First axion and dark photon dark matter searches with MADMAX

Pascal Pralavorio (pralavor@cppm.in2p3.fr)

Aix-Marseille Université, CNRS/IN2P3, CPPM (Marseille, France)

https://madmax.mpp.mpg.de/

- 1. Scientific context
- 2. MADMAX, a dielectric haloscope
- 3. Dark matter searches with MADMAX prototypes
- 4. Towards final MADMAX
- 5. Conclusions

Cosmic Whisper Seminar, January 29 2025

Axion Motivation

Preferred solution to the strong CP problem

- **Problem** : Why no CP violation observed in the strong interaction ?
 - o A CP violating parameter (Θ) exists in the QCD Lagrangian ...
 - o ... but is constrained, using neutron electric dipole moment measurement, to be $|\Theta| < 10^{-10}$
 - \rightarrow Why is $|\Theta|$ so small ?
- Solution: new global U(1) symmetry (Peccei-Quinn, 77) spont. broken at scale $f_a [f_a >> f_{EWSB}]$ o Can occur before or after inflation
 - Axion is the pseudo-goldstone boson of this U(1) symmetry (Weinberg-Wilczek, 78)
 - o Non-thermal massive axion production at T~ Λ_{QCD}

Axion Dark Matter

Main characteristics

- Axion properties depends only on f_a
 - o Tiny mass: $m_a \approx m_\pi f_\pi / f_a < eV$
 - o Weakly interacting: $g_a \propto 1 / f_a$
 - o Long-lived: $\tau_{axion} \approx t_{Universe} (20 \text{ eV/m}_a)^5$
- Dark matter candidate (Preskill et al, 83)

o m_a can be computed in post-inflationary scenario

Axion very well motivated dark matter candidate for $m_a \approx O(100) \mu eV$

Wave-like Dark Matter

Other related very light dark matter candidates

Massive boson m_{γ} of a new

Direct detection of DM axions

Haloscope (using a-γ coupling) main way to search for DM axion

MADMAX one of the few exp. sensitive to $m_a = O(100) \mu eV$

Principles of dielectric haloscope

JCAP 01 (2017) 061

 Constructive interference of coherent EM waves emitted at the disk surface + resonant enhancement (~leaky resonator cavities): boost factor β² (∝ ε, N_{disk}) wrt mirror only

Principles of dielectric haloscope

EPJC 79 (2019) 186

 Constructive interference of coherent EM waves emitted at the disk surface + resonant enhancement (~leaky resonator cavities): boost factor β² (∝ ε, N_{disk}) wrt mirror only

Principles of dielectric haloscope

EPJC 79 (2019) 186

 Constructive interference of coherent EM waves emitted at the disk surface + resonant enhancement (~leaky resonator cavities): boost factor β² (∝ ε, N_{disk}) wrt mirror only

Axion mass scan: by moving discs with piezo motors (μm prec.) at 4K under 10 T (50 MHz step)

MADMAX exploits a new concept to cover an uncharted phase space

Formed in 2017. 11 institutes, ~50 people

Prototyping phase since 2020 to validate the concept

Prototype boosters

Gradually building the final 'open' booster

- Disks (sapphire): good planarity (<10 μm), controlled thickness (1000±10 μm), moveable (piezo motors)
- Receiver chain: low noise amplifier (немт) + Spectrum Analyser or custom-made board

Name	Goal	Booster	Disks	Test	
CB100	RF studies +	Closed	3, fixed φ = 100 mm	<u>2022, 23</u> , <u>24</u>	
CB200	First ALP searches	Closed	3, fixed φ = 200 mm	<u>24</u>	Room Temp. Cold (10 K)
OB300v1	Scan DP* @ 80 μeV	Open	3, fixed φ = 300 mm	23-24	Bfield Prospects
OB200	Piezo-motor + mechanics	Open	1, moveable ∳ = 200 mm	<u>2022</u> , 22	
OB300v2 (in prep.)	Scan ALP @ 80 µeV	Open	3-20, moveable φ = 300 mm	<u>26-28</u>	

*Dark Photon

Set-up: prototype cryostats (G10, stainless-steel) + CERN Morpurgo dipole magnet (1.6 T)

