The relative phase measurement task force

Francesca

Model dependent experimental evidences

from J/ψ decays

SU3 and SU3 Breaking in $1^{-}0^{-[1,2,3,4]}$, $0^{-}0^{-[1,2,3]}$, $1^{-}1^{-[1]}$, $1^{+}0^{-[5]}$, $B\overline{B}^{[2,6,7]}$ decays show the phase in J/ψ decays between A_g and A_γ is $\Phi \sim 90^{\circ}$

- $PP(0^{-}0^{-})(\pi^{+}\pi^{-}, K^{+}K^{-}, K_{S}K_{L}): \Phi = (90 \pm 10)^{\circ [2]}$
- $VP(1^-0^-)(\rho\pi,\omega\pi^0,\phi\pi^0,\rho\eta,\omega\eta,\phi\eta,\rho\eta',\omega\eta',\phi\eta',\overline{K}^*K)$
- $VP(1^+0^-)(K_1^{\pm}(1400)K^{\mp}, K_1^{\pm}(1270)K^{\mp})$
- $VV (1^{-}1^{-})(\rho^{+}\rho^{-}, K^{*+}K^{*-}, K^{*0}\overline{K}^{*0})$
- $\circ B\bar{B}(p\bar{p},n\bar{n},\Lambda\bar{\Lambda},\Sigma^{0}\bar{\Sigma}^{0},\Sigma^{+}\Sigma^{-},\Xi^{0}\bar{\Xi}^{0},\Xi^{+}\Xi^{-},\Sigma^{0}\bar{\Lambda}+\bar{\Sigma}^{0}\Lambda)$

Some are based on very old experimental results, but the conclusion keeps the same

pQCD forsee real Amplitudes and 180°/0° phases

Process I/di → PV	SOZI	DOZI
ρ ⁺ π ⁻ , ρ ⁰ π ⁰ , ρ ⁻ π ⁺ K* ⁺ K ⁻ , K ⁺ ⁻ K ⁺ K* ⁰ K ⁰ , K ^{*0} K ⁰ ωη ωη' φη φη' φη' φπ ⁰ φπ ⁰	g + e $g(1 - s_g) + e$ $g(1 - s_g) - 2e$ $(g + e)X_{\eta}$ $[g(1 - 2s_g) - 2e]Y_{\eta}$ $[g(1 - 2s_g) - 2e]Y_{\eta}$ $[g(1 - 2s_g) - 2e]Y_{\eta}$ $3eX_{\eta}$ $3eX_{\eta}$ 3e 0	+ $\sqrt{2}rg(\sqrt{2}X_{\eta} + Y_{\eta})$ + $\sqrt{2}rg(\sqrt{2}X_{\eta'} + Y_{\eta'})$ + $rg(\sqrt{2}X_{\eta} + Y_{\eta})$ + $rg(\sqrt{2}X_{\eta'} + Y_{\eta'})$
An example	$g - A_{3g}$ $X_{\eta}, Y_{\eta}, s_g - SU(4)$	$_{g}; e - A_{\gamma}$ 3)breaking items
[1] L. Köpke and N [2] G. Lopez Cast	N. Wermes, Phys. R	ep. 174, 67 (1989) nd J. Pestiegy, hep-

- ph/9902300v1 (1999)
- [3] Mahiko Suzuki, Physical Review D 57, 5717 (1998)
- [4] P. Wang, C.Z. Yuan, X.H. Mo, Phys. Rev. D 69, 057502 (2004)
- [5] Mahiko Suzuki, Physical Review D 63, 054021 (2001)
- [6] R. Baldini et al, Physics Letters B 444, 111-118 (1998)
- [7] K. Zhu et al., Int. J Mod. Phys. A30, 1550148 (2015).

By Yadi@HADRON2025

Model dependent experimental evidences $from J/\psi$ decays @BESIII

 $Br(J/\psi \to p\bar{p}) = (2.112 \pm 0.004 \pm 0.031) \times 10^{-3}$ $\alpha = 0.595 \pm 0.012 \pm 0.015$

$$Br(J/\psi \to n\bar{n}) = (2.07 \pm 0.01 \pm 0.17) \times 10^{-3}$$

 $\alpha = 0.50 \pm 0.04 \pm 0.21$

The strong interaction is dominant.

