

CYGNO status and plans Feb 2025

COIMBRA

European Research Council Established by the European Commi

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

Collaboration Meeting 2024

- testing and optimisation of ancillary systems (HV, Gas, Slow Control, DAQ, Reco, Monitoring);
- development and optimisations of data analysis algorithms and performance study;
- development and validation of **detector** and **background simulation**;

LIME: RUNs 1-5

Data taking campaigns

Program from last year's CM presentation:

• **RUN2**:

- 2023
- 4 cm Cu shielding
- 15th Feb $2023 \rightarrow 9$ th March 2023
- **RUN3**:
 - 10 cm Cu shielding
 - 5th May $2023 \rightarrow 16$ th November 2023
- **RUN4**:
 - 10 cm Cu + 40 cm water shielding
 - 30th November $2023 \rightarrow 15$ th December 2023

LIME data taking in 2024

• **RUN4**:

- 10 cm Cu + 40 cm water shielding
- 30th November $2023 \rightarrow 15$ th December 2023
- 15th Jan 2024 \rightarrow 22nd April 2024
- Optimization of parameters for low gain campaign of RUN5

• **RUN5**:

- 10 cm Cu shielding, **low gain**
- 17th May $2025 \rightarrow 4$ th Dec 2024

• AmBe:

- 10 cm Cu shielding, **low gain**
- 4th Dec $2025 \rightarrow 17$ th/18th December 2024

Latest tests

• Gas purity filters;

LIME: RUNs 1-5

	Time slot	Number of pictures	Event rate	Number of event
RUN 1: No-shielding	3 Nov 2023 - 15 Dec 2023	4 10 ⁵	35 Hz	4 10 ⁶
RUN 2: 4 cm Cu shielding	15 Feb 2023 - 15 March 2023	4.5 10 ⁵	3.5 Hz	5 10 ⁵
RUN 3: 10 cm Cu shielding	5 May 2023 - 16 Nov 2023	1.6 10 ⁶	1.5 Hz	7.3 10 ⁵
RUN 4: 10 cm Cu + 40 cm water shielding	30 Nov 2023 - 31 March 2024	2 10 ⁶	1.0 Hz	6 10 ⁵
RUN 5: 10 cm Cu shielding (neutron flux measurements)	17 May 2024 - 1 Dec 2024	12 10 ⁶	1.5 Hz	5.4 10 ⁶
Special data takings				
AmBe for Nuclear Recoils	2-4 Aug 2023	2 10 ⁵	0.04 Hz of NR	2.5 10 ³ NR
²⁴¹ Am for Electron Recoils	7-16 Nov 2023	7 10 ⁵	50 Hz	106
AmBe for Nuclear Recoils	5-15 Dec 2024	5.7 10 ⁵	0.04 Hz of NR	7.0 10 ³ NR

LIME PLANS

With the end of RUN4 in March 2024, LIME data taking for PHASE 0 is considered closed;

works) in over **27 months of operations**;

The water shielding was then removed and in May 2024 and RUN5 has been taken for 6 months to measure the flux of underground neutrons, in the framework of PRIN "Zero Radioactivity".

Good exercise to tune and test simulation and analysis algorithms for NR, propaedeutical to DM search...

like events;

From January 2025 we are taking some "technical runs" to study the effects of gas filters, a new camera, and calibration with ⁸⁵Kr

- The whole schedule successfully concluded with **3 months delay** (including the delayed start due to civil)
- In **December 2024** a 10 days long **AmBe campaign** was performed to have a good calibration on signal-

LIME DATA TAKING SUMMARY

Ancillary systems: DAQ and Slow control

Data taking started in October 2023 never stopped; More than 7x10⁴ runs have been taken for a total of 28 x 10⁶ pictures;

All of them have been **promptly transferred** on the INFN-Cloud and **reconstructed**; **Reco-files** are made available to the CYGNO users **few minutes after** the run was taken;

Slide by S. Piacentini, LIME Run Coordinator

Ancillary systems: Gas and HV

Less than one HV spike every 3 days was recorded in 2024 (12 times lesser than previous best limit ...) Several grafana pages allows to monitor the detector operation, its main parameters and data quality; Gas humidity, oxygen and other contaminants were under control for the whole 2024

CYGNO04

TDR CYGNO financial plan and CSN2 proposal

The TDR submitted in **2022** included:

- infrastructure installation by Oct 2024;
- detector installation by Dec 2024; _
- start of data taking Sept 2025;

Since the spring **2024** an important delay started to accumulate leading to 5-6 months delay