Preparatory work

lame	Booster	Disks	Test @CERN
CB100	Closed	3, fixed φ = 100 mm	<u>2022, 23</u>

- Morpurgo Magnet
 CB10

 1.6 m warm bore
 Keithley &

 3.5 m long
 Keithley &

 USB for SA
 B

 and LNA
 Morpurge Magnet

 Spectrum
 Spectrum

 analyzer
 Morpurge Magnet
 - CERN refurbished the area and the magnet for MADMAX
 - Checked that no RF interference (RFI) with CERN environment
 - Checked stability of data taking @19 GHz, 1.6 T: $t_{Live} \propto 1/{\sigma_{Noise}}^2$
 - Calibrated @10% receiver chain power: P \propto T_{sys} = f(Γ_{RC} , G, v)

Validated that CERN environment suited for prototype tests

Room Temp.

Cold (10 K)

Prospects

Bfield

Physics set-up (1/3)

Name	Booster	Disks	Test @CERN
CB200	Closed	3, fixed φ = 200 mm	<u>2024</u>

- Before going to CERN, prepared **5 disk configurations** with different β_{peak}^2 frequency
- Configurations obtained by changing manually the disk distances (separation rings, tuning rod)

14.5-day physics run @18.5, 19.2 GHz and under B = 1 - 1.6 T

Room Temp.

Cold (10 K)

Prospects

Bfield

Physics set-up (2/3)

Physics set-up (3/3)

□ Setting-up the configuration at CERN

Reproducing the configuration prepared in advance using the VNA

Boost factor (1/2)

Modelling the boost factor

- Booster 1D model obtained by fitting VNA reflectivity measurements
 - 3D effects taken into account and corrected for

noise diode

- Receiver model obtained by fitting standard calibration measurements (short, open, load)
- Booster + receiver model obtained by fitting system noise measurements in [18, 20] GHz
- This procedure allows to determine systematics uncertainties from fit parameters

Boost factor (2/2)

Computing the boost factor for all configurations

• $\beta^2_{\text{peak}} \approx 0(2000)$ and scan 100 MHz with $\beta^2 > 500$

Demonstrating the scanning capacity of MADMAX booster

Data analysis (1/2)

Power spectra data analysis (based on HAYSTACK procedure, PRD 96 (2017) 123008)

Data analysis (2/2)

• Normalize by thermal noise $\sigma_{Noise} (\propto T_{sys}) \rightarrow$ normalized power excess vs frequency

- ➤ No excess over Gaussian white noise → limits on axion-photon coupling |g_{ay}| for each frequency bin
- Impact of systematics on limit 5-10% (dominated by boost factor)

Axion search

\Box Setting limits in the $|g_{a\gamma}| - m_a$ plane

arXiv:2409.11777 (submitted to PRL)

- Limits on $|g_{a\gamma}|$ better than existing constraints by up to factor 3

First operation of a dielectric haloscope at cold under B field

[2 analysis papers in preparation]

Dark Photon search

NameBoosterDisksTest@DESYOB300v1Open3, fixed
 $\phi = 300 \text{ mm}$ 2023-24

booster (no waveguide) and without Bfield

P. Pralavorio (CPPM)

Room Temp.

Cold (10 K)

Prospects

Bfield

Boost Factor (1/2)

Boost Factor (2/2)

Data analysis

Dever spectra data analysis (based on HAYSTACK procedure. PRD 96 (2017) 123008)

- Acquire raw power spectra (vs frequency)

 (one 10' physics run for each configuration → ~2400 runs with bins of 9 kHz)
- Filter power spectra (Savitsky-Golay filter) to remove system noise (booster+receiver) "baseline" → residuals
- Combine residual spectra optimizing SNR / bin
 (using power calibration to W) & cross-correlating with
 axion line shape (signal is present in ~ 5 neighboring
 bins)

Sensitive to signal power of O(10⁻²¹ W)

Dark Photon search

\Box Setting limits in the χ – m $_{\chi}$ plane

- No signals of unknown origin detected
 - ✓ Set 95% CL limit on unpolarized Dark Photon (α =1/3)
 - Vorld best limits in 5 μeV interval, 1-3 order of magnitude below previous limits
- Modest system confirm substantial potential of MADMAX concept (broadband)

