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K→ ππ Decays

K→ ππ decays are a very important class of processes for standard model
phenomenology.

Among the interesting issues are the origin of the ∆I = 1/2 rule and an
understanding of the experimental value of ε ′/ε, the parameter which was the first
experimental evidence of direct CP-violation.

At lowest order in the SU(3) chiral expansion one can obtain the K→ ππ decay
amplitude by calculating K→ π and K→ vacuum matrix elements.

In 2001, two collaborations, RBC and CP-PACS, published some very
interesting (quenched) results, at pion masses greater than about 600 MeV.
RBC/(UKQCD) have repeated the calculation with dynamical fermions in the
pion-mass range 240-415 MeV.
Conclusion - soft-pion theorems are not sufficiently reliable⇒ need to
compute K→ ππ matrix elements directly.

The evaluation of K→ ππ matrix elements requires an extension of the standard
computations of 〈0 |O(0) |h〉 and 〈h2 |O(0) |h1〉 matrix elements with a single
hadron in the initial and/or final state.
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Parameters of the simulation

We have two datasets of Nf = 2+1 DWF with the Iwasaki Gauge Action:

1 a' 0.114 fm:
243×64×16 (L' 2.74 fm)
(163×32×16 (L' 1.83 fm) – not discussed here.)

Four light-quark masses:
ma = 0.03 (mπ ' 670MeV); ma = 0.02 (mπ ' 555MeV);

ma = 0.01 (mπ ' 415MeV); ma = 0.005 (mπ ' 330MeV) .

The lightest partially quenched pion has a mass of about 240 MeV.
Only data from masses with mπ . 420 MeV are used in the analyses.

2 a' 0.086 fm:
323×64×16 (L' 2.765 fm)

Three light-quark masses:

ma= 0.008 (mπ ' 390MeV); ma= 0.006 (mπ ' 343MeV); ma= 0.004 (mπ ' 290MeV) .

The lightest partially quenched pion has a mass of about 223 MeV.
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IDSDR Lattices

For K→ ππ decays we require pions with a physical mass and hence a large volume
⇒ coarse lattice.

3 a' 0.14 fm, (DWF+IDSDR)
323×64×32 (L' 4.58 fm) C.Kelly, arXiv:1201.0706; RBC-UKQCD, in preparation

Two light-quark masses:

ma = 0.0042 (mπ ' 250MeV); ma = 0.001 (mπ ' 170MeV) .

The lightest partially quenched pion has a mass of about 143 MeV.

The goal was to have a physical K→ ππ decay, with |pπ |=
√

2π/L.

With this coarse lattice, it will not be surprising that lattice artefacts are the
largest source of systematic error.
We mitigate against this in a number of ways.
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Fits

Our standard global chiral-continuum fitting procedure is to use SU(2) χPT
keeping terms of O(m2

π ) and O(a2) but not higher order terms.
Y.Aoki et al., arXiv:1011.0892 [hep-lat]

We use mπ , mK and mΩ to calibrate the lattice.

Although we only have performed DWF+IDSDR simulations at a single value of β ,
it is nevertheless possible to estimate the lattice artefacts for those quantities
which have also been calculated on the DWF+Iwasaki lattices.

Calculate the quantities on the Iwasaki lattices and extrapolate to the
continuum.
Compare results on the Iwasaki and IDSDR lattices⇒ IDSDR O(a2)
artefacts.
Can use the IDSDR lattices in global fits.
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2. K→ (ππ)I=2 decay amplitudes

T. Blum, P.A. Boyle, N.H. Christ, N. Garron, E. Goode, T. Izubuchi, C. Jung, C. Kelly, C. Lehner, M. Lightman,

Q. Liu, A.T. Lytle, R.D. Mawhinney, C.T. Sachrajda, A. Soni, C. Sturm, arXiv:1111.1699 [hep-lat].

Of course we would like to evaluate all the K→ ππ matrix elements in lattice
simulations and reconstruct A0 and A2 and understand the ∆I = 1/2 rule and the
value of ε ′/ε (see below).

In the meantime however, we know Re A0 and Re A2 from experiment.
I now attempt to demonstrate that we can also compute Re A2.

The experimental value of ε ′/ε gives us one relation between Im A0 and Im A2,
thus if we evaluate Im A2 then within the standard model we know Im A0 to some
precision. Thanks to Andrzej Buras for stressing this to me.

I also attempt to demonstrate that we can indeed compute Im A2.

I stress again that ultimately of course, we wish to do better than this. See below
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Direct Calculations of K→ ππ Decay Amplitudes

The main theoretical ingredients of the infrared problem with two-pions in the
s-wave are understood.

