Updates on the T2K oscillation analysis (OA)

A. Longhin

Università degli Studi di Padova

- Current results
- Recall on the analysis
- Perspectives in the near and longer term

Oscillation analysis with T2K

ν_{μ} and $\bar{\nu}_{\mu}$ disappearance

$$P(\nu_{\mu} \to \nu_{\mu}) = P(\bar{\nu}_{\mu} \to \bar{\nu}_{\mu}) = 1 - \sin^2(2\theta_{23})\sin^2\left(1.27\frac{\Delta m^2 L}{E}\right)$$

Same oscillation probability for ν and $\bar{\nu}$

Sensitive to $|\Delta m^2_{32}|$ and to $\sin^2(2\theta_{23}) \rightarrow$ no sensitivity to mass ordering and δ_{CP}

T2K Oscillation analysis

JENNIFER2 4th general meeting

T2K-NOvA bi-probability plots

T2K prefers the same phase irrespectively of the hierarchy while NOvA does not (opposite phases)

Neutrino mode e-like candidates

NB: these plots are a bit outdated but they are for illustration purpose here

JENNIFER2 4th general meeting

T2K-NOvA combination

- Different L (295 vs 810 km) and E lift degeneracies
- After several years of work a proper of combination of full likelihood with coherent statistical inference across full phase space
- Implementation of detectors effects, models and systematic uncertainticies
- Leading world result on Δm^{2}_{32}
 - err 1.5% (2% T2K only)
- Best combined fit is for IO but there is no strong MO preference
- $\delta_{CP} \sim +\pi/2$ outside 3σ interval for both MO
- For IO, CP conservation excluded at $3\sigma^{Bot}$
- Wider $\delta_{\mbox{\tiny CP}}$ range allowed NO

T2K Oscillation analysis

<u>A. Longhin</u>

5

 $\overline{2}$

 δ_{CP}

OA with T2K: near detector fit

Several unknowns:

A. Lonahin

- the neutrino flux (different between near and far)
- the neutrino interaction parameters (that depend on nuclear models, from the target composition)
- There are several different final states each with a different efficiency in the detectors.

The goal is to **predict as precisely as possible the number of neutrinos that we expect at the far detector** → the difference is due to oscillations (appearance of electron neutrinos, disappearance of muon neutrinos) → Use the high stat **near detector** data (at only 280 m) to get a constraint on unknown quantities ("nuisance parameters").

OA with T2K: near detector fit

Near detector data BEFORE fit

Near detector data AFTER fit

Uncertainty on the prediction at far BEFORE ad AFTER the near detector fit:

T2K Oscillation ana

<u>A. Longhin</u>

JENNIFER2 4th general meeting

Current ND samples ("OAR11B")

- In reality the fitted samples are the result of a very detailed selection
 - FHC ("neutrino") samples separated based on # of reco γ , p and π
 - RHC ("antineutrino" split depending on $\# \pi$ only
 - Currently this results into 32 subsamples.
 - The event rates of each samples are binned and fitted in the 2D plane: (momentum, angle) of the mu+ (or mu-) candidate
 - No electron data used so far nor pion or proton kinematics

Super-K samples (OAR11A)

- 6 samples are selected at SK
 - 2 samples 1R μ -like/e-like in ν -mode \rightarrow CCQE enhanced
 - 2 samples CC1π enhanced (2 rings or with an additional decay electrons)
 - 2 samples 1R μ -like/e-like in $\bar{\nu}$ -mode \rightarrow CCQE enhanced
- New detector covariance matrix at SK → significantly reduce systematics in the 1 Re+d.e. sample

Sample	OA22	New results	
ν-mode 1Rμ	3.4%	3.2%	[
ν-mode 1Re	5.2%	4.9%	
ν-mode MR	4.9%	3.9%	
ν-mode 1Re+d.e.	14.3%	6.3%	
$\overline{\nu}$ -mode 1Rµ	3.9%	5.0%	
$\bar{\nu}$ -mode 1Re	5.8%	6.7%	l
17			