→ First dark matter DP search with MADMAX prototype

arXiv:2408.02368 (submitted to PRL)

Overall Dark Photon search

\Box Setting limits in the χ – m $_{\chi}$ plane

Reinterpreting the axion search as dark photon search extends the excluded region

Tuneable booster (1/3)

Room Temp. Cold (10 K) <u>Bfield</u> Prospects

- 2021: Successful test of 1 piezo motor at 5 K and 5.3 T (ALP magnet in DESY) JINST 18 (2023) PO8011
- 2022: OB200 proto tested in the lab, in a CERN cryostat (4 K) ... and in 1.6 T at CERN

()

Tuneable booster (2/3)

Room Temp. Cold (10 K) <u>Bfield</u> Prospects

Tuneable booster (3/3)

Room Temp. Cold (10 K) <u>Bfield</u> Prospects

Final prototype (1/2)

Room Temp. Cold (10 K) <u>Bfield</u> Prospects

Name	Booster	Disks	Test @CERN
OB300v2	Open	3-20, moveable	<u>2026-28</u>
(in prep.)		ϕ = 300 mm	

□ Test area at CERN (ready)

Final prototype (2/2)

NameBoosterDisksTest @CERNOB300v2Open3-20, moveable2026-28(in prep.) $\phi = 300 mm$ 2026-28

P. Pralavorio (CPPM)

First dark matter searches with MADMAX

Room Temp.

Cold (10 K)

Prospects

Bfield

Towards final MADMAX

Dipole Magnet

 Design completed: 2x9 skateboard coils with novel copper CICC conductor

[NbTi with Cu jacket @ 1.8K]

- Demonstrated that coils will be safe in terms of quench protection IEEETAS 33 (2023) 1
- Budget secured for a demonstrator coil
 - \rightarrow expected in 2027

Receiver Chain

- For now use classic low noise amplifier HEMT (G=33 dB, 4K added noise) below 40 GHz
- Josephson Junction being developed to further minimize noise (quantum limit)

TWPA prototype with G>20 dB and 1K added noise at 10 GHz

Next: >40 GHz technology to be developed

Conclusions

Δ MADMAX: dielectric haloscope for dark matter axion search ~100 μeV

BACKUP

Axion scales

APPEC Committee Report

Rept. Prog. Phys., 85(5):056201, 2022, 2104.07634

Vaccuum Realignment

Vaccuum realignment (VR)

Ratio of VR axion
density over total
DM density
$$O(1) \text{ factor accounting for anharmonicities in the axion potential (calculable in principle – QCD effects)}^{7/6}$$

For $\theta_i \sim 1$ a $\sim 6 \mu eV$ axion would fill the needed DM axion via VR mechanism

Note the approx. inversely proportional relation between $\Omega \sim 1/m_A$. Contrary to thermal relics.

Disk planarity

Closed vs open booster

Closed booster

- Booster enclosed in cylindrical waveguide, ensuring fixed boundary conditions
- ➤ Fundamental mode (cylindrical TE11 mode) dominant and coupled to receiver (lens)
 → simplifies RF response modelling
- > 1D model enough to extract boost factor, with $1D \rightarrow 3D$ correction (field overlap with axion field)
- Difficult to insert bead for boost factor measurement with bead-pull method

Open booster

- Free space outside disks
- Higher-order transverse modes wrt fundamental Gaussian mode can propagate and resonate
- Easy to insert bead for boost factor measurement with bead-pull method

Boost factor

Thesis J. Egge

Boost factor

Tuning of sensitive frequency range by adjusting disc spacing Area law: $\beta^2 \Delta v_\beta \sim \text{const.}$ \rightarrow broad-band scan for search \rightarrow narrow-band to confirm possible signals

Bead-pull method (1/2)

Boost factor determined using Bead Pull Method (non-resonant perturbation theory) + Lorentz reciprocity theorem JCAP 04 (2023) 064

Bead-pull method (2/2)

JCAP 04 (2024) 004

Test with a single disk and non-optimized set-up

[time gating allows to filter out antenna-booster resonances]