Two-pion quantization condition in a finite Euclidean volume

δ (q∗)+φ
P(q∗) = nπ ,

where E2 = 4(m2
π +q∗2), δ is the s-wave ππ phase shift and φ P is a known

kinematic function. M.Lüscher, 1986, 1991, · · · .

The relation between the physical K→ ππ amplitude A and the finite-volume
matrix element M

|A|2 = 8πV2 mKE2

q∗2

{
δ
′(q∗)+φ

P ′(q∗)
}
|M|2 ,

where ′ denotes differentiation w.r.t. q∗ .
L.Lellouch and M.Lüscher, hep-lat/0003023; C.J.D.Lin, G.Martinelli, CTS, M.Testa, hep-lat/0104006;

C.h.Kim, CTS and S.Sharpe, hep-lat/0507006; N.H.Christ, C.h.Kim and T.Yamazaki hep-lat/0507009

We understand how to calculate the ∆I = 3/2 K→ ππ matrix elements.

Our aim is to calculate the matrix elements with as good a precision as we can.
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K→ (ππ)I=2 Decays cont.

Computation of K→ (ππ)I=2 matrix elements does not require the subtraction of
power divergences or the evaluation of disconnected diagrams.

Consider for example, the two-pion correlation functions, which are an important
ingredient in the evaluation of K→ ππ amplitudes.
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For I=2 ππ states the correlation function is proportional to D-C and we do not
need to evaluate the disconnected vacuum diagram V.

Our calculation using today’s techniques and ensembles to improve on:
An exploratory lattice study of ∆I = 3/2 K→ ππ decays at next-to-leading order in
the chiral expansion, hep-lat/0412029

P.Boucaud, V.Gimenez, C.-J.D.Lin, V.Lubicz, G.Martinelli, M.Papinutto, CTS

This was the latest and 65th paper written with Guido Martinelli.
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At the workshop - Guido Martinelli (left) and Chris Sachrajda contemplate power
subtractions for non-leptonic kaon decays.

(CERN Courier, reporting on the 2000 Ringberg Workshop on Current Theoretical
Problems in Lattice Field Theory)
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K→ (ππ)I=2 Decays and the Wigner-Eckart Theorem

The operators whose matrix elements have to be calculated are:

O3/2
(27,1) = (s̄idi)L

{
(ūjuj)L− (d̄jdj)L

}
+(s̄iui)L (ūjdj)L

O3/2
7 = (s̄idi)L

{
(ūjuj)R− (d̄jdj)R

}
+(s̄iui)L (ūjdj)R

O3/2
8 = (s̄idj)L

{
(ūjui)R− (d̄jdi)R

}
+(s̄iuj)L (ūjdi)R

It is convenient to use the Wigner-Eckart Theorem: (Notation - O∆I
∆Iz

)

I=2〈π+(p1)π
0(p2) |O3/2

1/2|K
+〉=

√
3

2
〈π+(p1)π

+(p2) |O3/2
3/2|K

+〉 ,

where
– O3/2

3/2 has the flavour structure (s̄d)(ūd).

– O3/2
1/2 has the flavour structure (s̄d)((ūu)− (d̄d))+(s̄u)(ūd).

We can then use antiperiodic boundary conditions for the u-quark say, so that the
ππ ground-state is 〈π+(π/L)π+(−π/L) | . C-h Kim, Ph.D. Thesis

– Do not have to isolate an excited state.
– Size (L) needed for physical K→ ππ decay halved (6 fm→ 3 fm).
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Computing ∆I = 3/2 Matrix Elements

K π
+

π
+

O
′

s

The RBC/UKQCD strategy at this stage is to perform the simulations on a large
lattice, L' 4.5 fm, with light pions (323×64×32)

mπ ' 143MeV Unitary mπ ' 170MeV .

The price is that the lattice is coarse, a−1 ' 1.4 GeV.

With DWF, mres increases as the coupling becomes stronger⇒ change the gauge
action (from Iwasaki) by multiplying by the Auxilliary Determinant .

D.Renfrew, T.Blum, N.Christ, R.Mawhinney and P.Vranas, arXiv:0902.2587

R. Mawhinney, Lattice 2010

This is tuned to suppress mres but to maintain topology changing.
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Preliminary ∆I = 3/2 Matrix Elements – Cont.