 $P = (-85.9 \pm 1.7)^\circ$ or $(+90.8 \pm 1.6)^\circ$ combined with other baryon decays from BES, MarkII, DMII, BESII, BESIII experiments. *K. Zhu, X. H. Mo, C. Z. Yuan, Inter. J. Mod. Phys. A*, 30, 1550148 (2015)

Study of $J/\psi \rightarrow p\bar{p}$ and $J/\psi \rightarrow n\bar{n}$ (BESIII Collaboration) Phys. Rev. D 86, 032014 (2012)

$$\phi = \cos^{-1} [(\mathcal{B}(J/\psi \to p\bar{p}) - S^2 - E_p^2)/(2SE_p)]$$

= (88.7 ± 8.1)°.

- ► $E_p(E_n)$ and *S* are EM and strong amplitudes of $J/\psi \rightarrow p\bar{p} (n\bar{n}), \phi$ is the phase angle between $E_p(E_n)$ and *S*.
- > Assumption:
 - $E_n = -E_p$ and $S_p = S_n = S$

By Yadi@HADRON2025

Model dependent experimental evidences $from J/\psi decays$

R. Baldini, A. Mangoni, S. Pacetti, K. Zhu; Phy. Lett. B 799, 135041 (2019)

$\mathcal{B}\overline{\mathcal{B}}$	${\sf BR}^{ m exp}_{{\cal B}\overline{{\cal B}}} imes 10^3$	$\text{BR}_{\mathcal{B}\overline{\mathcal{B}}}\times 10^3$
$\Sigma^0 \overline{\Sigma}^0$	1.164 ± 0.004	1.160 ± 0.041
$\Lambda\overline{\Lambda}$	1.943 ± 0.003	1.940 ± 0.055
$\Lambda \overline{\Sigma}^0 + \text{c.c.}$	0.0283 ± 0.0023	0.0280 ± 0.0024
p p	2.121 ± 0.029	2.10 ± 0.16
nn	2.09 ± 0.16	2.10 ± 0.12
$\Sigma^+ \overline{\Sigma}^-$	1.50 ± 0.24	1.110 ± 0.086
$\Sigma^{-}\overline{\Sigma}^{+}$	/	0.857 ± 0.051
$\Xi^0 \overline{\Xi}^0$	1.17 ± 0.04	1.180 ± 0.072
$\Xi^{-}\overline{\Xi^{+}}$	0.97 ± 0.08	0.979 ± 0.065

- Consider the small contribution from $A_{gg\gamma}$
- Assume $A_{gg\gamma}$ has the same phase as A_g to A_{γ}
- Perform SU(3) analysis based on experimental branching ratios of J/ψ decaying to baryons

 $\Phi = (73 \pm 8)^{\circ}$

Br result from SU(3) very close to PDG

Model dependent experimental evidences

from $\psi(2S)$ decays

From the analysis of BESIII data made by R. Baldini^[1]:

- $\psi(2S) \rightarrow VP (1^-0^-): \Phi = (159 \pm 12)^\circ$
- $\psi(2S) \rightarrow K^* K$ only: $\Phi = (159 \pm 24)^\circ$
- $\psi(2S) \rightarrow PP \ (0^-0^-): \ \Phi = (95 \pm 11)^\circ$

Analysis by Mahiko Suzuki^[2] with Babar data:

- $\psi(2S) \rightarrow 1^- 0^-$: tends to have large phase,
- $\psi(2S) \rightarrow 1^+ 0^-$: $\Phi \sim 0^\circ$
- Difference could be caused by lower statistics of Babar data than that of BESIII.

