Light quark and hadron properties from lattice QCD at the physical point

Laurent Lellouch

CPT Marseille

Budapest-Marseille-Wuppertal collaboration (BMWc)

Laurent Lellouch Roma Tre, 19 April 2012

Motivation

- Verify that QCD is theory of strong interaction at low energies

 → verify the validity of the computational framework
 - \rightarrow light hadron masses (BMWc, Science 322 (2008))
 - \rightarrow hadron widths
 - $\rightarrow\,$ look for exotics
 - $\rightarrow \dots$
- Fix fundamental parameters and help search for new physics
 - $\rightarrow m_u, m_d, m_s, \ldots$ (BMWc, PLB 701 (2011); JHEP 1108 (2011))
 - $\rightarrow \langle N | m_q \bar{q} q | N \rangle$, q = u, d, s for dark matter (BMWc, PRD 85 (2012))
 - $\rightarrow F_{K}/F_{\pi} \leftrightarrow \frac{G_{q}}{G_{\mu}} \left[|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} \right] = 1$ (BMWc, PRD 81 (2010))
 - → B_K ↔ consistency of CPV in K and B decays ? (BMWc, PLB 705 (2011)) → ...
- Make predictions in nuclear physics?
- Full description of low energy particle physics \rightarrow include QED

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Today's triple feature

A CLASSIC

Ab initio determination of light hadron masses Dürr et al (BMWc), Science 322 '08

LA NOUVELLE VAGUE

Lattice QCD at the physical point: light quark masses Dürr et al (BMWc), PLB 701 '11 & JHEP 1108 '11

AN INDIE

Precision computation of the kaon bag parameter Dürr et al (BMWc), PLB 705 '11

5900

玊

▲□▶▲圖▶▲厘▶▲厘▶

Laurent Lellouch Roma

Why do we need lattice QCD (LQCD)?

- QCD fundamental d.o.f.: q and g
- QCD observed d.o.f.: *p*, *n*, π, *K*, ...
 - *q* and *g* are permanently confined w/in hadrons
 - hadrons hugely different from d.o.f. present in the Lagrangian
- \Rightarrow perturbation in α_s has no chance
- \Rightarrow Need a tool to solve low energy QCD:
 - to compute hadronic and nuclear properties
 - to subtract "parasitical" hadronic contributions to low energy observables important for uncovering new fundamental physics
- \rightarrow numerical lattice QCD

< ロ > < 同 > < 三 > < 三 > 、

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

What is lattice QCD?

Lattice gauge theory \longrightarrow mathematically sound definition of NP QCD:

• UV (and IR) cutoffs and a well defined path integral in Euclidean spacetime:

$$\langle O \rangle = \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi \, e^{-S_G - \int \bar{\psi} D[M]\psi} \, O[U, \psi, \bar{\psi}]$$

=
$$\int \mathcal{D}U \, e^{-S_G} \det(D[M]) \, O[U]_{\text{Wick}}$$

DUe^{-S_G} det(*D*[*M*]) ≥ 0 and finite # of dof's
 → evaluate numerically using stochastic methods

<ロ > < 団 > < 団 > < 豆 > < 豆 > <

臣

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

NOT A MODEL: LQCD is QCD when $a \rightarrow 0$, $V \rightarrow \infty$ and stats $\rightarrow \infty$

In practice, limitations ...

Minimize and control all systematics

- sometric compute hugely expensive determinant of $O(10^9 \times 10^9)$ fermion matrix
- fight fast increasing cost of simulations as:
 - $m_{ud} \searrow m_{ud}^{ph} \Rightarrow$ reach physical mass point in controlled way
 - $a \searrow 0 \Rightarrow$ controlled continuum extrapolation
 - $L \rightarrow \infty \Rightarrow$ controlled infinite volume extrapolation
- nonperturbative renormalization
 - \Rightarrow eliminate all perturbative uncertainties
- \Rightarrow only then, true nonperturbative QCD predictions

< ロ > < 同 > < 三 > < 三 > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$

The calculation that I've been dreaming of doing

- $N_f = 2 + 1$ simulations to include *u*, *d* and *s* sea quark effects
- Simulations all the way down to $M_{\pi} \leq 135 \, \mathrm{MeV}$ to allow small interpolation to physical mass point
- Large $L \gtrsim 5 \text{ fm}$ to have sub-percent finite V errors
- At least three $a \leq 0.1$ fm for controlled continuum limit
- Reliable determination of the scale w/ a well measured physical observable
- Unitary, local gauge and fermion actions
- Full nonperturbative renormalization and nonperturbative continuum running if necessary
- Complete analysis of systematic uncertainties

