u} \gamma^{\mu} \gamma_5 u - \bar{d} \gamma^{\mu} \gamma_5 d \right)$$

SU(4)/Sp(4)

Sannino, Cacciapaglia, JHEP 04 111

Minimal composite model with fermionic UV completion

4 Weyl fermions in
$$(1,2)_0 \oplus (1,1)_{-1/2} \oplus (1,1)_{+1/2}$$
 of $\mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$

and in Pseudo-Real of **new strong gauge group** G_{TC} No gauge anomalies

$$\mathcal{L}_{\mathrm{T}C} = -\frac{1}{4} \mathcal{G}_{\mu\nu}^{A} \mathcal{G}^{A,\mu\nu} + i \overline{\psi}_{a} \overline{\sigma}^{\mu} D_{\mu} \psi^{a} - \frac{1}{2} \left(\psi^{a} m_{ab} \epsilon_{\mathrm{TC}} \psi^{b} + \mathrm{h.c.} \right)$$

$$\left\langle \psi^a \epsilon_{\mathrm TC} \psi^b \right\rangle = f^2 \Lambda \, \Sigma_0^{ab} \qquad \mathrm{SU}(4) o \mathrm{Sp}(4) \qquad \mathrm{5 \, NGB} \qquad W_L^\pm, Z_L + \, h + \eta$$

For $m_{ab} \rightarrow 0$ Extra (anomalous) global U(1) symmetry, with associated particle η' (QCD analogy)

SU(4)/Sp(4)

Minimal composite model with fermionic UV completion

4 Weyl fermions in $(1,2)_0 \oplus (1,1)_{-1/2} \oplus (1,1)_{+1/2}$ of $SU(3)_c \times SU(2)_L \times U(1)_V$

and in Pseudo-Real of **new strong gauge group** G_{TC} No gauge anomalies

$$\mathcal{L}_{\mathrm TC} = -\frac{1}{4} \mathcal{G}^{A}_{\mu\nu} \mathcal{G}^{A,\mu\nu} + i \overline{\psi}_a \overline{\sigma}^{\mu} D_{\mu} \psi^a - \frac{1}{2} \left(\psi^a m_{ab} \epsilon_{\mathrm{TC}} \psi^b + \mathrm{h.c.} \right)$$

$$\langle \psi^a \epsilon_{\mathrm TC} \psi^b \rangle = f^2 \Lambda \, \Sigma_0^{ab} \quad \mathrm{SU}(4) \to \mathrm{Sp}(4)$$

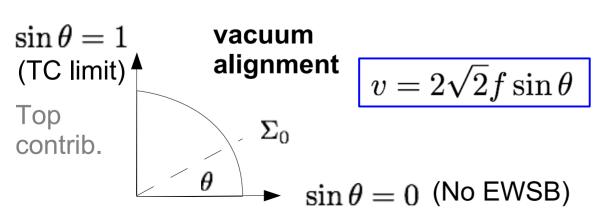
$$\sin \theta = 1$$
 vacuum alignment $v = 2\sqrt{2}f \sin \theta$
Top contrib. $\sin \theta = 0$ (No EWSB)
Gauge contribution

$$\Sigma_0 = \cos \theta \, \Sigma_B + \sin \theta \, \Sigma_H$$
$$= \begin{pmatrix} i \, \sigma_2 \cos \theta & \mathbf{1} \sin \theta \\ -\mathbf{1} \sin \theta & -i \, \sigma_2 \cos \theta \end{pmatrix}$$

SU(4)/Sp(4)

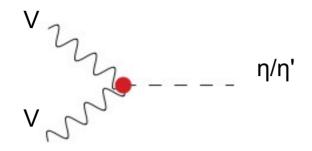
Minimal composite model with fermionic UV completion

4 Weyl fermions in
$$(1,2)_0 \oplus (1,1)_{-1/2} \oplus (1,1)_{+1/2}$$
 of $\mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$


and in Pseudo-Real of **new strong gauge group** G_{TC} No gauge anomalies

$$\mathcal{L}_{\mathrm{T}C} = -\frac{1}{4} \mathcal{G}_{\mu\nu}^{A} \mathcal{G}^{A,\mu\nu} + i \overline{\psi}_{a} \overline{\sigma}^{\mu} D_{\mu} \psi^{a} - \frac{1}{2} \left(\psi^{a} m_{ab} \epsilon_{\mathrm{TC}} \psi^{b} + \mathrm{h.c.} \right)$$

$$\langle \psi^a \epsilon_{\mathrm{T}C} \psi^b \rangle = f^2 \Lambda \, \Sigma_0^{ab} \quad \mathrm{SU}(4) \to \mathrm{Sp}(4)$$


Gauge contribution

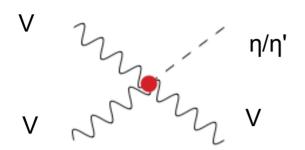
 $\left\langle \psi^a \epsilon_{\mathrm TC} \psi^b \right\rangle = f^2 \Lambda \, \Sigma_0^{ab} \qquad \mathrm{SU}(4) \to \mathrm{Sp}(4) \qquad \text{5 NGB} \qquad W_L^\pm, Z_L + h + \boxed{\eta} + \boxed{\eta'}$