- infrastructure installation by the end of Feb 2025; —
- detector installation by summer 2025; -
- data taking to start at the beginning of 2026; -

La commissione apprezza il lavoro di analisi compiuto dalla collaborazione su LIME ma invita la collaborazione a finalizzare la realizzazione di CYGNO-04 non oltre i primi mesi del 2026, recuperando, ove possibile i ritardi. La CSN2 raccomanda alla collaborazione un adeguato periodo di presa dati prima del decommissioning previsto nel 2027. La commissione inoltre puntualizza che la maggior parte delle spese di costruzione costruzione e caratterizzazione di CYGNO-04 devono essere sostenute su fondi ERC e si impegna a dare supporto all'esperimento secondo il piano finanziario esposto nel CDR a fronte del raggiungimento delle *milestone* di progetto, che saranno puntualmente verificate dai Referee.

Financial profile for ERC and INFN from the 2022 TDR

Year	INITIUM/ERC	CYGNO/INFN
2019	20	54
2020	201	44
2021	71	96
2022	40	96
2023	374	120
2024	302	125
2025	60	135
2026	0	95
2027	0	50
Tot 23-27	736	52
Tot	1068	815

CYGNO04 drawings

Between December and January, it became clear that the delay in producing the executive drawings for CYGNO04 was unrecoverable by relying solely on the forces available to LNF's design service

We therefore asked the LNGS design service for support: merging and sharing their resources with LNF's one is the only possible solution to finalise the work done so far in a reasonable time interval;

In order to reach this aim, the proposal issued by the LNGS+LNF Design Services is that they should work together, having as only one direct link to CYGNO Collaboration the Technical Coordinator (Davide Fiorina since September after Giovanni Mazzitelli resigned in April);

A Task Force has then started to work also including, along with the TC a designer from both the Labs (Alessandro Lalli - LNGS and Antonio Croce - LNF) with supervision of the two heads of the Services (Donato Orlandi - LNGS and Cesidio Capoccia - LNF, head of the service) and Davide Pinci as CYGNO spokesperson to support TC activities;

CYGNO current financial plan

The new situation had very negligible effects on the financial plans:

- A total of **490 k**€ are expected to being funded by INFN for the quinquennium 2023-2027 (515 k€ foreseen in the **TDR**)
- In particular **305** $k \in$ foreseen by INFN in 25-27; -
- A total of **1099 k**€ are expected to being funded by ERC for the quinquennium 2023-2027 (**1068 k**€ foreseen in the **TDR**)

Financial plan for INFN from the 2024 Progress Report

INFN - CSN2	2025	2026	2027
Gas Bottles	16	20	10
Gas Recovery	15	20	10
Consumables	25	10	20
Optics and DAQ	50	0	0
Tot w/o Travels (k€)	106	50	40
Travels - Shift	14	20	10
Travels - Installation	25	10	30
Tot Travels (k€)	39	30	40
Tot (k€)	145	80	80

Year	INITIUM/ERC	CYGNO/INFN
2019	20	54
2020	201	44
2021	71	96
2022	40	96
2023	164	93.5
2024	528	91.5
2025	75	145
2026	0	80
2027	0	80
Tot 23-27	767	490
Tot	1099	780

CYGNO04 Economic sustainability

Currently, from the ERC fundings, to cover the core costs of CYGNO04, there are a total of **304 k**€ available at **INFN** and **GSSI**

Part of the equipment needed for CYGNO04 was already bought and is currently being used and validated on LIME:

- high voltage system;
- gas system;
- DAQ and trigger;

According to the latest quotations received, the **other** costs expected for the construction of CYGNO04 is of **304 k€**, therefore an expense that can **be fully covered** with ERC funds

The total value of CYGNO04 is of about 920 k€.