< ロ > < 同 > < 三 > < 三 > :

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Not far in 2008

Dürr et al (BMWc) Science 322 '08, PRD79 '09

590

.∃ →

臣

20 large scale $N_f = 2 + 1$ Wilson fermion simulations

 $M_{\pi} \gtrsim 190 \, {
m MeV}$ $a \approx 0.065, 0.085, 0.125 \, {
m fm}$ $L \rightarrow 4 \, {
m fm}$

Roma Tre, 19 April 2012

Good enough for ab initio calculation of light hadron masses

Laurent Lellouch

Computation of light hadron masses: motivations

Dürr et al (BMWc) Science 322 '08

< □ > < 三 > < 三 >

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- > 99% of mass of visible universe is in the form of p & n
- Only <5% comes from mass of u and d constituents
- Important to verify that asymptotically free QCD generates this mass deficit in a way consistent w/ experiment
- Validate lattice QCD tools used
 ⇒ reliable predictions
- Want QCD not lattice QCD results
 all necessary limits must be taken cleanly

Example combined mass and continuum extrapolation

Extrapolated results very close to lightest points/small a-dependence \Rightarrow extrapolations fully controlled

Systematic and statistical error estimate

- Correct treatment of resonances (Lüscher, '85-'91)
- 432 distinct analyses for each hadron mass corresponding to different choices for: $a \searrow 0$, $M_{\pi} \searrow 135$ MeV, $L \nearrow \infty$, ...
- Weigh each one by fit quality \rightarrow systematic error distribution
- repeat for 2000 bootstrap samples

- Median \rightarrow central value
- Central 68% CI → systematic error

 Central 68% CI of bootstrap distribution of medians → statistical error

Postdiction of the light hadron masses, etc.

(Partial calculations by MILC '04-'09, RBC-UKQCD '07, Del Debbio et al '07, JLQCD '07, QCDSF '07-'09, Walker-Loud et al '08,

PACS-CS '08-'10, ETM '09, Gattringer et al '09, ...)

Other results on BMWc '08: F_K/F_{π} and 1st row CKM unitarity (BMWc, PRD81 '10), $\langle N|m_q\bar{q}q|N\rangle$, q = u, d, s for dark matter (BMWc, PRD85 '12)

500

王

<ロ > < 同 > < 三 > < 三 > < 三 > <

Dream comes true in 2010

Dürr et al (BMWc) PLB 701 (2011); JHEP 1108 (2011)

< □ ▶

P.

< 문 ▶ < 문 ▶

Э

590

47 large scale $N_f = 2 + 1$ Wilson fermion simulations

 $M_{\pi} \gtrsim 120 \, {
m MeV} \qquad 5a'{
m s} \approx 0.054 \div 0.116 \, {
m fm}$ $L \rightarrow 6 fm$

Dream comes true in 2010

Dürr et al (BMWc) PLB 701 (2011); JHEP 1108 (2011)

<ロト < 回 > < 回 > < 回 > 、

臣

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

47 large scale $N_f = 2 + 1$ Wilson fermion simulations

 $M_{\pi} \gtrsim 120 \,\mathrm{MeV}$ 5*a*'s $\approx 0.054 \div 0.116 \,\mathrm{fm}$ $L \rightarrow 6 \,\mathrm{fm}$

Still only ones there! (only $N_f \ge 2 + 1$ simulations are shown)

Dürr et al (BMWc), PRD79 '09, Science 322 '08, JHEP 1108 '11

 $N_f = 2 + 1$ QCD: degenerate u & d w/ mass m_{ud} and s quark w/ mass $m_s \sim m_s^{\rm phys}$

1) Conceptually clean discretization which balances improvement and CPU cost:

- tree-level $O(a^2)$ -improved gauge action (Lüscher et al '85)
- tree-level O(a)-improved Wilson fermion (Sheikholeslami et al '85) w/ 2 HEX smearing (Morningstar et al '04, Hasenfratz et al '01, Capitani et al '06)
 ⇒ O(α_sa, a²) instead of O(a)
- 2) Highly optimized algorithms (see also Urbach et al '06):
 - HMC for u and d and RHMC for s
 - mass preconditioning (Hasenbusch '01)
 - multiple timescale integration of MD (Sexton et al '92)
 - higher-order (Omelyan) integrator for MD (Takaishi et al '06)
 - mixed precision acceleration of inverters via iterative refinement
- 3) Highly optimized codes
- 4) Rigorous battery of tests: algorithm stability, autocorrelations, scaling, finite-V, ...

