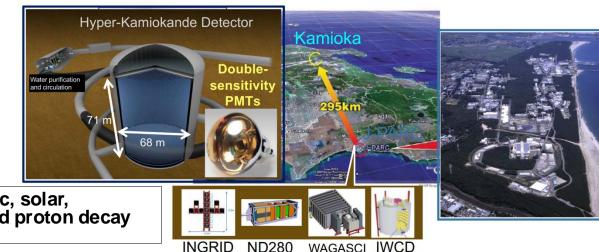


Hyper-K Underwater Electronics

Stefano russo

Jennifer2 Meeting Pisa - 04/4/2025


On behalf of: F.Ameli, A.Di Nola, L.Ludovici and J. Pinzino

Thanks : FD4, FD2 HK WG

Hyper-K in a nutshell

Hyper-K water Cherenkov at Kamioka (host U-Tokyo)

Accelerator, atmospheric, solar, supernova neutrinos and proton decay

High intensity proton beam at JPARC (host KEK)

World largest detector for nucleon decay and neutrino experiment

- 8.4 times larger fiducial mass (188kt) than Super-K, with new photo-sensors: twice-as-sensitive 20" PMTs and new multi-PMTs
- World most intense neutrino beam
 - 2.6 higher JPARC beam intensity (1.3MW) than T2K 2020 (~500kW); T2K 2024: 800kW
- New (IWCD) and upgraded (ND280) near detectors to control systematic errors

Underwater electronics vessels

Underwater system (France, Italy, Japan, Korea, Poland, Spain, Switzerland, UK)

Front-end digitizers 📕 📕 (OD: On-board calibrator Data Processing Board Timing/Synchronization HV, LV power supplies 🕂 (CAEN) Pressure tolerant cases 🛨 Cables, feedthroughs, optical fibres (shared) Out-of-water system DAQ Timing/Clock gener.&distrib. Infrastructure (huts, air conditioning, cable trays,...) System tests, pre-calibration, and assembly (shared)

(shared)

Installation, test, calibration

INSIDE TANK OUTSIDE TANK High Voltage DAQ 1GbE 2.5Gb/s DIGITIZER DPB DIGITIZER TIMING 1Gb/s 125Mb/s Low Voltage

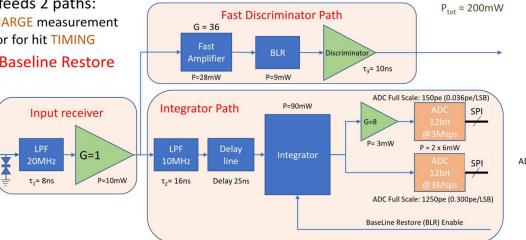
20" PMTs front-end digitizer selection

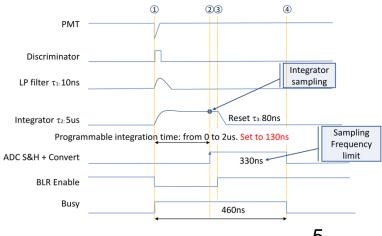
Electronics in water: low noise, low power, high dynamic range

In 2019 (Jennifer 2 Technical Report) there were already competing design:

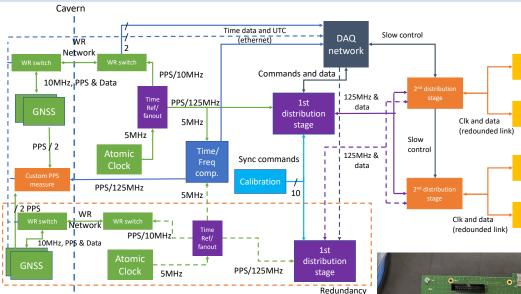
- QTC, an old ASIC developed for SK (Japan)
- Capacitive arrays (out-of-the-water ?)
- HKROC, a new ASIC developed for HK (France, OMEGA)
 - \rightarrow INFN proposal based on discrete components
- May 2020 Start design and simulation of a front-end based on discrete components, leveraging the experience with the mPMTs electronics design
- Jun 2020 Proposal to the Collaboration

