

Introduction

- Apologize for those present at Jennifer3 kick-off meeting
- Nothing really new since January...
- Tasks covered
 - Task 2.1: Construction and Commissioning of Near Detector ND280 Completion of ND280 upgrade
 - Task 2.2: Construction and Commissioning of Super FGD
- Deliverables:
 - D2.1: Paper on the upgraded ND280 [48] Publication describing constuction and commissioning of the upgraded ND280

	WP2 - introduction	Claudio
	IFAE	17
	ND280 upgrade performances and plans	David Hena
	IFAE	17
	Status of T2K OA and plans for integration of ND280 upgrade	Andrea
18:00	IFAE	17
11:00	Introduction	Emi
	131, INFN and University of Pisa	1
	HA-TPC and sFGD construction and commissioning	Ľ
	131, INFN and University of Pisa	1
	T2K Analysis	And
	131, INFN and University of Pisa	1

Introduction

- Apologize for those present at Jennifer3 kick-off meeting
- Nothing really new since January...
- Tasks covered
 - Task 2.1: Construction and Commissioning of Near Detector ND280 Completion of ND280 upgrade
 - Task 2.2: Construction and Commissioning of Super FGD
- Deliverables:
 - D2.1 : Paper on the upgraded ND280 [48] Publication describing constuction and commissioning of the upgraded ND280

• **Beam:** 30 GeV protons on a graphite target, producing Kaons and Pions

Upgraded ND280 completed

target, producing Kaons and Pions

Upgraded ND280 completed

Why doing an upgrade?

Neutrino oscillation

- Measure the neutrino energy is non trivial
- And could have large impact on oscillation parameters

Limitations

- Old ND280 mainly a forward detector while SK is 4pi (high-angle and backward tracks not well reconstructed)
- Hadronic part of interactions only partially reconstructed because of proton threshold Loss of information -> need to rely on neutrino-nucleus model to construct the neutrino energy
 - from final state lepton

ND280 Upgraded

ND280 upgrade installation timeline

September 2023

- Installation of most upgraded detectors:
 - Bottom HATPC
 - SuperFGD (partially equipped)
 - TOF downstream, bottom and top panels

=> Already integrated and first beam taken in Dec 2023

April 2024

- Installation of Top HATPC
- SFGD fully equipped with its electronic
- Installation of remaining TOF panels

=> All detectors online for June 2024 beam run

Smooth installation thanks to high presence of Jennifer2 people on-site!

SuperFGD concept and installation

Main characteristics

- Highly segmented target made of 2 millions cubes of plastic scintillators
- Readout by a 3D array of fibres
 - Precise location of primary vertex
 - Lower threshold for protons and neutrons

1x1x1 cm³ cubes Polystyrene scintillator 1.5% paraterphenyl 0.01% POPOP Chemical etched reflector WLS fiber Kuraray Y11 2-clad (Ø=1mm)

SuperFGD concept and installation

On-surface tests

Tested and qualified before installation

Installation in basket

12th October 2023

Important presence of Jennifer groups

Cabling and commissioning

Cabled and tested with TOF

SuperFGD calibration

Detector response: Low and high gain readout

- Signal digitized by CITIROC (Omega lab. Ecole Polytechnique)
- Low and high gain signals (2x 12-bits ADC) => Full coverage of high dynamic range

Calibration of LG with LED injection

Signal [p.e.]

Calibration of HG with cosmic

From D. Sgalaberna's CERN seminar: <u>here</u>

SuperFGD

- Time: Time shift between (x,y,z) channels crossed by same tracks
 - ~1.2 ns time resolution per channel
- **Light Yield**: Measurement of the ~55k attenuation length with cosmic
 - Consistent with expectations

SuperFGD

Performances

- Time: Time shift between (x,y,z) channels crossed by same tracks
 - ~1.2 ns time resolution per channel
- **Light Yield**: Measurement of the ~55k lacksquareattenuation length with cosmic
 - Consistent with expectations
- Allow to see hadrons! lacksquare

HATPC concept

Atmospheric pressure TPC

- Gas: T2K mixture (95 Ar 3 CF4 2 isoC4H10)
- New gas system -> contaminants better than 10ppm
- Drift length 1m
 - Central cathode @ 27kV
- Low material budget
 - Thin wall thanks to composite materials

Encapsulated Resistive Anode Micromegas (ERAM)