 $PP(0^{-}0^{-})$ mode from BES result^[3]:

•
$$\psi(2S) \rightarrow K_S K_L, K^+ K^-, \pi^+ \pi^-$$
:

$$\Phi = (-82 \pm 29)^{\circ} \text{ or } (121 \pm 27)^{\circ}$$

Analysis^[4] of $\psi(2S)$ decaying to baryon pairs from CLEO and BESII:

baryon pairs:

$$\Phi = (-98 \pm 25)^{\circ} \text{ or } (+134 \pm 25)^{\circ}$$

[1] Rinaldo Baldini Ferroli, Orsay (France), 2014
[2] Mahiko Suzuki, Phys. Rev. D 63, 054021 (2000)
[3] BES Collaboration, Phys. Rev. Lett. 92, 052001 (2004)
[4] K. Zhu, X. H. Mo, C. Z. Yuan, Inter. J. Mod. Phys. A, 30, 1550148 (2015)

By Yadi@HADRON2025

Rinaldo is one of the top-players in the field and triggered most of the resonance scans thatare used in these analyes in BESIII

SU(3) independent--Scan method

By Yadi@HADRON2025

The born cross section:
$$\sigma^{0}(W) = \left(\frac{A}{W^{2}}\right)^{2} \frac{4\pi\alpha^{2}}{W^{2}} \left|1 + \frac{3W^{2}\sqrt{\Gamma_{ee}\Gamma_{\mu\mu}}(1 + Ce^{i\Phi_{g,EM}})}{\alpha M(W^{2} - M^{2} + iM\Gamma)}\right|^{2}$$

The observed cross section:

$$\sigma^{\text{theory}}(W) = \int_{W-nS_E}^{W+nS_E} GS(W - W'') dW'' \int_0^{x_f} dx F(x,s) \sigma^0(s(1-x))$$

Minimization method:
$$\chi^2 = \sum_{i=1}^{16} \frac{\left[\sigma_i^{\text{obs}} - f\sigma''(W_i)\right]^2}{(\Delta\sigma_i^{\text{obs}})^2 + \left[\Delta W_i \cdot \frac{d\sigma''(W)}{dW}\right]^2} + \left(\frac{1-f}{\Delta f}\right)^2$$

Punto di attenzione: la dipendenza del continuo da s (pQCD asintotica o fit fuori dalla risonanza)

By Yadi@HADRON2025

J/**ψ** measurements @BESIII

- Poche pubblicazioni
- Molte analisi iniziate, alcune a buon punto

 $e^+e^- \rightarrow J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$

 J/ψ scan data (16 data points) of 100 pb^{-1} collected in 2012 is used Detection efficiency is simulated with MCGPJ generator for the ISR effect around J/ψ narrow peak

Intermediate resonances are considered in

simulation without interference

	$\Phi_{g,\mathrm{EM}}$	$\mathcal{B}_{5\pi}$ (%)
Solution I	$(84.9\pm3.6)^\circ$	4.73 ± 0.44
Solution II	$(-84.7 \pm 3.1)^{\circ}$	4.85 ± 0.45

The phase between A_{γ} and A_{3g} is found being consistent with 90°.

Ad oggi l'unica misura che abbiamo pubblicato.

By Yadi@HADRON2025

Once again, the phase between A_{γ} and $A_{cont.}$ is confirmed to be ZERO.

Ci consegna il mass shift per i dati dello scan e la conferma della fase continuo/EM uguale a 0 oltre alla misura del beam energy spread the differences among different approaches and parameterizations, we obtain $\Phi_{\gamma,\text{cont}} = (3.0 \pm 10.0)^\circ$, $S_E = (0.90 \pm 0.03)$ MeV and $\Delta M = (0.57 \pm 0.05)$ MeV/ c^2 , which will be used in the fit for the hadronic final state.

BESIII Collaboration, to be submitted

VP

 $e^+e^- \rightarrow J/\psi \rightarrow \phi\eta$

➤ Two solutions
 ➤ Indistinguishable within 1σ confidence
 ➤ Φ_{3g,γ} ∈ [133.1°, 229.2°]
 Interference between A_{3g} and A_γ?

By Yadi@HADRON2025

Analisi in corso e "vive"

 $J/\psi \to \Sigma^0 \overline{\Sigma^0}$

Started by Muzaffar, taken over by Hao Zhang (USTC)

ne 2012+2 cme 2015

Non rel BW

https://hnbes3.ihep.ac.cn/HyperNews/get/paper612.html

Solution	$\Phi_{3g,\gamma}(^{\circ})$	$\sigma_{\rm cont}$ (3.0000 GeV) pb	$\mathcal{B}_{out}(J/\psi \to \Sigma^0 \bar{\Sigma}^0)$	χ^2/ndf
Ι	127.7 ± 18.6	2.90 ± 0.61	$(1.368 \pm 0.047) \times 10^{-3}$	8.62/15.0
II	-127.4 ± 18.5	2.90 ± 0.61	$(1.387 \pm 0.048) \times 10^{-3}$	8.62/15.0

Mode ^(*)	Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level P(MeV/c)	
Γ_{234} $J/\psi(1S) ightarrow \Sigma^0 \overline{\Sigma}^0$	(1.172 ± 0.032) $ imes 10^{-3}$	S=1.4 988	

Inconsistent by more than 3s with PDG The interference contribution is tiny. POINT OF attention!