Fine-tuning $\sim \sin\theta$ In the CW potential, in order to have EWSB and a light Higgs

WZW terms

Couplings of the anomalous interactions are directly proportional to d(R), the dimension of the technifermion representation under G_{TC} (~ N)

large-N CHM especially interesting for studies of anomalous interactions at future colliders


$$-\frac{d(R)\alpha_{\rm EM}\cos\theta\sin\theta}{32\pi v}\eta\left[\frac{2}{c_w s_w}A_{\mu\nu}\tilde{Z}^{\mu\nu} + \frac{c_w^2 - s_w^2}{c_w^2 s_w^2}Z_{\mu\nu}\tilde{Z}^{\mu\nu} + \frac{2}{s_w^2}W_{\mu\nu}^+\tilde{W}^{-\mu\nu}\right]$$

$$\frac{d(R)\alpha_{\rm EM}\sin\theta}{48\pi v} \eta' \left[3A_{\mu\nu}\tilde{A}^{\mu\nu} + 3\frac{c_w^2 - s_w^2}{c_w s_w} A_{\mu\nu}\tilde{Z}^{\mu\nu} + \frac{3 - 6c_w^2 s_w^2 - \sin^2\theta}{2c_w^2 s_w^2} Z_{\mu\nu}\tilde{Z}^{\mu\nu} \right]$$

Note: no EM anomaly for the η

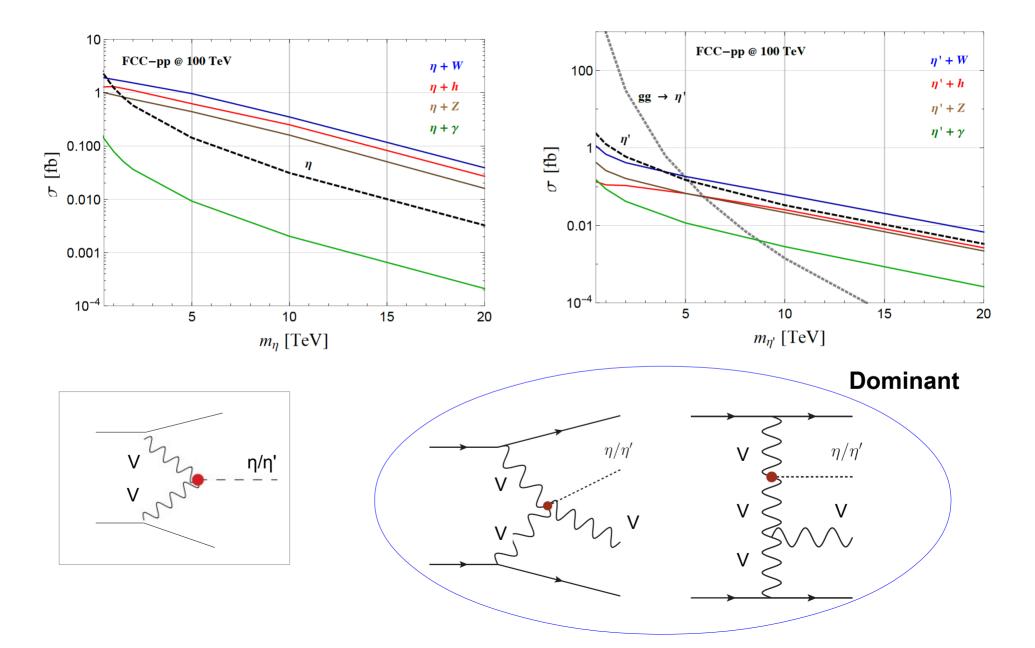
$$+ \frac{3 - \sin^2 \theta}{s_w^2} W_{\mu\nu}^+ \tilde{W}^{-\mu\nu}$$

WZW terms

Gauged WZW action also generates η/η' interactions with 3 gauge bosons:

$$-i\frac{d(R)\alpha_{\rm EM}^{3/2}\cos\theta\sin\theta}{4\sqrt{\pi}v}\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu}\eta\left[\frac{2}{s_w^2}A_{\nu} + \frac{2c_w^2 - \sin^2\theta}{c_w s_w^3}Z_{\nu}\right]W_{\rho}^{+}W_{\sigma}^{-}$$

$$-i\frac{d(R)\alpha_{\rm EM}^{3/2}\sin\theta}{12\sqrt{\pi}v}\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu}\eta'\left[\frac{6-2\sin^2\theta}{s_w^2}A_{\nu} + \frac{6c_w^2 - (1+2c_w^2)\sin^2\theta}{c_w s_w^3}Z_{\nu}\right]W_{\rho}^+W_{\sigma}^-$$