- Sep 2020 Single channel prototype V1.0
- Jan 2022 Single channel prototype V1.3 and 24 channel board (digitizer+DPB)
- Jun 2022 Complete characterization of the board performance (TechNote for the technology selection review)
- Sep 2022 Selection of INFN proposal (second half of Jennifer 2)



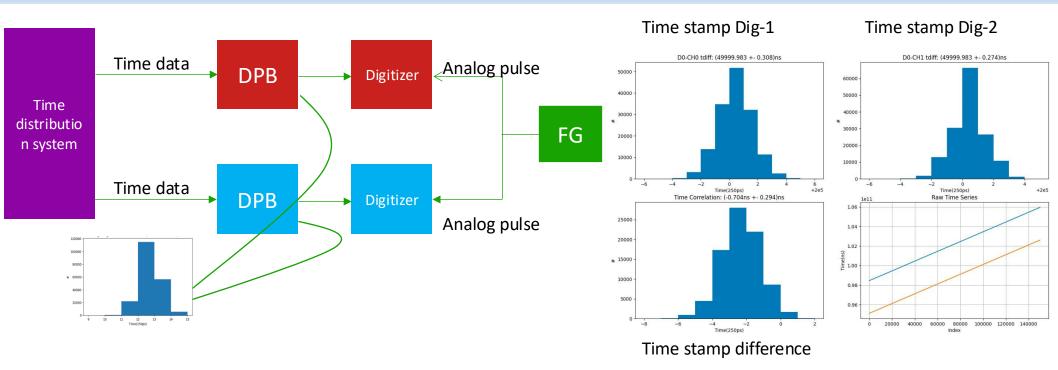

Front-end digitizer

Item	Requirements	Performance obtained	Section of document
Trigger	self triggering for each channel	OK	3.1
Signal reflection	<1%	<1% up to 75 MHz	4.6
Discriminator threshold	1/6 pe	0.08 pe with « 1 Hz noise	4.2
Processing speed/hit	<1 µs	$\sim 450 \text{ ns}$	3.1
Maximum hit rate	>1 MHz per channel	$\sim 2 \text{ MHz}$	3.1
Charge dynamic range	0.1 to 1250 p.e. $(0.19$ to 2375 pC)	0.1 to 1300 pe (adaptable with one resistor modification)	4.4
Charge resolution (RMS)	< 0.1 pe for signals below 10 pe	0.08 pe at 1 pe	4.5
	< 1% for signals from 10 pe	1.1% at 10 pe, less for bigger signal	4.4
Timing LSB	<0.5 ns	0.25 ns (same TDC as QTC)	3.1
Timing resolution (RMS)	<0.3 ns at 1 p.e.	210 ps at 1 pe	4.10
	<0.2 ns for signals above 5 p.e.	~ 170 ps at 5 pe	4.10
Power consumption	<1 W per channel	0.2 W per channel (analog FE), total <400 mW per channel	3.2


• PMT input signal feeds 2 paths:

- Integrator for CHARGE measurement
- Fast Discriminator for hit TIMING
- Final design uses **Baseline Restore Enable** technique

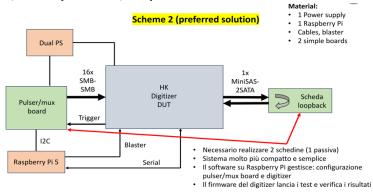
Time Distribution System



1st distribution stage

2nd distribution stage

Timing synchronization test


The two time-stamps differ by a mean value of 0.7 ns and the distribution sigma is 294 ps which is coherent with the TDC resolution.

Same results after TDM and DPB reboot.

