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Decay Channel in Analysis

My Master’s degree project concerns

the search for the process:

J/ψ → 3γ .

Setup
The study will use the complete dataset of Ψ(3686) events.

There are 3 dataset taken in 2009, 2012, and 2021. The data

presented today are based on the Dataset Monte Carlo that

reproduce only the 2021 data.
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Present Measures

The previous measurements of the branching fraction

B(J/ψ → 3γ) are:

• CLEO Collaboration, 2008: (1.2 ± 0.3 ± 0.2) × 10−5

• BESIII, 2013: (11.3 ± 1.8 ± 2.0) × 10−6

The branching fraction theorized using Lattice QCD (2020) is:

• (1.614 ± 0.016 ± 0.261) × 10−5 with a ≃ 0.085 fm;

• (1.809 ± 0.051 ± 0.295) × 10−5 with a ≃ 0.067 fm;

where a is the lattice spacing used in the simulation.
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Why do we study the process?

There are two main reasons why this analysis is interesting:

1. We have a much larger dataset; this means that the process

can be measured with much higher precision; this is useful to

build a complete picture of the decay of J/ψ. In particular,

for the process J/ψ → 3γ, we can try to verify the NRQCD

predictions with higher precision but also confirm the latter

lattice QCD calculations.

2. Since the energy region we explore coincides with where

glueballs are predicted to exist, our analysis can therefore

help narrow down the phase space where glueball

contributions might still be hiding.
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Decay Channel in Analysis

In particular the process is studied in the Ψ(2S) production

through the channel:

Ψ(2S) → π+π−J/ψ;

J/ψ → γγγ

It is helpful to use this decay chain because we are able to tag the

whole process thanks to the signal given by the two charged tracks,

to identify a J/ψ event via the recoiling mass of the π+π− system.
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Recognition of the J/ψ events.

The first step of the analysis is to recognize the J/ψ events

through the recoil of π+π−.

Making a fit the J/ψ mass using the π+π− tracks we are able to

impose a cut to the combined mass:

3.092GeV/c2 ≤ mππ ≤ 3.101GeV/c2

.
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Fit of π+π− over the J/ψ mass

Figure 1: Fit of the Ψ(2S) using the π+π− mass.

Doing so we could select the best pion candidates for the J/ψ

mass reconstruction.
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γγγ events selection

Once selected the good J/ψ events the analysis shifted to the

more challenging recognition of pure 3γ events. This is the

principal goal of the analysis and it is still a work in progress.

The first selection of γ’s is composed by some fiducial cuts that

are typical to gamma signals. In our case we saved only the events

that presented at least three good candidates.
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Kalman Fit of γ signals

The selection of the neutral particles that best reproduce the J/ψ

is done using a Kalman Fit.

For each event we try to find the best triplet of γ candidates that,

added to the two π selected , better fit the center of mass of

Ψ(3686).

It is interesting to notice that the only constraint is the Ψ(2S)

mass and not the J/ψ one; this had been originally done but

resulted in forcing backgrounds signals in the fit of the J/ψ.

The Kalman fit produced a cut based of the χ2, each event is

considered good if:

χ2 ≤ 45 ∧ χ2 ̸= 0 .
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Kalman Fit optimization

Figure 2: The optimization of this cut had been done by maximizing the

significance S/
√
S + B. In this graphic each step correspond to 2 unit of

χ2.
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Intermediate Particles Events Rejection

The principal problem of this type of process is the presence of

many intermediate events that can produce 3 γ’s. Two essential

tools that can be used to discriminates this events are: Topology

studies and Dalitz Plots

Topology
This is a technique typical of the Monte Carlo simulations where,

knowing what we are simulating, we can reveal the decay channels

remaining after some cuts. Using the topology we can give a

direction to the analysis and understand when the selection is

sufficiently good and try to use the real dataset.
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Topology table

Figure 3: Table of topology showing the 9 channels with higher count.

The dataset used is the Inclusive Monte Carlo one after the Kalman

selection.
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Dalitz plot of Signal vs Inclusive MC
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Figure 4: Here you can see a comparison of the Dalitz Plots of the

combined mass γ1γ3 vs γ2γ3. On the left you can see a pure signal of

3γ while on the right we have the inclusive Monte Carlo; both are

produced with a cut dataset (fiducial cuts + Kalman Fit).
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Fit of resonances

From both the Topology and the Dalitz plot we see clearly that are

present various resonances, the first three in number (η, η′ and

π0) are also the easiest to cut out.

To do so we did a fit of the masses obtainable combining γγ and

we fitted them over the mass of the three particles using a sum of

a Breit-Wigner and a Crystal ball.
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Fit of Backgrounds
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Figure 5: Data from an MC of each signal 18



Optimization of phase space cut

Found the FWHM of each fit, we used it to impose a cut,

optimized using the significance. The cuts fixed are:

• Resonance η:

0.5103GeV/c2 ≤ massγγ ≤ 0.5854GeV/c2;

• Resonance η′:

0.9277GeV/c2 ≤ massγγ ≤ 0.9878GeV/c2;

• Resonance π0:

0.1149GeV/c2 ≤ massγγ ≤ 0.1550GeV/c2.