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Scaling study

 $N_f = 3 \text{ w}/2 \text{ HEX}$ action, 4 lattice spacings ($a \simeq 0.06 \div 0.15 \text{ fm}$), $M_{\pi}L > 4$ fixed and

$$M_{\pi}/M_{
ho} = \sqrt{2(M_{K}^{
hoh})^2 - (M_{\pi}^{
hoh})^2/M_{\phi}^{
hoh}} \sim 0.67$$

i.e. $m_q \sim m_s^{ph}$

- M_N and M_Δ are linear in $\alpha_s a$ out to $a \sim 0.15 \, \text{fm}$
- ⇒ very good scaling: discretization errors $\leq 2\%$ out to $a\sim0.15$ fm
- Results perfectly consistent w/ analogous 6 stout analysis in BMWc PRD 79 (2009)

E.

500

Finite volume studies

• In large volumes $FVE \sim e^{-M_{\pi}L}$

[more complicated for resonances (Lüscher '85-'91)

• $M_{\pi}L \gtrsim 4$ expected to give $L \rightarrow \infty$ masses within our statistical errors

2HEX, $a \approx 0.116 \text{ fm}, M_{\pi} \approx 0.25, 0.30 \text{ GeV},$

 $M_{\pi}L = 2.4 \rightarrow 5.6$

6STOUT, $a \approx 0.125$ fm, $M_{\pi} \approx 0.33$ GeV,

 $M_{\pi}L = 3.5
ightarrow 7$

E.

500

Well described by (and Colangelo et al, 2005)

$$\frac{M_X(L) - M_X}{M_X} = C \left(\frac{M_\pi}{\pi F_\pi}\right)^2 \frac{1}{(M_\pi L)^{3/2}} e^{-M_\pi L}$$

Very small, for the volumes that we consider

Determine *m_u*, *m_d*, *m_s ab initio*

- Fundamental parameters of nature
- Precise values → stability of matter, N-N scattering lengths, presence or absence of strong CP violation, etc.
- Information about BSM: theory of fermion masses must reproduce these values
- Nonperturbative (NP) computation is required
- Would be needle in a haystack problem if not for χ SB
- \Rightarrow interesting first "measurement" w/ physical point LQCD

< □ > < 三 > < 三 >

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Light quark masses circa Aug. 2010

 $\rm FLAG \rightarrow$ analysis of unquenched lattice determinations of light quark masses

(arXiv:1011.4408v1)

 $m_{ud}^{\overline{\text{MS}}}(2 \,\text{GeV}) = \begin{cases} 3.4(4) \,\text{MeV} \ [12\%] \,\text{FLAG} \\ 2.5 \div 5.0 \,\text{MeV} \ [30\%] \,\text{PDG} \end{cases}$

m_s 80 100 120 60 140 Blum 10 N_f=2+1 ČĎ 08 CD 05 CD/MILC/UKQCD 04 FLAG 10v1 N, = 2+1 CDSF/UKQCD 06 Z=7 ALPHA 05 ACDSF/UKQCD 04 JLQCD 02 CP-PACS 01-03 FLAG 10v1 N₄ = 2 Dominguez 09 Chetyrkin 06 Jamin 06 Narison 06 Vainshtein 78 PDG 09 60 80 100 120 140 MeV

 $m_{\rm s}^{\rm \overline{MS}}(2\,{\rm GeV}) = \begin{cases} 95.(10)\,{\rm MeV} & [11\%] \,{\rm FLAG} \\ 70 \div 130\,{\rm MeV} & [30\%] \,{\rm PDG} \end{cases}$

< □ > < □ > < □ > < □ > < □ > .

E.