Frontend board tests at production company

Testbench for early board-screening during production

- TB is aimed to assess Digitizer functionalities at production company premises.
 - TB consists of HW, SW, and FW components
- The task should be accomplished in the simplest possible way, limiting number of connections and external boards
 - Performance assessment will be implemented at CERN, before integration
- 2 possible options:
 - Using as much as possible commercial products and HK boards: complex, many items, expensive
 - Self-made, with fewer items though with custom designed test boards
- Required items:
 - HW: Function Generator, Testbench PC, Cables, Support Boards, ...
 - SW: PC code to handle board tests
 - FW: custom FPGA code which implements Built In Self Test
 - 1. QC&QA, functional tests, burn-in at production companies
 - 2. Calibration (digitizers) and underwater vessels integration and tests, at CERN

Underwater vessels assembly at CERN / NP08

- Lol submitted (CERN-SPSC-2023-021) in Aug.2023, Addendum (CERN-SPSC-2024-04) Jan.2024
 - As it is not an experiment, no need for a proposal or a formal SPSC approval
 - After meeting with CERN Research Director it was informally agreed that the electronics assembly project will be hosted by the CERN Neutrino Platform (NP08)

Vessels Vessels E-Stand	PMT FTS ID COMFIS PMT FTS OD PMT FTS ID PMT FTS ID PMT FTS ID	Bolts, O-ring, etc Temp. Controlled SPARE Standard Container SPARE	
Standard Container	Temp. Controlled	Standard Container	

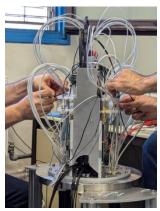
- 12 40-ft containers placed near EHN1 (Neutrino Platform) to store components
- Assembly and storage of assembled units in EHN1 (crane available for truck loading)
- After functional test and burn-in at production company, boards delivered at CERN for calibration (digitizer) and integration in the underwater vessels
- 4-6 underwater vessels will be assembled per day by 8 workers, for a total of 900 vessels
- Functional and pressure test of the assembled vessels

First electronics underwater vessel assembly

Assembly of underwater vessel

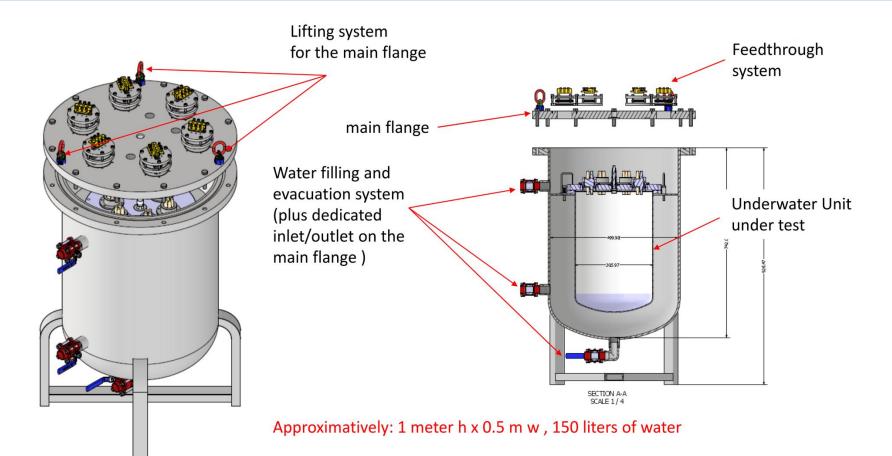
Components:

- Patched DPB
- LV and HV boards
- Two Digitizer boards
- **AXON FTs**
- Com FT (150 m long cable/fibers)

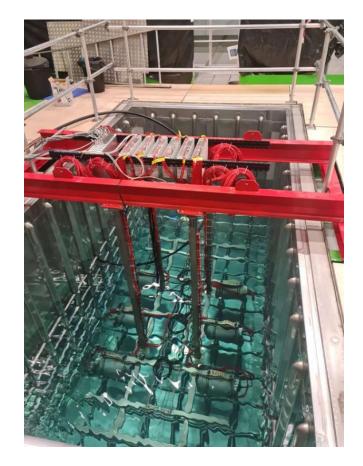

Boards on the electronics

stand

- Assembly of the board on the electrics stand finalized
- Vessels assembled at CERN and Japan: finalize procedure
- Electrical connections and fiber communications established
- Final test on the electrical stand
- Closure of the vessel:
 - Silica bags, Ο
 - Nitrogen flushing, 0
 - Saving temperature and humidity before, during and after closure of the vessel. Ο
- Immerse the vessel into the water tank,
- Data are saved into local database