Kalman fit of many γ events
To reduce the presence of multiple π0, we decided to include an

additional Kalman fit made only when we have more than 3γ, and

rejected each event that contained a fitted combined mass γγ

inside the π0 mass interval.
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Resume of Cuts

Here you can see the number of events saved after each cut:

Cut Counts

Total Events Analyzed 2.30 · 109

Fiducial cuts for charged tracks 2.15 · 109

At least 3 good γ tracks 1.64 · 109

Good Charged Tracks 6.35 · 108

Vertex Fit 6.34 · 108

J/ψ Events as π+π− recoil 3.99 · 107

Kalman Fit with 3γ tracks 7.66 · 104

Resonances Cut 1.30 · 104

Kalman fit of pions 1.12 · 104

20



Resume of Cuts: Efficiency

Cut Efficiency

Total Events Analyzed 100,00%

Fiducial cuts for charged tracks 72,12%

At least 3 good γ tracks 48,20%

Good Charged Tracks 18,48%

Vertex Fit 18,45%

J/ψ Events as π+π− recoil 15,95%

Kalman Fit with 3γ tracks 12,89%

Resonances Cut 11,31%

Kalman fit of pions 11,25%

Table 1: Here is shown the efficiency of each cut over a sample of

300000 events of signal simulated.
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Backgrounds still to remove

The backgrounds still present at this point are: f0, f2, f4 and π0π0,

with the last one being the more present.
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Figure 6: On the left, the Dalitz plot of the Inclusive MC after the cuts,

on the right, the one for the π0π0 background.
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Kalman Fit

We tried also another way of cutting the dataset, trying to use

Kalman to fit also the resonances. In this way we thought that

could be possible to avoid to cut out of the analysis entire sectors

of the Phase Space. This method produced a worse result than

the cut based one.

Figure 7: On the left we have the fit based topology, on the right we

have the cut based one. As we can see the signal count in the fit version

is halved wrt the cut version.
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Kalman Fit of missing Tracks

Since the most difficult background to reject is the π0π0γ one; we

tried to reject it using the an option of the Kalman fit that is the

AddMissTrack() function of Kalman Fit.

In such a way we wanted to test the possibility to have a t least

one missing photon per π0, due to the low energy of γ’s coming

from the decay of a π0.

This method was also discarded because it produced empty dataset

with no good data.
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The Solution: Boosted Decision Trees

We are now trying to implement a Boosted Decision Tree

(BDT) in the analysis in order to discriminate the Background

events from the signal ones.

BDT is a machine learning method, included in the TMVA class

of ROOT, and is based on the concept of Decision Trees
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Decision Tree

Decision Tree
A decision tree is an algorithm that,

using multiple variables, start by

imposing a condition on one variable

(e.g.: a rectangular cut over the

energy), and verify if that condition

bring to an improvement of the dataset,

each branch than split into a secondary

decision, that can be over the same or

over another variable and so on until an

objective is reached.
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Boosting

The BDT take the concept of decision trees but iterates it by

creating a forest of many small trees (which stops already at the

third/forth branch). In such a way it is possible to evaluate many

different picture of the same condition.

The boosting is given by the fact that, in the training phase, we

give different weights to the trees based on how well that specific

tree divide our dataset. In such a way we create a pattern that can

then be applied to the dataset to separate background and signal
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BDT Application

Right now we are working on the application of BDT. To do it we

retrieved an MC dataset for each of the backgrounds still present

in the dataset (f0γ, f2γ, f4γ, and π
0π0γ) and gave them as base

background of the BDT.
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Future Goals

• Surely the analysis is still in progress, so the main focus is to

obtain a sharp separation of the Decay channel in analysis,

using the complete dataset.

• The future step would be then to use what we’ve learned in

this analysis as a basis to study the decay channel:

J/ψ → γγγ ,

using the same dataset.

This is more challenging to do due to the absence of strong

tagging given by the π+π−, so the hope is that the TMVA

methods (and in particular the BDT) will be useful.
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Thank you
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BACKUP: Fiducial Cuts

Here are reported the cut on γs:

• Barrel cuts:

rejected if: | cos(θ)| < 0.80 ∧ Eγ ≤ 0.025GeV

• Endcaps cuts:

rejected if: 0.86 < | cos(θ)| < 0.92 ∧ Eγ ≤ 0.05GeV

• Timing cut:

0 ns ≤ t ≤ 700 ns
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BACKUP: Branching fractions of intermediate Processes

The branching fractions for each intermediate decay involved are:

• Br(J/ψ → η′γ)= ( 5.13 ± 0.17 ) × 10−3

• Br(J/ψ → ηγ)= ( 1.104 ± 0.034) × 10−3

• Br(J/ψ → πγ)= ( 3.49 + 0.33 - 0.30 ) × 10−5

• Br(J/ψ → ππγ)= ( 1.15 ± 0.05 ) × 10−3

• Br(J/ψ → f0γ → ππγ)= ( 3.8 ± 0.5 ) × 10−4

• Br(J/ψ → f2γ → ππγ)= ( 1.64 ± 0.12 ) × 10−3

• Br(J/ψ → f4γ → ππγ)= ( 2.7 ± 0.7 ) × 10−3
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BACKUP: f s Dalitz Plots
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Figure 8: Dalitz plot respectively of f0, f2, f4. 36
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