
GEODATING RECAP

S. Rabaglia, B. Giacobbe

The Geodating Puzzle

QUICK REMIND

Simple Burial dating

- No post-burial production
- 2 Hypothesis:
 - Constant Exposure
 - Steady Erosion
- Parameter of Interest:

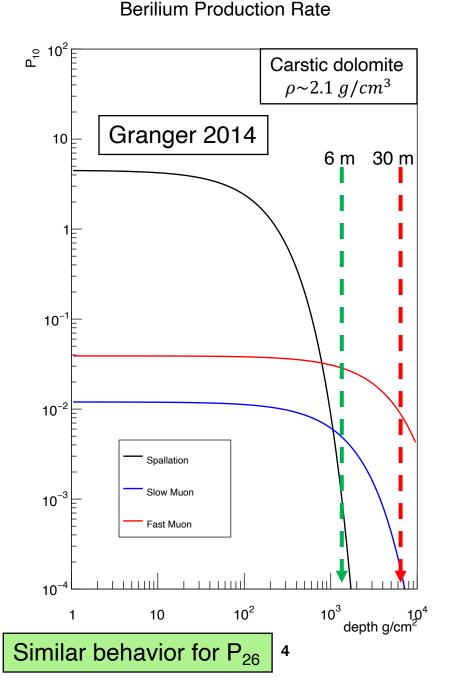
Production Rate (P₁₀, P₂₆) at

the **surface**

Min/Max method

- Post burial production
- 2 Ingredients:
 - Min: Simple Burial Method
 - Max: highest post burial production (steady erosion hypothesis to calculate R_{inh})
- Parameter of Interest:
 Production Rate (P₁₀, P₂₆) at
 - the sample depth

Ref: <u>https://agenda.infn.it/event/42364/</u>


QUICK REMIND

Simple Burial dating

- No post-burial production
- 2 Hypothesis:
 - Constant Exposure
 - Steady Erosion
- Parameter of Interest:
 Production Rate (P₁₀, P₂₆) at
 the surface
 - → Neutron Flux

Connection between Muon/Neutron Flux and the Production Rate Min/Max method

- Post burial production
- 2 Ingredients:
 - Min: Simple Burial Method
 - Max: highest post burial production (steady erosion hypothesis to calculate R_{inh})
- Parameter of Interest:
 Production Rate (P₁₀, P₂₆) at the sample depth
 → Muon Flux

QUICK REMIND: MUONS

P - "fast" muon

- Muon Flux: $\frac{2\pi}{n(h)+1} \cdot \Phi_V(h)$
- Mean Energy of muons at a given depth $(\overline{E'(h)})$
- Cross Section at mean energy:

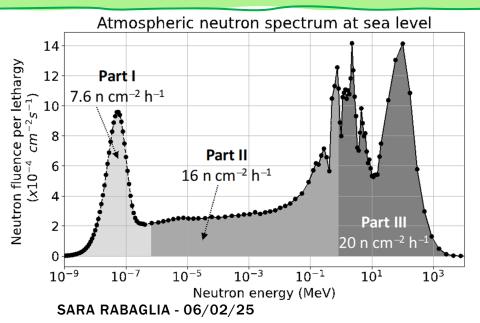
 $\sigma(E) = \sigma_0 \cdot E^{\alpha}$

- Number of atoms per gram in SiO₂: N_a/(28+2*16)[for Al]; 2*N_a/(28+2*16)[for Be]
- Ref: <u>https://agenda.infn.it/event/42981/</u>

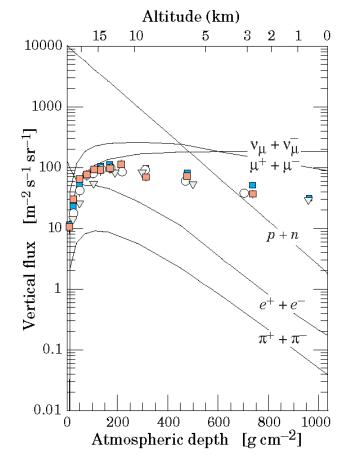
P – muon capture

• Stopping Rate:

$$R_{\mu^{-}}(h) = \frac{d}{dh} \left(\frac{2\pi}{n(h)+1} \cdot \Phi_{V}(h) \cdot f_{\mu^{-}} \right)$$