1.172 ± 0.032 OUR AVERAGE	Error includes sca	le factor of 1.4.			
$1.164 \pm 0.004 \pm 0.023$	111k	ABLIKIM	2017L	BES3	$J\!/\psi o \varSigma^0 \overline{\varSigma}^0$
$1.33 \pm 0.04 \pm 0.11$	1. 7 k	ABLIKIM	2006	BES2	$J/\psi o \varSigma^0 \overline{\varSigma}^0$
$1.06 \pm 0.04 \pm 0.23$	884	PALLIN	1987	DM2	$e^+ \; e^- o \varSigma^0 \overline{\varSigma}^0$
$1.58 \pm 0.16 \pm 0.25$	90	EATON	1984	MRK2	$e^+ \; e^- o \varSigma^0 \overline{\varSigma}^0$
1.3 ± 0.4	52	PERUZZI	1978	MRK1	$e^+ \; e^- ightarrow {\Sigma^0} \overline{\Sigma}^0$

Cross check of branching fraction of $\psi(3686) \to \pi^+\pi^- J/\psi,$ $J/\psi \to \Sigma^0 \bar{\Sigma}^0$

 $J/\psi \to \Sigma^+ \overline{\Sigma^-}$

cme (tau-mass scan added)

By Jiajun

Solution	$\Phi_{3g,\gamma}(^{\circ})$	$\sigma_{ m cont.}(3.000~{ m GeV})~{ m pb}$	$\mathcal{B}_{\rm out}(J/\psi \to \Sigma^+ \bar{\Sigma}^-)$	χ^2/ndf
Ι	107.9 ± 24.9	15.4 ± 3.1	$(1.14 \pm 0.02) \times 10^{-3}$	17.4/24
II	-107.6 ± 24.3	15.4 ± 3.1	$(1.19 \pm 0.02) \times 10^{-3}$	17.4/24

$\Gamma(\;J/\psi(1S) o \varSigma^+ \overline{\varSigma}^-)/\Gamma_{ m total}$					Γ_{233}/Γ	-
$V_{A/I/F(10^{-3})}$	FVTS		TECN	COMMENT		
1.07 ± 0.04 OUR AVERAGE	2010	DOCOMENT	ileit i	COMMENT		
$1.061 \pm 0.004 \pm 0.036$	87k	ABLIKIM	2021AT BES3	$J/\psi o p \pi^0 \overline{p} \pi^0$		
$1.50 \pm 0.10 \pm 0.22$	399	ABLIKIM	2008O BES2	$e^+ \; e^- ightarrow J/\psi$		

In agreement within 2 s the positive phase value

Fixed mass shift &SE

https://hnbes3.ihep.ac.cn/HyperNews/get/paper729.html

Last memo version by November 25th

Cross sections of $e^+e^- \rightarrow \omega \pi^0$ around J/ψ

DU Yiqi¹, LIU Baoxin¹, KANG Xiaosheng², GONG Li², ZHANG Bingxin³, ZHANG Zhenyu¹, ZHOU Xiang¹

I۳I ا

Parameter	Result
$M({ m MeV})$	3097.10 ± 0.03
$\mathcal{F}_{\omega\pi^0}(\mathrm{GeV}^{1/2})$	$(4.50\pm0.15) imes10^{-1}$
С	1.21 ± 0.04
$\Phi_{\gamma, cont}(\mathrm{rad})$	-0.03 ± 0.46

$$\mathcal{B}(J/\psi
ightarrow \omega \pi^0) = (3.97 \pm 0.26) imes 10^{-4}$$

PDG: $(4.5\pm0.5) imes10^{-4}$

https://indico.ihep.ac.cn/event/23307/contributions/17341 9/attachments/85787/109974/DYQ_20241204_collaboratio n_parallel_RQCD.pdf