Results OAR11A (Neutrino 2024)

					141	•	
Sample	δ _{CP} =-π/2	$\delta_{CP}=0$	δ _{CP} =π/2	δ _{CP} =π	Data		26 24 24 24
ν -mode 1R μ	417.2	416.3	417.1	418.2	357		22 22
ν -mode MR	123.9	123.3	123.9	124.4	140		$\frac{9}{20}$ $\frac{18}{18}$ $\frac{18}{18}$ $\frac{18}{18}$ $\frac{18}{18}$ $\frac{18}{18}$ $\frac{1}{18}$ $\frac{1}$
$\bar{\nu}$ -mode 1R μ	146.6	146.3	146.6	147.0	137	Oliver	$ \begin{array}{c} 16 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $
ν-mode 1Re	113.2	95.5	78.3	96.0	102		$\begin{array}{c} \bullet & \bullet_{CP} = +\pi/2 \\ \Box & \bullet_{CP} = 0 \\ 12 \\ \bullet & \bullet_{CP} = -\pi/2 \\ \bullet & \bullet_{SW} \text{ syst err. a} \end{array}$
$\bar{\nu}$ -mode 1Re+d.e.	10.0	8.8	7.2	8.4	15 🥒		10 V Best-fit
$\bar{\nu}$ -mode 1Re	17.6	20.0	22.2	19.7	16		0 20 40

Credible intervals marginalized over both hierarchies

• Preference for $\delta_{CP} \sim -\pi/2$ but CP conserving values are within the 2σ interval

posterior probability

D. Carabadjac poster

JENNIFER2 4th general meeting

T2K Oscillation analysis

3

δ

Bayesian fitter (MaCh3)

Bayesian (MaCh3) → posterior probabilities on physical quantities.

Can fit the near detector and far detector data simultaneously

Metropolis-Hastings Markov-chain Monte Carlo.

Nuisance parameters are marginalized

$$\begin{split} P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) &= \delta_{\alpha\beta} - 4 \sum_{i > j} \operatorname{Re} \left\{ U_{\beta i} U_{\alpha i}^{*} U_{\beta j}^{*} U_{\alpha j} \right\} \sin^{2} \left(\frac{\Delta m_{i j}^{2} L}{4E} \right) \\ &+ 2 \sum_{i > j} \operatorname{Im} \left\{ U_{\beta i} U_{\alpha i}^{*} U_{\beta j}^{*} U_{\alpha j} \right\} \sin \left(\frac{\Delta m_{i j}^{2} L}{2E} \right) \\ &+ 2 \sum_{i > j} \operatorname{Im} \left\{ U_{\beta i} U_{\alpha i}^{*} U_{\beta j}^{*} U_{\alpha j} \right\} \sin \left(\frac{\Delta m_{i j}^{2} L}{2E} \right) \\ &+ 12 \sum_{i > j} \operatorname{Im} \left\{ U_{\beta i} U_{\alpha i}^{*} U_{\beta j}^{*} U_{\alpha j} \right\} \sin \left(\frac{\Delta m_{i j}^{2} L}{2E} \right) \\ &+ 12 \sum_{i > j} \operatorname{Im} \left\{ U_{\beta i} U_{\alpha i}^{*} U_{\beta j}^{*} U_{\alpha j} \right\} \sin \left(\frac{\Delta m_{i j}^{2} L}{2E} \right) \\ &+ 12 \sum_{i > j} \operatorname{Im} \left\{ U_{\beta i} U_{\alpha i}^{*} U_{\beta j}^{*} U_{\alpha j} \right\} \sin \left(\frac{\Delta m_{i j}^{2} L}{2E} \right) \\ &+ 12 \sum_{i > j} \operatorname{Im} \left\{ U_{\beta i} U_{\alpha i}^{*} U_{\beta j}^{*} U_{\alpha j} \right\} \sin \left(\frac{\Delta m_{i j}^{2} L}{2E} \right) \\ &+ 12 \sum_{i > j} \operatorname{Im} \left\{ U_{\beta i} U_{\alpha i}^{*} U_{\beta j}^{*} U_{\alpha j} \right\} \sin \left(\frac{\Delta m_{i j}^{2} L}{2E} \right) \\ &+ 12 \sum_{i > i} \operatorname{Im} \left\{ U_{\beta i} U_{\alpha i}^{*} U_{\beta j}^{*} U_{\alpha j} \right\} \sin \left(\frac{\Delta m_{i j}^{2} L}{2E} \right) \\ &+ 12 \sum_{i > i} \operatorname{Im} \left\{ U_{\beta i} U_{\alpha i}^{*} U_{\beta j}^{*} U_{\alpha j} \right\} \sin \left(\frac{\Delta m_{i j}^{2} L}{2E} \right) \\ &+ 12 \sum_{i > i} \operatorname{Im} \left\{ U_{\beta i} U_{\alpha i}^{*} U_{\beta j}^{*} U_{\alpha j} \right\} \sin \left(\frac{\Delta m_{i j}^{2} L}{2E} \right) \\ &+ 12 \sum_{i > i} \operatorname{Im} \left\{ U_{\beta i} U_{\alpha i}^{*} U_{\beta j}^{*} U_{\alpha j} \right\} \sin \left(\frac{\Delta m_{i j}^{2} L}{2E} \right) \\ &+ 12 \sum_{i > i} \operatorname{Im} \left\{ U_{\beta i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\alpha j}^{*} U_{\beta j}^{*} U_{\alpha j}^$$