Electronic vessels at the under water test facility at CERN 10

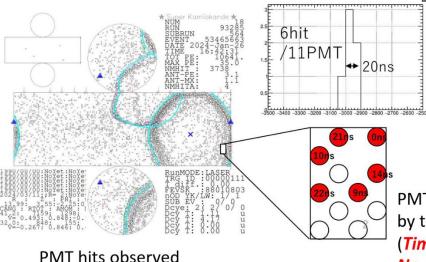
Electronics stand assembly



Underwater vessels pressure test

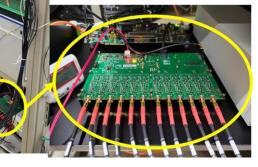
Long term underwater tests

- Former WA105 cryostat in b182 at CERN repurposed as underwater electronics test facility
- Submerging up to 10 modules at the same time
- Heat dissipation model. Thermal contacts validation. Heat budget
- On-going underwater vessel tests and plan long term test (1 years) during mass production



HK Digitizer tests in Super-Kamiokande

Digitizer performance check (Stand alone, before assembly)


Collected SK & HK PMT data using the HK digitizer.

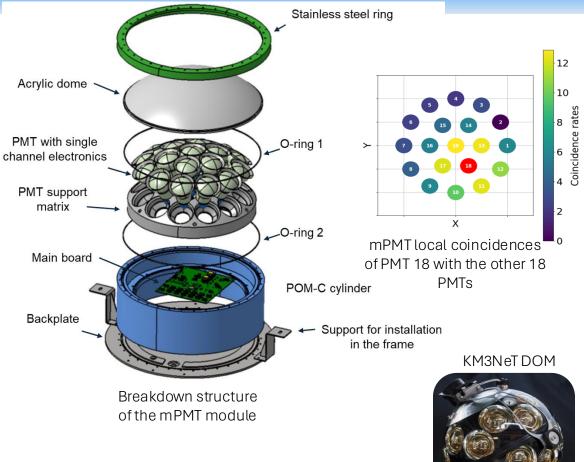
Atmospheric neutrino candidate events were recorded using the HK electronics.

by the SK electronics

Replace 1 SK digitizer with the signal extender and connect the new digitizer.

PMT hits observed by the HK electronics. (*Timing adjustment is very rough. No calibrations are applied*.)

Multi-PMT Optical Module


Proposed to the collaboration in 2016 as alternative/complementary to the 20" PMTs

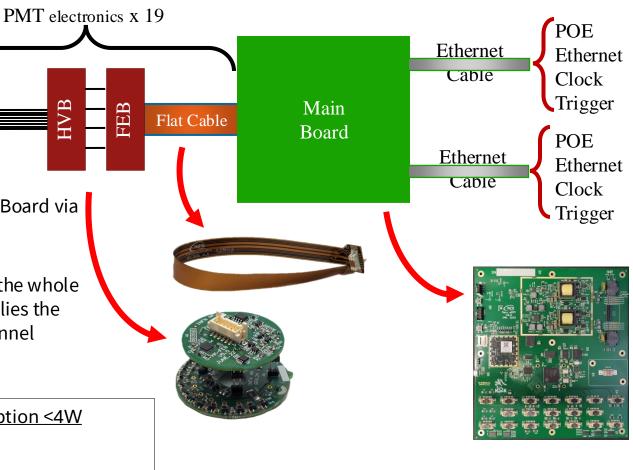
The idea comes from the KM3NeT DOMs, **modified** and **optimized** to meet the HK requirements

They were proposed to the Hyper-K collaboration, which accepted the use of them along the 20" due to the **numerous improvements** that they would bring

mPMT features:

- Superior photon counting
- Improved angular acceptance
- Extension of dynamic range
- Intrinsic directional sensitivity
- Local coincidences