... and with 2 gauge bosons and the Higgs

$$-\frac{d(R)\alpha_{\rm EM}\sin^{3}\theta}{16\pi v^{2}}\varepsilon^{\mu\nu\rho\sigma}\left[\frac{4}{c_{w}s_{w}}\partial_{\mu}h\partial_{\nu}\eta A_{\rho}Z_{\sigma}\right] + h\overleftarrow{\partial_{\mu}}\eta\left(\frac{c_{w}^{2} - s_{w}^{2}}{c_{w}^{2}s_{w}^{2}}Z_{\nu\rho}Z_{\sigma} + \frac{1}{s_{w}^{2}}\left(W_{\nu\rho}^{+}W_{\sigma}^{-} + W_{\nu\rho}^{-}W_{\sigma}^{+}\right) + \frac{1}{c_{w}s_{w}}\left(A_{\nu\rho}Z_{\sigma} + Z_{\nu\rho}A_{\sigma}\right)\right]$$

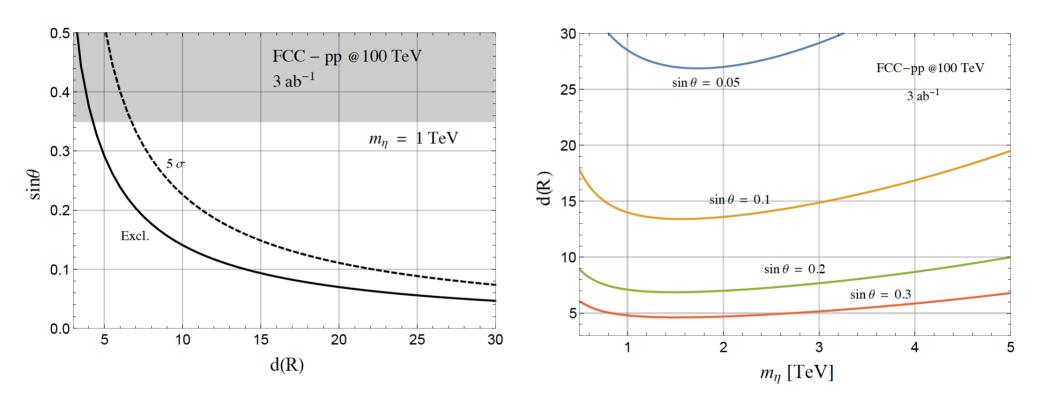
$$-\frac{d(R)\alpha_{\rm EM}\cos\theta\sin^3\theta}{24\pi v^2}\varepsilon^{\mu\nu\rho\sigma}h\partial_{\mu}\eta'\left[\frac{1}{c_w^2s_w^2}Z_{\nu\rho}Z_{\sigma} + \frac{1}{s_w^2}\left(W_{\nu\rho}^+W_{\sigma}^- + W_{\nu\rho}^-W_{\sigma}^+\right)\right]$$

Note: no anomalous triple- quartic-gauge couplings are generated

FCC-pp @ 100 TeV

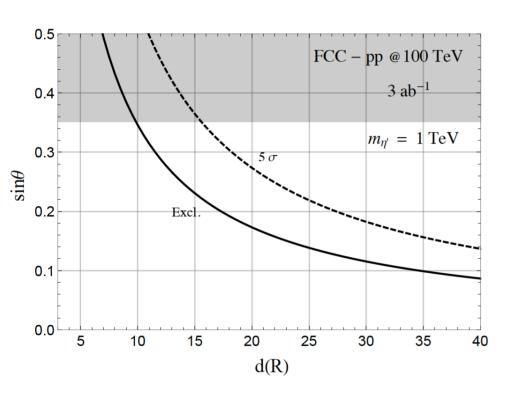
The signal $(\eta/\eta' + W)$

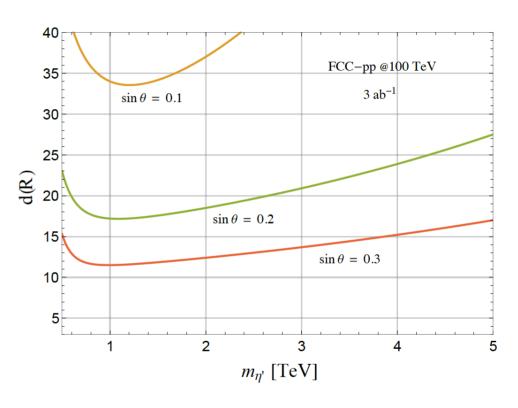
Production via topological interactions (interference between diagrams with 4 and 3 bosons interactions)


$$\eta o VV o ext{jets}$$
 $\eta' o tar t o ext{jets}$ $\eta' o tar t o ext{jets}$

We reconstruct a single fat-jet from the hadronic decays of the η/η' (Jets clustered by FastJet with R=1.5)

$$\ell + n \text{ jets} + \not E_T$$
, $n \ge 3$, $\ell \equiv e, \mu$


Dominant Background: W+jets


η signal

Wide FCC-pp reach on the fundamental parameters of the composite dynamics (d(R)) and the EWSB mechanism $(sin\theta)$

η' signal