		Unit cost	Needed Quantity	Total Cost	We Have	To Buy	Still To Spend	Still To Spend		
GAS VOLUME	Cone and GEM holders	5	1	5	0	1	5	25		
	Vessel	30	1	30	0	1	30	35		
	4-GEM Set	10	2	20	2	0	0			
	Orca Quest	26	6	156	6	0	0			
READOUT	Camera mechanics	1	6	6	0	6	6	14		
	Lenses	2	6	12	2	4	8			
	PMT+Socket	1	16	16	16	0	0			
CATHODE	Frame+foil+feedthrough	17	1	17	0	1	17	17		
FIELD CAGE	Field Cage	13	1	13	0	1	13	13		
CALIBRATION	Kripton-Rubidium	6	1	6	0	1	6	0		
SYSTEM	55-Fe system	2	1	2	0	1	2	8		
	4 ton Copper Elsasser	156	1	156	1	0	28			
	copper precision machinering	10	1	10	0	1	10			
ALIBRATION SYSTEM HIELDING AS SYSTEM V SYSTEM DAQ & SLOW CONTROLS COMPRESSED AIR SYSTEM	Opera copper refurbishing	30	1	30	0	1	30			
	High Voltage feed through	10	1	10	0	1	10			
SHIELDING	Optical windows	10	1	10	0	1	10	193		
	water tanks	65	1	65	0	1	65			
	frame	20	1	20	0	1	20			
	polietilene	20	1	20	0	1	20			
GAS SYSTEM	gas system	85	1	85	1	0	0			
	filters	1	8	8	8	0	0	0		
	GEM-HV	5	1	5	1	0	٥			
HV SYSTEM	PMT-HV	3	2	6	2	0	0	0		
	Cathode HV	5	1	5	1	0	0	Ŭ		
DAQ & SLOW CONTROLS	modules	45-5	1	45-5	1	٥	٥	0		
COMPRESSED AIR SYSTEM	filters and pipes	5	1	5	0	1	5	5		
	power distribution system	10	1	10	1	0	٥			
ELECTRIC SERVICES	cables & connectors	5	1	5	1	0	0	0		
	UPS	5	1	5	1	0	0	-		
NETWORK DISTRIBUTION	network distribution system	13	1	13	1	0	٥	0		
	Conditioning	20	1	20	1	0	٥			
COOLING and	Cameras chiller	5	1	5	1	0	0			
CONDITIONING	PMTs flow system	2	1	2	0	1	2	4		
	Cables & connectors	2	1	2	0	1	2			
	pra+vinca	6	1	6	1	0	0			
CAPETY (DDA 10A)	fire detection	10	1	10	1	0	0	~		
SAPETY (PRA-VIA)	gas monitor	15	1	15	1	0	0	0		
	safety design	10	1	10	1	0	0			
CIVIL WORK	total	40	1	40	1	0	٥	0		
DESIGN AND	software	5	1	5	0	1	5	. –		
DOCUMENTATION	final audit	10	1	10	٥	1	10	15		

Component Validation

Copper analysis with ICPMS

- They used the described procedure to clean it and

	Etching 2	Etching 3
	[pg * g ⁻¹]	[pg * g ⁻¹]
Th	9 ± 3	7 ± 2
U	5 ± 2	2 ± 1

- The

radionuclide	concentrations:

d measure	ed the U and Th	n conte	ent		October		Significant improveme
ese were	the Matthias res	sults		Layer_0 (1-20 keV) [evts/yr]	14655 ± 347		thanks to ICP-MS measurement of Schriel copper
radionuclide	concentrations:						
Th-232: Ra-228: Th-228:	< 0.38 mBq/kg < 0.20 mBq/kg	<==> <==>	< 9.3 E-11 g/g < 4.9 E-11 g/g	Layer_1 (1-20 keV) [evts/yr]	4518 ± 176		Huge statistics require see first effects of Bi210
U-238: Ra-226 Th-234 Pa-234m U-235:	< 0.44 mBq/kg < 17 mBq/kg < 11 mBq/kg < 0.37 mBq/kg	<==> <==> <==>	< 3.5 E-11 g/g < 9.3 E-10 g/g < 6.5 E-10 g/g < 6.5 E-10 g/g	Layer_2 (1-20 keV) [evts/yr]	10588 ± 2671		OPERA's copper → more storage space needed
K-40:	< 3.2 mBq/kg	<==>	< 1.0 E-7 g/g				
Cs-137:	< 0.14 mBq/kg			TOTAL	29761 ± 2700		
Co-60:	< 0.12 mBq/kg						In light of the updated re
Co-58:	(0.8 +- 0.1) mBq/kg					1	most viable option is sti
Mn-54:	(0.12 +- 0.05) mBq/kg	,					4 cm clean copper + 6

Upper limits on U and Th obtained with Germanium detector, 10 times larger than actual values

⁵⁸Co has an half life of 70 days

⁵⁴Mn has an half life of 1 year

FC and GEM foils are now on queue for the ICPMS tests

Component Validation

Field Cage Foils

- Three different field cage foils:
- > **PET+Cu with glue**: a polyethylene foil with Cu strips glued by spreading the adhesive over the entire foil
- **PET+Cu with no glue**: a polyethylene foil with Cu strips glued by applying the adhesive only between the strips and the foil
- Kapton+Cu: a kapton foil with Cu strips
- The foils were measured at LNGS