Multi-PMT Electronics Overview

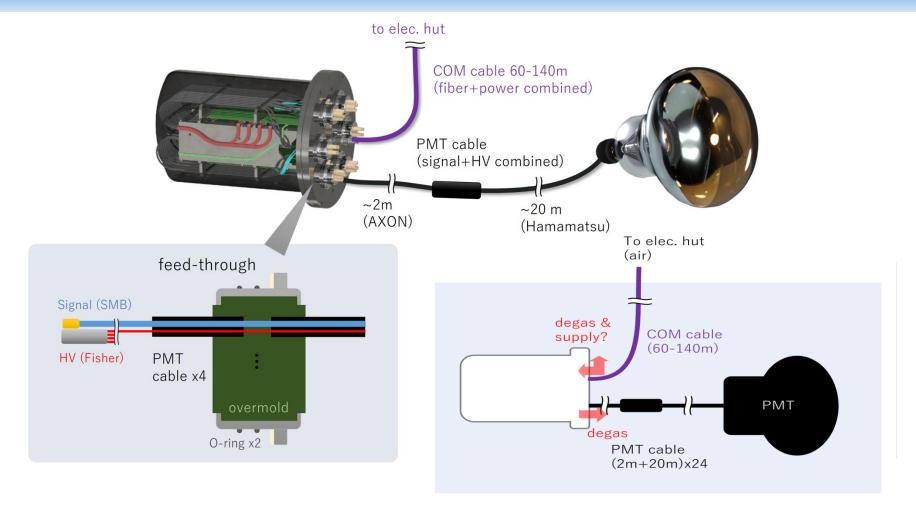

PMT

Each of the 19 single channels has its own High-Voltage Board (**HVB**) and Front-end Board (**FEB**)

All the channels then connect to the mPMT Main Board via flat cables

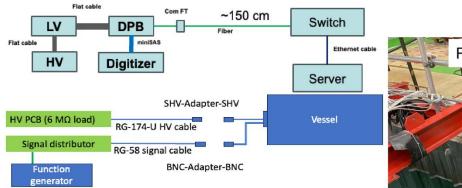
The **main board** mounts the main processor of the whole detector, it comunicates with the DAQ and supplies the voltage needed by the FEB and HVB of each channel

Requirement : <u>Total Power consumption <4W</u> <u>HVB: 3mW</u> <u>FEB: 40mW</u>

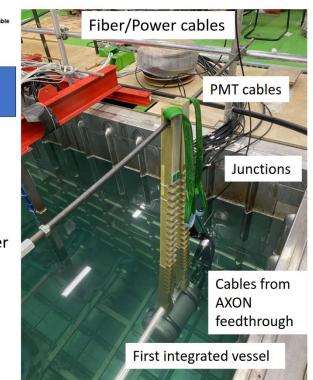


Summary & Outlook

- Jennifer2 has given a fundamental support to the electronics development to reach the actual status
- Design and prototype validation. Collaboration wide review
- System integration tests at several labs. Full VST at CERN and Kamioka
- Mockup installation test at Kamioka (procedures validation)
- Preparation of assembly lines
- Tendering and procurement started for several components (PMTs, HV, LV, vessels, timing, ...), or starting shortly after PR Review conclusion
- Assembly of electronics underwater vessels at CERN currently scheduled for Q3 2025
- Assembly of multi-PMTs at INFN/NA, Poland and Canada currently scheduled for Q3 2025


Thank you !

Degassing



Underwater test at CERN

Fully assembled underwater module is in the water for tests

- Feb. 8 Assembled the board on the stand
- Feb. 15 Immersed the vessel in the water. (Water temperature is 16 C).
- Feb. 20 HV board switched ON at nominal power i.e. 6 M Ω load at 2500 V (kept running until March 15)
- Mar. 15 Water temperature was set to 14 C.
- Mar. 17 Powering on the digitizer boards.
- Mar. 25 Powering on all the boards (LV/HV/DPB/Digitizers)

since February.