Even extensive study by MILC still has:

- $M_{\pi}^{\text{RMS}} \ge 260 \,\text{MeV} \implies m_{ud}^{\text{MILC,eff}} \ge 3.7 \times m_{ud}^{\text{phys}}$
- perturbative renormalization (albeit 2 loops)

Quark mass definitions

Standard

- Lagrangian mass m^{bare}
- $m^{\text{ren}} = \frac{1}{Z_S}(m^{\text{bare}} m^{\text{crit}})$

Better use ...

• $d = m_s^{\text{bare}} - m_{ud}^{\text{bare}}$ • $d^{\text{ren}} = \frac{1}{Z_S}d$ • m^{PCAC} from $\frac{\langle \partial_0 A_0 P \rangle}{\langle P(t) P(0) \rangle}$

•
$$m^{\text{ren}} = \frac{Z_A}{Z_P} m^{\text{PCAC}}$$

•
$$r = m_s^{\text{PCAC}} / m_{ud}^{\text{PCAC}}$$

• $r^{\text{ren}} = r$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\mathcal{O} \mathcal{O}$

- ... and reconstruct
- $m_s^{\text{ren}} = \frac{1}{Z_S} \frac{rd}{r-1}$

- $m_{ud}^{\text{ren}} = \frac{1}{Z_S} \frac{d}{r-1}$
- ✓ No additive mass renormalization
- ✓ Only Z_S multiplicative renormalization w/ no pion poles
- Ise O(a)-improved version

Renormalization strategy

Goal

- Convert bare lattice masses to finite renormalized ones ...
- In the second second
- ... with optional accurate conversion to other schemes

Method

RI/MOM NPR (Martinelli et al '95) W/ $S(p) \rightarrow \bar{S}(p) = S(p) - \text{Tr}_D[S(p)]/4$ (Becirevic et al '00)

$$m^{\rm sch}(\mu') = C^{\rm RI \rightarrow sch, PT}(\mu') \left\{ [R^{\rm RI}_{\mathcal{S}}(\mu', \mu) \times Z^{\rm RI}_{\mathcal{S}}(a\mu, g_0)]^{-1} \times m(g_0) \right\}_{\rm lat}$$

• $\mu \ll 2\pi/a \sim 11 \div 24 \text{ GeV}$ to reduce disc. errors in $Z_S(a\mu, g_0)$

 $\checkmark \mu = 1.3 \,\mathrm{GeV}$ $\checkmark \mu = 2.1 \,\mathrm{GeV}$

- $R_{S}^{RI}(\mu',\mu)$, continuum NP running to $\mu' \gg \Lambda_{QCD}$
- $C^{\text{RI} \rightarrow \text{sch}, \text{PT}}(\mu')$, optional conversions to other schemes in 4-loop PT
- 21 additional $N_f = 3$ RI/MOM simulations at same 5 β 's

< (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

RI/MOM nonperturbative renormalization

Have

(Martinelli et al '95)

₽ ► < ∃ ►

< ∃ ▶

E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

$[\bar{q}_1 \Gamma q_2](\mu) = Z_{\Gamma}^{\mathrm{RI}}(a\mu, g_0)[\bar{q}_1 \Gamma q_2](a)$

Cancel $Z_q^{\text{RI}}(a\mu, g_0)$ by normalizing with LHS of conserved vector current

Choice of target RI/MOM scale

 $\Rightarrow \sigma_{\rm PT} \lesssim 1\%$ for $\mu \gtrsim 4 \,{
m GeV}$

÷.

5900

Nonperturbative running to 4 GeV

Determine nonperturbative running in continuum limit from (see also

Constantinou et al '10, Arthur et al '10)

Rescaled $Z_S^{\text{RI}}(a\mu, \beta)$ for $\beta < 3.8$ to \sim match $Z_S^{\text{RI}}(a\mu, \beta = 3.8)$

玊

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Running beyond 4 GeV

For $\mu > 4$ GeV, 4-loop PT and NP running agrees on finest lattice

- ⇒ get RGI masses w/ negligible PT error
- \Rightarrow masses in other schemes w/ only errors proper to that scheme

E.