Gradient descent fitters (GUNDAM, Ptheta)

We also have "MINUIT" based minimizers (gradient descent) that fit the ND data (GUNDAM, formerly BANFF) or the FD data (**PTheta**).

Nuisance parameters are profiled.

A. Longhin

PTheta fits the angular and momentum distributions of leptons and in some cases the reconstructed energy assuming the Quasi-elastic kinematics

The current analysis is called OAR11B.

It is expected to converge about half 2025

no new POT at SK for this release but new sample will be introduced

+ several improvements \rightarrow

Improvements of OAR11B

- Better ND constrain thanks to new high angle samples and new reconstruction
- Also introduced a new parametrization with more freedom for uncertainties at low Q² (forward region)
- Technical improvements in the ND fit (event by event splines for detector systematics)
- Improved SK detector errors
- Addition of a Multi-ring e-like sample at SK: expect 6 additional electron neutrino candidates (CC1 π mode)

Includes significantly more statistics at the far detector (+0.8e20 i.e. a +17% increase in POT reaching 5.5e20)

Work is in progress to update the SK detector systematics as the compensation of the Earth magnetic field was not working perfectly due to a failure of some coils (now partially repaired)

These new data also have higher Gd concentration (0.01 \rightarrow 0.03%) and higher horn current (250 kA \rightarrow 320 kA).

Data taken with the upgraded ND280. The plan is to keep the near detector constraint of the "old near detector" for this release and to postpone the exploitation of the post-upgrade samples to 2026. But we want to use the new ND data to have a consistency check of +320 kA data.

16

We are also planning to include a new control sample at SK (NCpi0). Constrain background and recover some signal. The activity is focused mainly on parametrizing well the interaction level systematics related to this sample. Adding new statistics even assuming higher systematics at SK will result in a predicted significant improvement on delta_CP

Aim is to reach 8e21 POT before the start of HK (fingers crossed for the beam to behave well!)

Perform the analysis including the upgraded samples.