K π
+

π
+

O
′

s

The masses and momenta are as follows:

Quantity This Calculation Physical
mπ 142.9(1.1) MeV 139.6 MeV
mK 511(4) MeV 493.7 MeV

Eππ (pπ '
√

2π/L) 493(6) MeV mK
Eππ (pπ '

√
2π/L)−mK -18.7 MeV 0

The results presented here were obtained with 63 configurations .
(We now have more than twice this number and are continuing to run.)
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Preliminary ∆I = 3/2 Matrix Elements – Cont.

K π
+

π
+

O
′

s

Source Re(A2) (10−8 GeV)
tK = 20 1.38(10)
tK = 24 1.47(10)
tK = 28 1.58(11)
tK = 32 1.25(15)

Weighted Average 1.44(6)
Experiment 1.5

Stat. error only
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O′3/2
(27,1) = (s̄d)L (ūd)L O′3/2

7 = (s̄d)L (ūd)R O′3/2
8 = (s̄idj)L (ūjdi)R

Sample plateaus for the matrix elements at matched kinematics (pπ =
√

2pmin).
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Renormalization

We follow our standard strategy:

bare operators renormalized in operators
lattice −→ Intermediate Scheme(s)

operators NPR (RI-MOM, RI-SMOM)

−→ renormalized
Perturbation Theory in MS-NDR scheme.

This is well understood here in Rome, but I would like to underline one or two
points from our procedure.
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RI-SMOM

Renormalization of quark bilinear operators in a MOM-scheme with a non-exceptional
subtraction point C.Sturm, Y.Aoki, N.H.Christ, T.Izubuchi, CTS, and A.Soni, arXiv:0901.2599 [hep-ph]

p p

ψ̄Γψ

→ p1 p2

ψ̄Γψ

p
2

1
= p

2

2
= (p1 − p2)

2

In this paper we develop the scheme with the non-exceptional subtraction point

p2
1 = p2

2 = (p1−p2)
2 .

We calculate the one-loop conversion factors between this scheme and the MS
scheme. This is entirely a continuum exercise.
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Evidence for small chiral symmetry breaking
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Y.Aoki arXiv:0901.2595 [hep-lat]
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SMOM Kinematics for Four-Quark Operators

d(p1)

s(p2)

d(p1)

u(p2)

i, α

j, β

k, γ

l, δ

For four-quark operators there is no such natural choice for the kinematics.

We still choose p2
1 = p2

2 = (p1−p2)
2 ≡ p2 .

By using momentum sources for the Green functions, the statistical errors are tiny
and O(4)-breaking lattice artefacts are seen in the renormalization constants
relating the bare lattice operators and the renormalized ones in the SMom
scheme.

In other words, after the running due to the anomalous dimension is divided
out, the remaining artefacts are not simply O(a2p2) but contain terms such
as O(a2

∑µ p4
µ/p2). See M.Constantinou et al., arXiv:1011.6059

Chris Sachrajda Rome, 16/02/2012 19



NPR and Partially-Twisted Boundary Conditions
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BK

at a
renormalization scale of 2 GeV as a
function of (ap)2 for 5 intermediate
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We interpret the scatter as being
due to O(4)-breaking effects.

With (partially) twisted boundary
conditions, we can simply scale the
momenta so that the effects should
only depend on p2 making it
possible to model and remove them.

Y.Aoki et al., arXiv:1012.4178
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NPR with twisted boundary conditions (cont.)
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Procedure for Renormalizing the ∆I = 3/2 ∆S = 1 Operators

1 Perform the renormalization into the intermediate schemes on the IDSDR lattices
(a−1 ' 1.4 GeV) at µ = 1.145GeV.
At such a low scale we cannot use perturbation theory reliably to match onto the
Wilson Coefficient functions which are calculated in the MS-NDR scheme.

2 Match the result onto the finer Iwasaki lattices at µ = 1.145 GeV.

3 Perform step-scaling on the Iwasaki lattices and the continuum extrapolation to
obtain the renormalization constants at µ = 3GeV.

4 Convert the results to the MS-NDR scheme at 3 GeV using perturbation theory.

ZMS,(latt)
(γµ ,γµ )

(3GeV) =

0.421(02)(00) 0 0
0 0.479(03)(07) −0.024(04)(17)
0 −0.045(11)(11) 0.543(18)(23)



ZMS,(latt)
(6q,6q) (3GeV) =

0.427(03)(03) 0 0
0 0.473(05)(06) −0.026(05)(17)
0 −0.070(23)(25) 0.564(27)(13)

 .
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Systematic Uncertainties

ReA2 ImA2
lattice artefacts 15% 15%

finite-volume corrections 6.2% 6.8%
partial quenching 3.5% 1.7%
renormalization 1.7% 4.7%

unphysical kinematics 3.0% 0.22%
derivative of the phase shift 0.32% 0.32%

Wilson coefficients 7.1% 8.1%
Total 18% 19%

Since the lattice is so coarse and the results are proportional to a−3, the
systematic errors are dominated by the lattice aretefacts. We estimate these in
two different ways:

1 from the variation in the value of a obtained using mΩ, fπ , fK and r0 to set the
scale;

2 from the a2 terms in global chiral continuum fits of BK , performed using both
IDSDR and Iwasaki lattices.
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Results

Our results for the Mi = 〈π+π+ |Qi |K+〉 are:

M(27,1) = (3.20±0.13stat±0.58syst)10−2 GeV3 ,

M(8,8) = (5.85±0.89stat±1.11syst)10−1 GeV3 ,

M(8,8)mix = (2.75±0.12stat±0.52syst)GeV3 .

In terms of the amplitude A2 these results imply:

ReA2 = (1.436±0.062stat±0.258syst)10−8 GeV

ImA2 = −(6.83±0.51stat±1.30syst)10−13 GeV.

The result for Re A2 agrees well with the experimental value of
1.479(4)×10−8 GeV obtained from K+ decays and 1.573(57)×10−8 GeV obtained
from KS decays .
Im A2 is unknown so that our result provides its first direct determination.
For the phase of A2 we find Im A2/ReA2 =−4.76(37)stat(81)syst 10−5.
Combining our result for Im A2 with the experimental results for Re A2,
Re A0 = 3.3201(18)1̇0−7 GeV and ε ′/ε we obtain:

ImA0

ReA0
=−1.63(19)stat(20)syst×10−4 .

Of course, we wish to confirm this directly.
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Conclusions on the ∆I = 3/2 Project

The ab initio calculation of A2 described above builds upon substantial theoretical
advances, achieved over many years.

The agreement we find for Re A2 with the experimental result is very satisfying.

We are also able to determine Im A2 for the first time.

It will be important to repeat this calculation using a second lattice spacing so that
a continuum extrapolation can be performed thus eliminating the dominant
contribution to the error, reducing the total uncertainty to about 5%.

We expect that the dominant remaining errors in A2 will then come from the
omission of electromagnetic and other isospin breaking mixing between the large
amplitude A0 and A2.

Much more challenging but of even greater interest is the application of these
methods to the evaluation of A0 allowing for a calculation of ε ′/ε and an
understanding of the ∆I = 1/2 rule.
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3. K→ (ππ)I=0 Decays

T. Blum, P.A. Boyle, N.H. Christ, N. Garron, E. Goode, T. Izubuchi, C. Lehner, Q. Liu, R.D. Mawhinney,

C.T. Sachrajda, A. Soni, C. Sturm, H. Yin, R. Zhou arXiv:1106.2714.

The I = 0 final state has vacuum quantum numbers.
Vacuum contribution must be subtracted; disconnected diagrams require
statistical cancelations to obtain the e−2mπ t behaviour.
Consider first the two-pion correlation functions, which are an important
ingredient in the evaluation of K→ ππ amplitudes.
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For I=2 ππ states the correlation function is proportional to D-C.
For I=0 ππ states the correlation function is proportional to 2D+C-6R+3V.

The major practical difficulty is to subtract the vacuum contribution with sufficient
precision.

In the paper we report on high-statistics experiments on a 163×32 lattice,
a−1 = 1.73 GeV, mπ = 420 MeV, with the propagators evaluated from each
time-slice.
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Diagrams contributing to two-pion correlation functions
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RBC/UKQCD, Qi Liu – Lattice 2010
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Two-pion Correlation Functions

RBC/UKQCD, arXiv:1106.2714
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K→ (ππ)I=0 Decays

K
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There are 48 different contractions and we classify the contributions into the 6
different types illustrated above.

Mix3 and Mix4 are needed to subtract the power divergences which are
proportional to matrix elements of s̄γ5d .
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Results from exploratory simulation at unphysical kinematics

RBC/UKQCD arXiv:1106.2714

These results are for the K→ ππ (almost) on-shell amplitudes with 420 MeV
pions at rest:

Re A0 (3.80±0.82)10−7 GeV
Im A0 −(2.5±2.2)10−11 GeV
Re A2 (4.911±0.031)10−8 GeV
Im A2 −(5.502±0.0040)10−13 GeV

This is an exploratory exercise in which we are learning how to do the calculation.

Since this work was finished we have been developing techniques which seem to
enhance the signal considerably.

The exploratory results for K→ (ππ)I=0 decays encourage us to proceed to
physical kinematics.

⇒ an understanding of the ∆I = 1/2 rule and the value of ε ′/ε.