590

Combined mass interp. and continuum extrap. (1)

Project onto m_{ud} axis: chiral interpolation to $M_{\pi}^{\rm ph}$

✓ Consistent w/ NLO χ PT for $M_{\pi} \leq$ 410 MeV

- \Rightarrow 2 safe interpolation ranges: $M_{\pi} < 340, 380 \,\mathrm{MeV}$
- \Rightarrow SU(2) NLO χ PT & Taylor interpolations to physical point

< 行

- E -

< ∃ ▶

Ð.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Combined mass interp. and continuum extrap. (2)

Project onto a axis: continuum extrapolation

- Leading order is $O(\alpha_s a)$
- Allow also domination of sub-leading O(a²)

(continuum extrapolation examples - errors on points are statistical)

 \Rightarrow fully controlled continuum limit

- ₹ ≣ ►

▲ 🗇 🕨 🔺 🖻 🕨

 $\mathcal{O}QQ$

E

Calculation performed in isospin limit:

• $m_u = m_d$ • NO QED

 \Rightarrow leave *ab initio* realm

• Use dispersive Q from $\eta \to \pi \pi \pi$

$$Q^2\equiv rac{m_s^2-m_{ud}^2}{m_d^2-m_u^2}$$

• Precise m_{ud} and $m_s/m_{ud} \Rightarrow$

$$m_{u/d} = m_{ud} \left\{ 1 \mp \frac{1}{4Q^2} \left[\left(\frac{m_s}{m_{ud}} \right)^2 - 1 \right] \right\}$$

• Use conservative Q = 22.3(8) (Leutwyler '09)

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Systematic error treatment

- 288 full analyses on 2000 boostrap samples
 - 2 correlator time fit ranges
 - 3 NPR procedures
 - 2 continuum extrap. forms for NP running
 - 3 chiral interp. forms: $2 \times SU(2) \chi$ PT, Taylor
 - 2 chiral interp. ranges: $M_{\pi} < 340, 380 \,\mathrm{MeV}$
 - 2 chiral interp. ranges for scale setting channel M_{Ω} : $M_{\pi} < 340, 480 \,\mathrm{MeV}$
 - 2 continuum forms
- Analyses weighted by fit quality \Rightarrow systematic error distribution
 - Mean \rightarrow final result
 - Std. dev. \rightarrow systematic error
- Statistical error from distribution of means over 2000 samples

<ロ > < 同 > < 三 > < 三 > < 三 > <

E.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

	RI 4 GeV	RGI	$\overline{\text{MS}}$ 2 GeV
m _s	96.4(1.1)(1.5)	127.3(1.5)(1.9)	95.5(1.1)(1.5)
<i>m_{ud}</i>	3.503(48)(49)	4.624(63)(64)	3.469(47)(48)
m _u	2.17(4)(3)(10)	2.86(5)(4)(13)	2.15(4)(3)(9)
m _d	4.84(7)(7)(10)	6.39(9)(9)(13)	4.79(7)(7)(9)

$$\frac{m_s}{m_{ud}} = 27.53(20)(8) \qquad \frac{m_u}{m_d} = 0.449(6)(2)(29)$$

Additional consistency checks

- Additional continuum, chiral and FV terms
 all compatible with 0
- Unweighted final result and systematic error
 negligible impact

- ✓ Use m^{PCAC} only
 Image: compatible, slightly larger error
- Full quenched check of procedure Cf. reference computation (Garden et al '00)

Comparison

 m_{ud} and m_s are now known to 2%, m_s/m_{ud} to 0.7% • ... m_{μ} to 5% and m_{d} to 3% w/ help of phenomenology

<ロ > < 団 > < 団 > < 団 > < 団 > 、

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Quark flavor mixing constraints in the SM and beyond

Test SM paradigm of quark flavor mixing and CP violation and look for new physics

Unitary CKM matrix

Test CKM unitarity/quark-lepton universality and constrain NP using, e.g.

1st row unitarity:

Unitarity triangle:

$$\frac{G_q^2}{G_\mu^2} |V_{ud}|^2 \left[1 + |V_{us}/V_{ud}|^2 + |V_{ub}/V_{ud}|^2 \right] = 1 + O\left(\frac{M_W^2}{\Lambda_{NP}^2}\right)$$
$$\frac{G_q^2}{G_\mu^2} \left(V_{cd} V_{cb}^*\right) \left[1 + \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} + \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \right] = O\left(\frac{M_W^2}{\Lambda_{NP}^2}\right)$$

<ロ > < 同 > < 三 > < 三 > < 三 > <

王

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

CPV and the K^0 - \overline{K}^0 system

Two neutral kaon flavor eigenstates: $K^0(d\bar{s}) \& \bar{K}^0(s\bar{d})$

In experiment, have predominantly:

- $K_S^0 \rightarrow \pi\pi \Rightarrow K_S^0 \sim K_1$, the CP even combination
- $K_L^0 \rightarrow \pi \pi \pi \Rightarrow K_L^0 \sim K_2$, the CP odd combination

$K^0 - \bar{K}^0$ mixing in the SM

$$M_{12} - \frac{i}{2}\Gamma_{12} = \frac{\langle K^0 | \mathcal{H}_{\text{eff}}^{\Delta S=2}(0) | \bar{K}^0 \rangle}{2M_K} - \underbrace{\frac{i}{2M_K} \int d^4x \langle K^0 | \mathcal{H}_{\text{eff}}^{\Delta S=1}(x) \mathcal{H}_{\text{eff}}^{\Delta S=1}(0) | \bar{K}^0 \rangle}_{\text{long-distance contributions to } M_{12} \& \Gamma_{12}} + O(G_F^3)$$

To LO in the OPE

$$2M_{\mathcal{K}}M_{12}^{*} \stackrel{\text{LO}}{=} \langle \bar{K}^{0} | \mathcal{H}_{\text{eff}}^{\Delta S=2} | \mathcal{K}^{0} \rangle = C_{1}^{\text{SM}}(\mu) \langle \bar{K}^{0} | O_{1}(\mu) | \mathcal{K}^{0} \rangle$$
$$O_{1} = (\bar{s}d)_{V-A} (\bar{s}d)_{V-A} \qquad \langle \bar{K}^{0} | O_{1}(\mu) | \mathcal{K}^{0} \rangle = \frac{16}{3} M_{\mathcal{K}}^{2} F_{\mathcal{K}}^{2} B_{\mathcal{K}}(\mu)$$

÷.

5900

Indirect CPV in $K \rightarrow \pi \pi$

Parametrized by

$$\operatorname{Re}\frac{T[K_L \to (\pi\pi)_0]}{T[K_S \to (\pi\pi)_0]} = \operatorname{Re}\epsilon = \cos\phi_\epsilon \sin\phi_\epsilon \left[\frac{\operatorname{Im}M_{12}}{2\operatorname{Re}M_{12}} - \frac{\operatorname{Im}\Gamma_{12}}{2\operatorname{Re}\Gamma_{12}}\right]$$

w/ $\phi_\epsilon = \tan^{-1}\left(2\Delta M_K/\Delta\Gamma_K\right) = 43.51(5)^o, \Delta M_K \simeq 2\operatorname{Re}M_{12}, \Delta\Gamma_K \simeq -2\operatorname{Re}\Gamma_{12}$

$$\longrightarrow \epsilon = \kappa_{\epsilon} \frac{e^{i\phi_{\epsilon}}}{\sqrt{2}} \frac{\mathrm{Im}M_{12}}{\Delta M_{K}}$$

W/ $\kappa_{\epsilon} = 0.94(2)$ (Buras et al. (2010))

To NLO in α_s

$$\begin{aligned} |\epsilon| &= \kappa_{\epsilon} C_{\epsilon} \operatorname{Im} \lambda_{t} \{ \operatorname{Re} \lambda_{c} [\eta_{1} S_{cc} \\ &- \eta_{3} S_{ct}] - \operatorname{Re} \lambda_{t} \eta_{2} S_{tt} \} \hat{B}_{K} \\ \propto & A^{2} \lambda^{6} \bar{\eta} [\operatorname{cst} + \operatorname{cst} \\ &\times A^{2} \lambda^{4} (1 - \bar{\rho})] \hat{B}_{K} \end{aligned}$$

w/ $\lambda_q = V_{qd} V_{qs}^*$

E

5900

B_K with Wilson fermions

(Dürr et al [BMWc], arXiv:1106:3230 [hep-lat])

 χ SB of Wilson fermions $\rightarrow O_1(a)$ mixes w/ ops of different chirality:

 $\langle ar{K}^0 | O_1(\mu) | K^0
angle = Z_{11}(g_0,a\mu) \hat{Q}_1(a)$

w/

$$\hat{Q}_1(a)=Q_1(a)+\sum_{i=2}^5\Delta_{1i}(g_0)Q_i(a),\qquad Q_i(a)\equiv\langlear{K}^0|O_i(a)|K^0
angle$$

and complete parity conserving basis:

$$egin{array}{rcl} O_1 &=& \gamma_\mu \otimes \gamma_\mu + \gamma_\mu \gamma_5 \otimes \gamma_\mu \gamma_5 \ O_2 &=& \gamma_\mu \otimes \gamma_\mu - \gamma_\mu \gamma_5 \otimes \gamma_\mu \gamma_5 \end{array}$$

 $O_{3} = I \otimes I + \gamma_{5} \otimes \gamma_{5}$ $O_{4} = I \otimes I - \gamma_{5} \otimes \gamma_{5}$ $O_{5} = \sigma_{\mu\nu} \otimes \sigma_{\mu\nu}$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

w/ $\Gamma \otimes \Gamma = [\bar{s}\Gamma d][\bar{s}\Gamma d]$

Perform calculation on BMWc 2010 dataset

Multiplicative renormalization of B_K

Define

$$Z_{B_{\mathcal{K}}}(g_0,a\mu)\equiv Z_{11}(g_0,a\mu)/Z^2_{\mathcal{A}}(g_0)$$

w/ Z_A , axial current renormalization

Use similar RI/MOM methods as for $Z_S(g_0, a\mu)$

Chiral behavior

Flat chiral extrapolation, more so at larger μ

< □ > < ⊡ > < ⊡

< E

590

臣

Nonperturbative continuum running of B_K

Continuum, nonperturbative running to $\mu = 3.5 \text{ GeV}$ is given by

$$\mathsf{P}^{\mathrm{RI}}_{\mathcal{B}_{\mathcal{K}}}(\mu_{0},\mu) = \lim_{g_{0}\to 0} Z^{\mathrm{RI}}_{\mathcal{B}_{\mathcal{K}}}(g_{0},a\mu)/Z^{\mathrm{RI}}_{\mathcal{B}_{\mathcal{K}}}(g_{0},a\mu_{0})$$

Divided by 2-loop PT running

 \Rightarrow good agreement in range 1.75 \div 3.5 GeV

Mixing coefficients Δ_{1i}

Determined in standard way (Donini et al. (1999)), w/ RI/MOM Goldstone poles removed through (Giusti et al. (2000))

$$\Delta_{1i}^{\text{sub}} \equiv \frac{m_1 \Delta_{1i}(a, m_1) - m_2 \Delta_{1i}(a, m_2)}{m_1 - m_2}$$

Subtract remaining $1/p^4$ and $(ap)^2$ w/ fits

 \rightarrow mixing coeffs are well determined and small thanks to smearing \rightarrow still $O(10) \times$ mixing for DWF

500

Extraction of bare matrix elements

$$B_i(g_0;t) = \frac{(L/a)^3 \sum_{\vec{x}} \langle W(T/2) O_i(g_0;t,\vec{x}) W(0) \rangle}{\frac{8}{3} \sum_{\vec{x},\vec{y}} \langle W(T/2) A_\mu(t,\vec{x}) \rangle \langle A_\mu(t,\vec{y}) W(0) \rangle}$$

Laurent Lellouch

5900

Operator contributions to B_K

 \rightarrow contributions from $Q_{2,...,5}$ small and often consistent with zero

 \rightarrow nevertheless, dominate systematic error

◀◻▶ ◀氬▶ ◀ె▶

-∢ ⊒ ▶

E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Overall strategy for B_K

- bare $Q_{1,...,5}$ from $N_f = 2 + 1$ ensembles ($\beta = 3.5, 3.61, 3.7, 3.8$) w/ various ($M_{\pi}^2, 2M_K^2 M_{\pi}^2$)
- RI/MOM renormalization w/ trace-subtraction from $N_f = 3$ ensembles ($\beta = 3.5, 3.61, 3.7, 3.8$) w/ various am_q
- multiplicative $Z_{B_{\kappa}}(g_0, a\mu)$ w/ continuum, nonperturbative running to $\mu = 3.5 \text{ GeV}$ and pole-subtracted mixing terms for $\Delta_{1,i}^{\text{sub}}$
- renormalized $B_{\mathcal{K}}(\mu)$ considered fn of $(M_{\pi}^2, 2M_{\mathcal{K}}^2 M_{\pi}^2, a, L)$
 - \rightarrow interpolated to physical mass point
 - \rightarrow extrapolated to continuum
- Very small FV corrections from Becirevic et al (2004) applied to data prior to analysis