Exp. sensitivity ~ for present T2K best fit

Before HK

1E20 POT RHC nulated POT for physics analysis (v-mode) ccumulated POT for physics analysis (v-mode) Protons on Target (× 10^{20}) Bun11 (kW peam power (v-mode, +205 kA) beam power (v-mode, +320 kA) beam power (v-mode, -250 kA) 30F beam power (V-mode, -320 kA) Year OAR11B **21E20 POT FHC** See Nakajima-san's talk **16E20 POT RHC**

accumulated POT for physics analysis (total)

A. Longhin

JENNIFER2 4th general meeting

T2K Oscillation analysis

7E20 POT FHC

Potential of the new near detector

Potential of the new near detector

We are relearning to drive

A. Longhin

Chambers (TPCs) JENNIFER2 4th general meeting

" 4π " acceptance

Horizontal TPCs!

θμ efficiency (current vs upgrade)

true cos

Excellent granularity/redundancy

- Around 2 million 1cm³ plastic cubes
- Readout on 3 orthogonal planes
 - not just XY
- Doubles the previous FGD mass

Cube planes joined with **Fishing lines**

Proton reconstruction

- Stopping Protons
 - Due to its particle containment, particle ID is possible through dE/dx, using SuperFGD only!

For exiting protons an even better tagging with dE/dx

Proton reconstruction

From >400 down to ~300 MeV protons

FGD

events

ťo

Number

800

600

400

200

0

0.2

0.4

0.6

0.8

Much better CCQE purity (contamination from 2p2h and CC1 π greatly reduced): 2p2h topologies become less degenerate with CCQE if you can "zoom in" the vertex at low thresholds + better proton/pion misid.

Improved PID (e/ɣ/n)

PiO

conversion poin

So far we could get a limiting purity level due to large contamination from low-energy photon conversions (mainly coming from the dense, and close volume of the magnet). $e^{-e^+ \text{ overlap}}$

In this also the new TOF systems plays a significant role.

Maybe opens the way to include nue samples in the ND fit?

Event-by-event neutron reconstruction

Search for an isolated deposit. Measure time of flight between the (anti-)neutrino vertex and the neutron interaction.

50% tagging efficiency.

Great for antineutrino runs: $\overline{\nu}_{\mu} \, p \rightarrow n \, \mu^{+}$ (CCQE)

Antineutrino energy resolution might improve from 15 to 7%.

Also useful to disentangle pure CCQE from 2p2h, FSI ... A. Longhin JENNIFER2 4th general meeting

T2K Oscillation analysis

Fotal Cross-section (barn)

0.1

0.0

100

200

300

600

500

Neutron Kinetic Energy (MeV)

400

Plans for exploiting the new samples - I

Including the samples in the fit is the last step of a series of studies that are in progress. We need to:

- **understand the new data** (calibrations, response, simulation parameters)
- Extend our model for **detector systematics** and validate it with several ad-hoc control samples
- Make sure that the **parametrization of interaction model uncertainties** is flexible enough to cover our lack of knowledge about the new phase space corresponding to the upgrade selections

First step involves making consistency-checks.

Is the fit output "stable" with "simple" post-upgrade samples similar as the previous ones (CC0pi, CC1pi, CC0ther) i.e. only using the kinematics of the muon?

NB: also the flux has recently been changed by using a 320 kA horn current in place of 250 kA (backup).

The OA group is also getting "technically" ready to incorporate new inputs using templates while the real ones will become mature enough.

Plans for exploiting the new samples - II

beyond muons → **use proton, pion kinematics?**

A. Longhin

Proton momentum is a proxy for energy transfer. Dominant systematic uncertainty in OA2022 is the treatment of low- ω effects \rightarrow

protons+muons: **extract information from their correlations using (Transverse Kinematic Variables, δp**_T):

→ good sensitivity to FSI, Fermi motion and removal energy → improved separation of QE and non-QE in 0π samples giving a better control over **neutrino energy reconstruction bias**: 1st order importance on systematics for OA

What about **pions**? Multiring samples enriched in 1π interactions. Background to signal samples. Systematics might become relevant with more statistics.