Roma

NFN

Davide Pinci

2

Donatella Tozzi - Cygno CM 2024

Sample

FC-kapt

FC-PET

FC-PET

nylon6

GEM foi

nylon so

steel sc

SMD res

CMOS o

PMMA

Name	✓ ○ in meas	sure 🗸 💿 meas	sured 🗸 analy	ysed 🗸
ton+Cu	no	 yes 	 yes 	
+Cu	no	▼ yes	 yes 	
+Cu no glue	no	▼ yes	 yes 	
	no	 yes 	 on-ge 	oing
il	no	 yes 	 on-ge 	oing
crews	no	 yes 	 on-ge 	oing
rews	no	 yes 	• on-g	oing
sistors	no	 yes 	 on-ge 	oing
camera	no	 yes 	 yes 	
	yes	▼ no	▼ no	

- In the low energy range (0-20 keV):
- $(1.56 \pm 0.01) 10^5$ evt/year;
- (1.20 ± 0.08) 10³ NR evt/year;

Plans for 2025

- Data analysis and validation of MC simulation (M2.1 31/12) _
- Full GEANT4 simulation of CYGNO-04 (M3.2 31/12);
- Tenders for CYGNO-04 realisation (M4.3 31/08); —
- Installation of the infrastructure (D4.1 30/10) and then of the detector (D4.2-31/12);
- Validation of last components and ancillaries: field cage (D6.1 -28/02), new optics (D6.2 - 30/09) and DAQ V1 (D5.2 - 31/12)

LIME data taking is going on very smoothly. Activities will now focus on:

202

Nov

4

Ins

Enhancing the light yield of $He:CF_4$ based gaseous detector

An analytical model of the response of the optically readout GEM based TPC for the CYGNO experiment

CYGNO: GANTT (22-27)

CYGNO/INITIUM

PROJE	CT TITLE	CYGNO/INIT	IUM	COMPANY N	AME INFN														
PROJE	CT MANAGER	Giovanni Ma	zzitelli	UPDATE DAT	E 30/6/22	2													
			APPROVAL (2022)		DESIGN a	and PROCUREMEN	T (2023)	CONSTRUCT	TION, TEST & ISTA	LLATION (2024)		сом	MISSIONING - I	DATA TAKING (20	25-2026)		DECO	MMISSIONIN	G (2027)
WBS I	D TASK	1-4	5-8	9-12	1-4	5-8	9-12	1-4	5-8	9-12	1-4	5-8	9-12	1-4	5-8	9-12	1-4		9-12
WP1	Physics																		
1.1	solar neutrino sensitivity													м	L1.1				
1.2	dark matter sensitivity													M	.1. <mark>2</mark>				
1.3	physical parameters PHASE 2																	D1.1	
WP2	Data Analysis																		
2.1	reconstruc/background v0									M2.1									
2.2	reconstruc/background v1												м	<mark>2.2</mark>					
2.3	detector analisys PHASE 1																	D2.1	
WP3	Detector Simulation																		
3.1	valdete PHASE 0 results						M3.	1											
3.2	Montecarlo for PHASE 1									M3.2									
3.3	estimation for PHASE 2																	D3.1	
WP4	Detector Design and Construction	on																	
4.1	executive layout infrastructure				M4.1	1													
4.2	executive layout of the detector					N	14.2												
4.3	procurements of components								M4	I.3									
4.4	install infrastructure									D4.1									
4.5	install detector									D4.2									
4.6	commissioning & calibration											M4.	4 -> D /	ATA	T A K I	N G			
4.8	decommissioning																	D4.3	
WP5	Auxiliary Services																		
5.1	validating gas system				D5.1														
5.2	validating DAQ v0						M5.	.1											
5.3	validating DAQ v1									D5.2									
WP6	Research and Development																		
6.1	validating large GEM					N	/ 6.1												
6.2	validating sensors and lens									D6.2									
6.3	validating field cage component							D6.1											
6.4	validating R&D for PHASE 2																	D6.3	
WP7	Management				ennede enned are surely around		and the second account is a second												marini haareen edan marini dha caaraad
7.1	ERC-FRP3					M7.1								M7.2					
7.2	ERC-FRP4																		
7.3	CSN2 Progress Report					M7.3			M7.4			M7.5			M7.6			M7.7	
7.4	ERC-SRP2												0	D7.1					
7.5	CSN2 Final Report																		