HAYSTACK analysis

TE11 \rightarrow **Axion in CB**

Form factor \cong 84%

First dark matter searches with MADMAX

Grand spectrum

P. Pralavorio (CPPM)

First dark matter searches with MADMAX

MADMAX sensitivity

Axion-photon coupling $|g_{a\gamma}|$

$$|g_{a\gamma}| = 4 \times 10^{-11} \,\text{GeV}^{-1} \sqrt{\frac{2 \times 10^3}{\beta^2}} \sqrt{\frac{T_{\text{sys}}}{300 \,\text{K}}}$$
$$\times \left(\frac{0.1 \,\text{m}}{r}\right) \left(\frac{1 \,\text{T}}{B_e}\right) \left(\frac{1.3 \,\text{days}}{\Delta t}\right)^{1/4} \sqrt{\frac{\text{SNR}}{5}}$$
$$\times \left(\frac{m_a}{80 \,\text{\mueV}}\right)^{5/4} \sqrt{\frac{0.3 \,\text{GeV/cm}^3}{\rho_a}},$$

Dark Photon kinetic mixing angle with photon, χ

Assuming unpolarized Dark Photon:

$$\begin{split} \chi &= 1.0 \times 10^{-13} \left(\frac{640}{\beta^2} \right)^{1/2} \left(\frac{707 \,\mathrm{cm}^2}{A} \right)^{1/2} \\ &\times \left(\frac{T_{\mathrm{sys}}}{240 \,\mathrm{K}} \right)^{1/2} \left(\frac{11.7 \,\mathrm{d}}{\Delta t} \right)^{1/4} \left(\frac{\mathrm{SNR}}{5} \right)^{1/2} \\ &\times \left(\frac{0.3 \,\mathrm{GeV/cm}^3}{\rho_{\chi}} \right)^{1/2} \left(\frac{\Delta \nu_{\chi}}{20 \,\mathrm{kHz}} \right)^{1/4}, \end{split}$$

Systematics impact on |g_{ay}|

Axion-photon coupling $|g_{a\gamma}|$

Effect	Uncertainty in $ g_{a\gamma} $	
Y-factor power calibration (configu	ration dependent) 3% to 5%	
Receiver chain power stability Axion field – TE_{11} overlap	$\leq \frac{2\%}{6\%}$	hoost
Boost factor determination	< 5 %	factor
Total Frequency stability of TE_{11} models Te_{11}	$\frac{100}{5\% \text{ to } 10\%}$	laotor

Dark Photon kinetic mixing angle with photon, χ

Effect Unce	rtainty on χ
Boost factor determination (frequency depender	nt)
Bead-pull measurements	2 to $17%$
Bead pull finite domain correction (FD)	5%
Receiver chain impedance mismatch (RC)	$<\!1\%$
Y-factor calibration	4%
Power stability	3%
Frequency stability	2%
Line shape discretization (9 kHz bin)	4%
Total	$0 \pm 0.10\%$

Axion limit

P. Pralavorio (CPPM)

Directionality with MADMAX

Search / Discovery » mode = MADMAX with 80 disks

As DM is highly non-relativistic ($v_a \sim 10^{-3}$), the associated De Broglie wavelength is large, i.e. larger than the detector with 80 disks

- $\lambda_{\rm dB} = \frac{2\pi}{m_a v_a} = 12.4 \text{ m} \left(\frac{100 \ \mu \text{eV}}{m_a}\right) \left(\frac{10^{-3}}{v_a}\right)$
- Velocity effects only important for haloscopes with a size >~20% of de Broglie wavelength
- > Can be safely neglected for setup with 80 disks \rightarrow Good (no model dependence of boost factor)
- Annual modulations could be detected for sufficiently long measurements
- « Axion telescope » mode \rightarrow directionally sensitive to axion velocity
 - → Effects come from axion velocity in direction perpendicular to the disks (→ change in phase over the haloscope)
 - \rightarrow need increased length of the device: O(1) effect if haloscope length similar to De Broglie wavelength
 - → Use the same disks but increase separation between disks: from $\lambda/2 \rightarrow 3\lambda/2$, $5\lambda/2$
 - → Increase the number of disks

1707.04266 1806.05927