Current post fit ND does not reproduce proton angle well also also the pion spectrum.

Work ongoing on the definition of the samples + associated systematics.

JENNIFER2 4th general meeting

Conclusions

- During JENNIFER2 the OA analysis has improved significantly
- Lots of activity ongoing for including the data of last year
- Including the upgrade data in the OA brings a lot of opportunities for improving the precision of the T2K results → aiming for first samples in 2026
 And a real "investment" also for the HK eral
 - And a real "investment" also for the HK era!
- POT increase is still the main driver in improving the constrains: use the next two years to accumulate more POT and fully exploit what we already took.

Conclusions

- During JENNIFER2 the OA analysis has improved significantly
- Lots of activity ongoing for including the data of last year
- Including the upgrade data in the OA brings a lot of opportunities for improving the precision of the T2K results → aiming for first samples in 2026
 - And a real "investment" also for the HK era!
- POT increase is still the main driver in improving the constrains: use the next two years to accumulate more POT and fully exploit what we already took.
- Lots to be done for JENNIFER3!

Mapping reco-truth

The current ND samples ("topologies" CC0 π , $CC1\pi$, CCother) are designed to map as accurately as possible to the interaction processes. But detector effects create significant cross-feeding \rightarrow some of this are "unavoidable" (nuclear effects): a pion could be absorbed in the nucleus and appear as a CCQE.

Generator

CC-QE

(Quasi-elastic

CC-Resonant 1π

CC-2p2h

(Two-Particle-Two-Hole)

CC-DIS

FGD1 v., CC 1π 0γ

A. Lonahin

JENNIFER2 4th general meeting

Mapping reco-truth

But in general improvements in angular and energy acceptance with the upgraded ND will allow to define much more targeted and accurate samples addressing the interaction contributions

presently

Made with SankeyMATIC

A. Longhin

JENNIFER2 4th general meeting

Improvements in the recent analyses

release	Improvements	@ ND	@ FD
2022	FLUX & v interaction model	 New p-tagged & γ tagged samples 	 μ-like CC1π multi-ring samples
2023			 + Run 11 +9% FHC Gd 0.01 % in SK New selection (decay e) New SK systematic detector matrix
2024		 4π samples New reconstruction ("Prod. 7") "Splinification" of ND280 systematics 	• New multi-ring e-like sample

Probing nuclear effects better

High angle and low momentum acceptance allow measuring "transverse kinematic variables" crucial to measure nuclear effects like **"final state interactions"** or scattering on correlated nucleon pairs **(2p-2h)**.

Target is CH \rightarrow can single out interactions on H (Z=1, N=0 \rightarrow no nuclear effects!)

Very important to reduce the systematics in the measurement of the neutrino energy at SK that spoils the resolution on Δm^2

Systematics on neutrino energy

The 2-body quasi-elastic formula used to reconstruct the neutrino energy from the muon kinematics has large tails due to non CCQE components (i.e. 2p2h). Smearing is instead mainly related to the Fermi motion of nucleons in Oxygen nuclei.

It is important to have a well constrained model by the near detector data to reduce systematics (which are already today above stat errors for Δm^2). units

 0.0°

Charged current

quasi-elastic

(CCQE)

CC multi-nucleon knock-out (2p2h)

CC Reso

Good E

OA2023

2023

- + Run 11 +9% EHC
- Gd 0.01 % in SK
- New selection (decay e)
- New SK systematic detector matrix

Plans for this year

FD runs 12-13 FHC (+1.4E21 PoT), RHC (+0.6E21 PoT)
Add NCπ⁰ sample + use data with SK coils problem
No new ND inputs used in OA2025

Longer term > OA 2025

• ND upgrade samples from 2026

https://www.t2k.org/asg/members/2024-11-13/acintro

Diving deeper into the analysis

The fit is very complex. Besides the oscillation parameters it involves **hundreds of unknown parameters** ("nuisance") from **uncertainties in interaction models**, **final state interactions**, **flux uncertainty**, **detector parameters**. These are "fitted out" to finally access the interesting oscillation parameters (3).