Jia-bao Gong, Gang Li

Study of $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow \omega \pi^0$

https://indico.ihep.ac.cn/event/23817/contributions/18278 5/attachments/88822/114831/talk_of_Jiabao_Gong.pdf

 $J/\psi \to K^+K^-$

D'ou Venans Nous Que Sammes Nous

Work done on USTC style analysis to check our old analysis
Migration to 7.1.3 must be done
Hopefully after this semester

Analisi al draft stage

 $J/\psi \to p\overline{p}$

Marco D. dovrebbe avere pronto il draft

https://hnbes3.ihep.ac.cn/HyperNews/get/paper106.html

• $\varphi = 95.1^{\circ} \pm 2.8^{\circ}$,

- $\sigma_{cont} = 9.91 \text{ pb} \pm 0.40 \text{ pb},$
- $B_{out} = (1.918 \pm 0.022) \cdot 10^{-3}$,

and

- $\varphi = -95.0^{\circ} \pm 3.9^{\circ}$,
- $\sigma_{cont} = 9.91 \text{ pb} \pm 0.63 \text{ pb},$
- $B_{out} = (2.103 \pm 0.030) \cdot 10^{-3}$.

https://docbes3.ihep.ac.cn/DocDB/0002/000222/003/memo_v10.pdf

On going three body analyses

Study of the $e^+e^- \rightarrow K^+K^-\pi^0$ process around J/ψ

Tianyou Li^{a,b}, Chen Xie^{b,c}, Hailong Ma^b, and Minggang Zhao^a

https://hnbes3.ihep.ac.cn/HyperNews/get/paper968.html

 $e^+e^- \rightarrow K^{*\pm}(892)K^{\mp}$

Using FF from PWA

	· · · ·	
Experiment	$\mathcal{B}(J/\psi \to K^+ K^- \pi^0) \ (10^{-3})$	$\mathcal{B}(J/\psi \to K^{*\pm}(892)K^{\mp}) \ (10^{-3})$
DM2 [7]		$4.57 \pm 0.17 \pm 0.70$
MARKIII [8]		$5.26 \pm 0.13 \pm 0.53$
BABAR [57]	$1.97 \pm 0.16 \pm 0.13$	$5.22 \pm 0.3 \pm 0.3$
BESIII [48]	$2.88 \pm 0.01 \pm 0.12$	$8.07 \pm 0.04^{+0.38}_{-0.61}$
PDG [33]	2.88 ± 0.12	$6.0^{+0.8}_{-1.0}$
This work	3.19 ± 0.05 or 3.32 ± 0.05	7.70 ± 0.14 or 7.78 ± 0.14

Study of the $e^+e^- \rightarrow K^0_S K^+\pi^- + c.c.$ process around J/ψ

Chen Xie^{a,b}, Shenjian Chen^a, Hailong Ma^b, Yadi Wang^c, and Lei Zhang^a

Fig. 28: Fits to observed cross sections of $e^+e^- \rightarrow K_S^0 K^+\pi^-$ with negative (left) and positive (right) phase hypotheses.

.

 $\alpha - \alpha$

Fig. 30: Fits to observed cross sections of $e^+e^- \rightarrow K^+K^{*-}$.

 $e^+e^- \to K^+K_2^{*-}(1430)$

es Nous es Nous

Solution	A	$\mathcal{B}(\times 10^{-3})$	$\phi(^{\circ})$	S_E (MeV)	χ^2/ndf		
	$J/\psi ightarrow K^0_S K^+ \pi^-$						
Positive	4.17 ± 0.17	(5.15 ± 0.20)	128.0 ± 5.5	0.91 ± 0.02	15.1/22		
Negative	4.24 ± 0.16	(5.35 ± 0.21)	-127.4 ± 5.5	0.91 ± 0.02	15.1/22		
	$J/\psi o K^0 ar{K}^{*0}$						
Positive	3.57 ± 0.23	(4.67 ± 0.20)	149.9 ± 12.5	0.91 ± 0.02	31.1/22		
Negative	3.61 ± 0.22	(4.85 ± 0.20)	-148.8 ± 12.4	0.91 ± 0.02	31.1/22		
		$J/\psi ightarrow$	$K^{+}K^{*-}$				
-	25.39 ± 2.51	(6.50 ± 0.26)	180.1 ± 28.6	0.89 ± 0.02	24.4/22		
$J/\psi \to K^+ K_2^{*-}(1430)$							
Positive	0.57 ± 0.06	(1.26 ± 0.08)	0.0 ± 123.4	0.90	29.7/22		
Negative	0.57 ± 0.09	(1.26 ± 0.09)	-4.2 ± 170.7	0.90	29.7/22		