The evaluation of disconnected diagram has allowed us to study the η and η ′

mesons and their mixing. RBC-UKQCD – arXiV:1002.2999
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4. Evaluating Long-Distance Effects - ∆MK as an example

K0 K
0

ti t f

π

π

HW HW

tA tB

t1 t2

We have in mind to calculate the amplitude

A =
1
2

∫
∞

−∞

dt1 dt2 T 〈 K̄ 0 |HW(t2)HW(t1) |K0〉

and to determine the KL-KS mass difference:

∆MK = 2P ∑
α

〈 K̄ 0 |HW |α〉〈α |HW |K0〉
mK −Eα

where the sum over |α〉 includes an energy-momentum integral.

In a finite-volume calculation we have to ensure that the K0 is created first and the
K 0 is annihilated last⇒ integrals over t1 and t2 are over a sub-interval,
tA ≤ t1,2 ≤ tB.
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Evaluating Long-Distance Effects - ∆MK as an example (cont.)

K0 K
0

ti t f

π

π

HW HW

tA tB

t1 t2

In a finite volume the correlator is given by

A = |ZK |2 e−MK(tf−ti) ∑
n

〈 K̄ 0 |HW |n〉〈n |HW |K0〉
(mK −En)2

{
e(mK−En)T − (mK −En)T−1

}
where T ≡ tB− tA +1.

By studying the time dependence to identify the coefficient of T, one can
determine

∆MFV
K = 2 ∑

n

〈 K̄ 0 |HW |n〉〈n |HW |K0〉
mK −En

.

What is the relation between the finite-volume sum and the infinite-volume
integral?
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Finite-Volume Sums and Infinite-Volume Integrals

1 Quantization Condition: Lüscher quantisation condition for two-pions in the
centre-of-mass frame with s-wave interactions

δ (q)+φ(q) = nπ ,

where E2 = 4(m2
π +q2), δ is the s-wave ππ phase shift and φ is a known kinematic

function:
tanφ(q) =

q
4π

1
c(q2)

where c(q2) =
1

L3 ∑
~k

1
q2− k2 .

M.Lüscher, 1986, 1991, · · · .
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Lellouch-Lüscher Factor

π

π

π

π

+

π

π

π

π

K

+ · · ·

2 Lellouch and Lüscher derive the relation between the physical K→ ππ amplitudes
and finite-volume matrix elements using degenerate perturbation theory, starting
with mK = Eππ :

|A2|= 8πV2 E3

q2

[
δ
′(q)+φ

′(q)
]
|M2| .

L.Lellouch & M.Lüscher, hep-lat/0003023

We interpret the LL factor as being the density of states (+ trivial
normalization factors)

dn
dE

=
1
π

d(δ +φ)

dE
(recall that δ +φ = nπ) ,

with no need for the mK and E2π to be degenerate.
C.-J.D.Lin, G.Martinelli, CTS & M.Testa, hep-lat/0104006
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∆MK

3 ∆MK : At Lattice 2010, Norman Christ presented the evaluation of the
long-distance effects in ∆MK using second-order degenerate perturbation theory:

∆MK = 2 ∑
n 6=n0

|〈n |HW |KS〉|2
mK −En

+

[
∂ (δ +φ)

∂E

]−1 [1
2

∂ 2(δ +φ)

∂E2 |〈n0 |HW |KS〉|2

− ∂

∂En0

{
∂ (δ +φ)

∂E

∣∣∣∣
En0

|〈n0 |HW |KS〉|2
}

En0=mK


N.H.Christ, PoS LATTICE2010 (2010) 300

Guido Martinelli and I have studied the relation between the finite-volume sum
and infinite-volume integral and found the relation preliminary

∑
En

f (En)

m2
K −E2

n
= P

∫
ρ(E)dE

f (E)
m2

K −E2
+

f (mK)

2mK

[
cot(δ +φ)

d(δ +φ)

dE

]
mK

,

where ρ is the density of states, ρ = dn/dE.

Thus again we do not need mK = En0 .
If mK = En0 then the result reduces to that above.
Indeed, it may be best to work with cot(δ +φ) = 0 .
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5. Summary, Conclusions and Prospects

We have performed the first direct calculation of the K→ (ππ)I=2 decay amplitude
A2.
We believe that this will serve as an important benchmark for future improved
calculations.

Although significant technical problems remain, we are well on our way towards
calculating A0.
(I did not talk about our exploratory studies refining all-to-all propagators or using
G-parity.)

We are beginning to tackle the calculation of long-distance effects for a variety of
processes.
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