- Benefits from ILC TPC & RD51 (now DRD1)
- Bulk micromegas with a resistive layer (DLC) for charge spreading
 - Improves spatial resolution for same pads density
 - Reduce sparks rate -> Electronic protection
- Mesh at ground -> Improves E field homogeneity

From S. Levorato CERN Seminar: here

HATPC installation

6-7th September: Installation 25th August: Delivery at JPARC

Important presence of Jennifer groups

6-7th September: Installation

11th October: First cosmic track

25th April: Installation of tHATPC after top TOF removal

HATPC characterisation

Extensive characterization @ CERN

- Each modules was characterized using a 55-Fe source to extract:
 - Gain, RC => Used as input of reconstruction to homogenized detector response

Gas system monitoring

- New gas system has been installed @ JPARC
 - Connections to chambers few days after installation, thanks to constant on-site supports from Jennifer groups

Reach ~ 10ppm level of contaminants, constantly monitored to precisely correct detector response time evolution

3 old TPC + 1 HATPC

3 old TPC + 2 HATPC

17

HATPC performances

Performances on-site

- formances on-site Using sand muons from beam to study detector response Ð
- Reach expected performances:
 - **Spatial resolution ~ 600um**
 - **Energy resolution < 10% for dE/dx**

E field distortion

- Discovered distortion near cathode
- HAT geometry fully implemented to COMSOL
 - Already implemented in reconstruction and simulation

Improvements

- Currently using cluster based track reconstruction
 - Get full advantage of spreading by doing a global fit
- Noise has been studied and a model derived to get better data/MC agreement @ waveform level

CATHODE

[mm]

spatial

TOF concept and installation

TOF modules

- Composed of 20 plastic scintillator bars arranged in a plane with a total active area of 5.4 m²
- Readout on both ends by SiPM arrays

TOF goals

- PID using time-of-light
- Tags background from out-of-fiducial volume
- Provide T0 to HATPCs
- Improve SFGD neutron time-of-light measurement
- Beam and SAND muons monitoring

In addition has provided cosmic triggers to upgrade detectors

Plus 2 hidden side panels for a 4pi coverage of detectors

TOF performances

SAND muons selection

- Provide an ideal sand muons selection
- Well observed beam position
- Computed time resolution between upstream-downstream panels
 - Reach a resolution of 330ps

Beam time profile

- Provide time alignement X-check between sub-detectors
- Comparison with for example SFGD shows time offset

Towards global reconstruction

How to combine informations?

- Each sub detectors provides hits or tracks to global reconstruction
- Inter-detector tracking is made to create objects crossing several sub detectors
- Propagate, combine and merge local information to form global tracks

Systematic strategy

- Systematics will be studied at two levels:
 - Low-level: by detector groups,
 - High-level: by analyzers
- Presence of people involved in detector developments in each analysis groups for better communication

Conclusion

Upgrade installed

- The ND280 upgrade was completed in May, 2024 and ready for the June beam
- Upgrade detectors are very stable and detector developments runs are taken during beam off period
 - **Crucial support from Jennifer-2 project to have experts on-site!**

Detector calibration and performances

- Jennifer-2 groups were highly involved in the characterization of detector responses •
- First performances were extracted and tools were developed for monitoring performance during data ulletacquisition
 - Issues are investigating ullet
- "Detector paper" are ongoing

Toward high-level analysis

- Also efforts have been put to include upgraded detector into high-level analysis software
 - Double cross-check detector performances and evaluation of systematics
 - Constant discussion between analysis and detector groups
- Prepare inputs for oscillation and cross-section measurements (See Andrea's talk!)

Going further

- More sophisticated tools under developments
 - Use of CNN at different stages of the reconstruction (SFGD, HAT, global for example) ullet
- This works is key for HK era to better understand systematics (beam upgrade, HK..) •

A lot of interesting results to come!

Conclusion

Upgrade installed

- The ND280 upgrade was com
- Upgrade detectors are very st
 - Crucial support from Jen

Detector calibration and perfor

- Jennifer-2 groups were highly
- First performances were extra acquisition
 - Issues are investigating
- "Detector paper" are ongoing

Toward high-level analysis

- Also efforts have been put to
 - Double cross-check detection
 - Constant discussion between
- Prepare inputs for oscillation a

Going further

- More sophisticated tools under
 - Use of CNN at different sta
- This works is key for HK era

eam off period

nce during data

Thank you!