ND inputs: binning

The ND fit acts on binned data using a 2D dimensional binning in the momentum and angle of the muon (no nu_e sample)

The binning has been recently improved by ensuring that it is larger than angular and momentum resolutions.

Event-by-event splines

Improved acceptance in the FHC samples

- FHC ToF for selecting backward going tracks
- Muon candidate that satisfies the TPC track quality $\widehat{\mathbf{g}}$ Forward: Z_{start} < Z_{end}. An FGD1-TPC2 (FGD2-TPC3). ⁵/₂^{0.9}
 Backward: Z_{start} > 7 An FGD1 TPC2 (FGD2-TPC3).

 - **Backward**: Z_{start} > Z_{end}. An FGD1-TPC1 (FGD2-TPC2)
- **High-Angle (HA)**: candidate fails TPC track quality but stops inside ECal or SMRD. Muon PID is based on ECal information or an SMRD segment. No check on the charge sign.
 - High-Angle Forward (HA-Fwd): Z_{start} < Z_{end}
 - High-Angle Backward (HA-Bwd): Z_{start} > Z_{end}

T. Doyle¹, D. Fedorova², A. Finch³, D. Hadley⁴, A. Izmaylov^{*2}, S. King^{†5}, V. Kiseeva⁶, L. Kneale⁷, M. Lamers James⁴, N. Latham⁴, A. Lopez Moreno⁵, V. Nguyen⁸, K. Skwarczynski⁹, A. Speers³, I. Suslov⁶, T. Wachala¹⁰, and G. Zarnecki¹⁰

Comparison of ND samples (2022-24)

- Effect of new selections + prod7 reconstruction
- events increased by 13.7% in data (148813 vs 130894) and by 6.8% in MC (129290.34 vs 121093.868)

E. Atkin, A. Longhin, B. Quilain, C. Riccio

T2K biweekly 06/06/24

Effect of the new ND samples on the fit

500

- The fit is more constraining (log likelihood scans narrow)
- Some examples:
 - 2022
 - 2024

GUNDAM

 addition in statistics and the fact that high-angle samples are \sim high-Q²

Stat Likelihood Scan

CONTRACTOR NO.

TRACAL CONTRACTOR

E. Atkin, A. Longhin, B. Quilain, C.Riccio

Ewan Miller, Lena Iosu

T2K biweekly 06/06/24

Flux covariance matrix change

SK: Neutrino Mode (320kA), v_u

SK: Neutrino Mode (250kA), v_u

A. Longhin

Det. sys. splinificaction

4952

552

Figure 3: Matrix of correlations between bin contents calculated using 1,000 toy parameter throws

Figure 4: Matrix of correlations between merged bin normalisation parameters. The indices no longer correspond to individual bins but rather groups of bins.

Bin merging

E. Miller TN 464

A. Longhin

JENNIFER2 4th general meeting

CP sensitivity updated plot

OA recent analyses at a glance

 δ_{CP}

https://www.t2k.org/asg/meeting/2024/2024-07-18/post-summer-2024-sensitivity-studies-fhc-rhc-perspectives <u>A. Longhin</u> JENNIFER2 4th general meeting T2K Oscillation and

Oscillation analysis with T2K

T2K uses difference in the process $v_{\mu} \rightarrow v_{e}$ and $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ to study the matterantimatter asymmetry over a 295 km "travel".