- 3 factors: f_c , f_D , f^*
- Find the right point on the "standard" parametrization of the flux to take the derivative
- Ref: <u>https://agenda.infn.it/event/43383/</u>

QUICK REMIND: NEUTRON


• P-value for spallation:

flux(neutrons)*cross section*Target nuclei

- E.g. P₂₆ (spallation) = 21 atoms/g*y [calculation];
 P₂₆ = 30.6 atoms/g*y [literature]
- Thermal part: negligible contribution
- https://agenda.infn.it/event/44144/

- Estimation of the intermediate region
- Proton contribution

"At sea level, about 1/3 of the nucleons in the vertical direction are neutrons (up from about 10% at the top of the atmosphere as the n/p ratio approaches equilibrium). The integral intensity of vertical protons above 1 GeV/c at sea level is ablout 0.9 m-2s-1sr-1 [68,80]. " (PDG (rev. 2022))

NEUTRON FLUX + PRODUCTION RATE

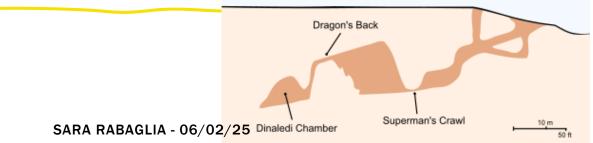
PoliMi Detector:

- Proper moderating material to count neutron over a certain energy
- Easily shipping without shielding
- Need efficiency calibration
- No energy information, only counts
- <u>https://agenda.infn.it/event/44144/</u>

iThemba LAB:

- Bonner Sphere (not calibrated yet)
- Shielding for the PoliMi detector

n_TOF:


- Direct measurement of the neutron production rate: irradiation of a rock sample
- Measurement of the ¹⁰Be and ²⁶Al before and after irradiation
- Measurement of the ²⁶Al concentration in loco
- Knowledge of the flux that

irradiate the target

Isotopes Concentration Measurements (AMS)

Next Steps...

- Contribution of the intermediate part of the neutron spectrum
- Contribution of the proton flux to isotope production
- Muon flux measured during proof of concept can be used to correct the P-value?
- Is it necessary to measure the energy spectrum of muons inside the cave?
- Should the muon flux also be measured inside the Dinaledi Chamber?
 Cave entrance

- Develop a code to calculate the age of the rock starting from the experimental values we want to measure.
- Simulations to evaluate uncertanties on the geodating measurements
- Could a direct measurement of the production rate be useful?

 \rightarrow Proposal to n_TOF (very soon)

- Is it possible to measure the neutron flux and spectrum with the W-PIE neutron spectrometer?
- Time table for neutron flux measurement

... PROPOSAL FOR MUON

IMPROVEMENT of the P-value

- First Step: ٠
 - Measurements of the directional Muon Flux (PoC) Ο
 - Introduce the experimental data inside the Ο calculation of the sample age.
- Second Step: •
 - Measurement of the muon Spectrum ٠
 - How accurate are the values of σ_0 and α ? And in a ٠ second phase, could conducting a study on these values improve the measurement?

 $P_{muon \ capture} = R_{\mu} - f_C \cdot f_D \cdot f^*$

Factors that we take from literature (see Per's slides)

 $P_{fast \ \mu} = \beta(h) \cdot (\Phi) \cdot (\overline{\sigma_0}) \cdot \overline{E} \otimes N_{target nuclei}$

... Proposal for Neutron

n_TOF

DIRECT measurement of the P-value:

- 1. Irradiation of representative sample
- 2. Irradiation of a non-representative sample
- Measurement of the neutron flux in loco with scintillating detector
- (Measurement of the neutron flux in loco with Bonner Spheres)
- Evaluation of uncertainties and systematics on the measurements

TO DO LIST:

- Define and write a proposal to use the neutron beam at n_TOF (1-2)
- Establish contact with an AMS laboratory(1-2)
- Building shielding for the neutron detector (3)
- Calibration of the neutron detector (3)
- Are Bonner Spheres available? Which is the hypothetical time scale for the calibration? (4)
- Theoretical study on the contribution of protons and the intermediate spectrum of neutrons
- Developing simulations (5)