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Combined chiral interp. and continuum extrap. (1)

Project onto chiral axes: interpolation to $M_{\pi} = 134.8(3)$ MeV and $M_{K} = 494.2(5)$ MeV

 \rightarrow nearly flat m_{ud} -dependence near m_{ud}^{phys}

 \rightarrow much steeper m_s -dependence near $m_s^{\rm phys}$

< ロ > < 同 > < 三 > < 三 >

E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Combined chiral interp. and continuum extrap. (2)

Project onto a axis: continuum extrapolation

 \rightarrow mild extrapolation for $\beta \geq 3.5$

 $\rightarrow \beta \geq 3.31$ was found to be outside scaling regime

5900

Ē.

P.

< □ ▶

·< 토 ▶ < 토 ▶

Systematic and statistical error

- 2 time-fit ranges for π and K masses
- 2 time-fit ranges for Q_{1,...,5}
- $O(\alpha_s a)$ or $O(a^2)$ for running
- 3 intermediate renormalization scales
- 2 fit fns and 4 ranges in p^2 for Δ_{1i}
- 5 fit fns for mass interpolation
- 2 pion mass cuts ($M_{\pi} < 340, 380 \, {\rm MeV}$)

 \rightarrow 5760 analyses, each of which is a reasonable choice, weighted by fit quality

 \rightarrow median and central 68% give central value and systematic uncertainty

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

臣

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

2000 bootstraps of the median give statistical error

Many cross checks

Results

Procedure gives $B_{K}^{RI}(3.5 \text{ GeV})$ fully nonperturbatively

Can convert to other schemes w/ perturbation theory (PT) \rightarrow perturbative uncertainty

conv.	RGI	MS-NDR 2 GeV
4-loop β , 1-loop γ	1.427	1.047
4-loop eta , 2-loop γ	1.457	1.062
ratio	1.021	1.01376

Take blanket 1% for 3 loop uncertainty

	RI @ 3.5 GeV	RGI	MS-NDR @ 2 GeV
B _K	0.5308(56)(23)	0.7727(81)(34)(77)	0.5644(59)(25)(56)

Total error 1.1-1.5%, statistical (and PT) dominated

B_K comparison

Dominant error in CKMfitter global fit results is $|V_{cb}|^4 \sim (A\lambda^2)^4$ \rightarrow our result is an encouragement to reduce uncertainties in other parts of the calculation of ϵ <ロ > < 同 > < 回 > < 回 > < 回 > <

3

- After > 40 years we are finally able to perform fully controlled LQCD computations all the way down to $M_{\pi} \leq 135 \text{ MeV}$
- Presented fully controlled results for light hadron spectrum and for light quark masses and B_K w/ $\sigma_{tot} < 2\%$
- Also results on BMWc 08 ensembles for light hadron masses, *F_K/F_π* and sigma terms, and preliminary results on BMWc 10 ensembles for E+M corrections, *ρ*-width, . . .
- For experts: new high-precision scale setting from Wilson/Symanzik flow on BMWc 10 ensembles (Borsányi et al, arXiv:1203.4469)

 $w_0 = 0.1755(18)(4) \, \text{fm} \quad [(1.0\%)(0.2\%)]$

Advantages:

- aw_0 is cheap, precise and reliable
- w_0 also given for non-physical quark masses
- depends weakly on quark masses
- code available on arXiv
- \Rightarrow modern version of Sommer scale r_0

<ロト < 団 > < 団 > < 豆 > < 豆 > < 亘 < 三 > < 亘 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Lattice QCD is undergoing a major shift in paradigm

- it is now possible to control and reliably quantify all systematic errors with "data" (for at most 1 initial and/or final hadron state)
- ⇒ we are getting QCD NOT LQCD predictions
 - requires numerous simulations with $M_{\pi} < 200 \text{ MeV}$ and preferably $\searrow 135 \text{ MeV}$, more than 3 a < 0.1 fm and lattice sizes $L \rightarrow 4 \div 6 \text{ fm}$
 - requires trying all reasonable analyses of "data" and combining results in sensible way to obtain a reliable systematic error
- Expect many more very interesting nonperturbative QCD predictions in coming years

<ロ > < 同 > < 三 > < 三 > < 三 > <

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$