JENNIFER2 4th general meeting

T2K Oscillation analysis

Super-Kamiokande can

separate v_{μ} from v_{e}

Near detectors \rightarrow ND280

C. Giganti, Neutrino 2024

- Measure beam spectrum and flavor composition before the oscillations
- Detector installed inside the UA1/NOMAD magnet (0.2 T)
- · An electromagnetic calorimeter to distinguish tracks from showers
- Upgraded in 2023 but for the analyses shown here the original tracker system is used:
 - 2 Fine Grained Detectors (target for ν interactions). FGD1 is pure scintillator, FGD2 has water layers interleaved with scintillator
 - 3 Time Projection Chambers: reconstruct momentum and charge of particles, PID based on measurement of ionization

Oscillation analysis

Near and Far detector data are fitted either sequentially or simultaneously depending on the analysis considered

JENNIFER2 4th general meeting

ND fit

C. Giganti, Neutrino 2024

ND280 ν -mode flux parameters _{T2K Run1-10, 2022 Preliminary} 1.20 1.15 1.10 0 0.95 0.85 0.80 0.85 0.80 0.75 0.80 0.75 0.70 10⁻¹ 1 10 Neutrino Energy [GeV]

Sample	Pre-ND fit	Post-ND fit	
ν -mode 1R μ	16.7%	3.4%	
ν-mode 1Re	17.3%	5.2%	
ν -mode MR	12.5%	4.9%	
ν -mode 1Re+d.e.	20.9%	14.3%	
$\overline{\nu}$ -mode 1Rµ	14.6%	3.9%	
$\bar{\nu}$ -mode 1Re	14.4%	5.8%	

A. Longhin

CCQE x-sec parameters T2K Run1-10.2022 Pretiminary

SK Single ring µ-like sample

T2K Run 1-10, 2022 preliminary

P₁₂ S

Pre-ND

👹 Post-ND

- Tune and reduce uncertainties from flux and cross-section systematics
- Correlate flux and crosssection to predict expected spectra at the Far Detector

SK single ring e-like sample

JENNIFER2 4th general meeting

Number of Events

25

20

15

0.2

0.4

0.6

15

0.8

T2K Oscillation analysis

1.4

1.2

Reconstructed Neutrino Energy [GeV]

Results on δ_{CP}

Sample	$\delta_{CP}=-\pi/2$	$\delta_{CP}=0$	δ _{CP} =π/2	δ _{CP} =π	Data	
ν -mode 1R μ	417.2	416.3	417.1	418.2	357	
ν -mode MR	123.9	123.3	123.9	124.4	140	
$\bar{\nu}$ -mode 1Rµ	146.6	146.3	146.6	147.0	137	
ν -mode 1Re	113.2	95.5	78.3	96.0	102	
$\bar{\nu}$ -mode 1Re+d.e.	10.0	8.8	7.2	8.4	15 🖉	
$\bar{\nu}$ -mode 1Re	17.6	20.0	22.2	19.7	16	

 Preference for δ_{CP}~-π/2 but CP conserving values are within the 2σ interval

JENNIFER2 4th general meeting

Mass ordering and θ_{23} octant

T2K

- Slight preference for normal ordering and upper octant but none of them is significant
 - Bayes factor NO/IO = 3.3
 - Bayes factor $(\theta_{23}>0.5)/(\theta_{23}<0.5) = 2.6$

	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Sum
NH $(\Delta m_{32}^2 > 0)$	0.23	0.54	0.77
IH $(\Delta m_{32}^2 < 0)$	0.05	0.18	0.23
Sum	0.28	0.72	1.00

T2K Oscillation analysis

19

arXiv:2405.12488

Z. Xie, L. Berns poster

- Both experiments individually prefer normal ordering and δ_{CP}~-π/2, T2K prefers upper octant, SK prefer lower octant
- We performed Bayesian and Frequentist analyses → frequentist analyses shown today
- The CP-conserving value of the Jarlskog invariant is excluded with a significance between 1.9 and 2 σ
- In the frequentist analysis, p-value for CPC is 0.037 but increase to 0.05 when potential biases due to crosssection mis-modeling are included
- Normal ordering is preferred, p-value for IO 0.08