phase angle scans

Channal	This	DDC	
Channel	Positive	Negative	PDG
$\mathcal{B}(J/\psi \to K_S^0 K^+ \pi^-) \times 10^{-3}$	(5.15 ± 0.24)	(5.35 ± 0.25)	(5.3 ± 0.5)
$\mathcal{B}(J/\psi \to \bar{K}^0 \bar{K}^{*0}) \times 10^{-3}$	(4.67 ± 0.26)	(4.85 ± 0.26)	(4.2 ± 0.4)
$\mathcal{B}(J/\psi \to K^+ K^{*-}) \times 10^{-3}$	(6.50 ± 0.33)		$(6.0^{+0.8}_{-1.0})$
$\mathcal{B}(J/\psi \to K^+ K_2^{*-}(1430)) \times 10^{-3}$	(1.26 ± 0.10)	(1.26 ± 0.11)	$1.62^{+0.15}_{-0.11}$

Analyses already presented

 $J/\psi \to \Lambda \overline{\Lambda}$ $J/\psi \to \Xi \overline{\Xi}$

Channal	Relative Phase		
Channel	Positive Negative		
This work $(J/\psi \to K_S^0 K^+ \pi^-)$	$128.0 \pm 9.2 - 127.4 \pm 9.2$		
$(J/\psi \to K^0 \bar{K}^{*0})$	$149.9 \pm 14.8 - 148.8 \pm 14.7$		
$(J/\psi ightarrow K^+ K^{*-})$	180.1 ± 28.6		
$(J/\psi \to K^+ K_2^{*-}(1430))$	$0.0 \pm 123.4 -4.2 \pm 170.7$		
$J/\psi ightarrow 5\pi \ [16]$	84.9 ± 3.6 -84.7 ± 3.1		
$J/\psi \rightarrow \Sigma^+ \bar{\Sigma}^-$ [62]	$107.9 \pm 24.9 -107.6 \pm 24.3$		
$J/\psi \rightarrow \eta \phi \ [63]$	150^{+78}_{-17} 211^{+17}_{-78}		
$J/\psi \rightarrow \Sigma^0 \bar{\Sigma}^0$ [64]	$127.7 \pm 21.5 - 127.4 \pm 21.4$		

ψ ' measurements @BESIII

Cross Section (pb)

 $\psi(\text{MOLTE ANALISI DELLA }\psi'' \text{ sono fatte in questo modo (Changzheng style)} \xrightarrow{75.0 \pm 8.9}{153 \pm 7}$

$u(2S) \rightarrow m\bar{m}$	Constructive	58.9 ± 14.1	61.5 ± 6.5 ± 1.1	69.8 ± 22.1	60 ± 4
$\psi(23) \rightarrow pp\eta$	Destructive	-63.8 ± 12.1	84.4 <u>+</u> 6.9 <u>+</u> 1.4	-73.6 ± 17.5	60 ± 4

> The branching fractions deviate from PDG if considering the interference.

Sfortunatamente non reindirizzato sulla TF-fase \rightarrow Misura la fase tra continuo e risonanza, non quella tra EM e forte

 $\psi(2S) \to p\overline{p}$

Yadi, Yannan

Tension with PDG

$$\mathcal{B} = (3.242 \pm 0.065_{\text{tot.}}) \times 10^{-4} \text{ and } \mathcal{B} = (3.497 \pm 0.058_{\text{tot.}}) \times 10^{-4} = (\frac{\mathcal{F}}{M^2})^2 |1 + Ce^{i\Phi_{g,EM}}|^2,$$

https://hnbes3.ihep.ac.cn/HyperNews/get/AUX/2024/05/12/20.30-37994-memo_v3.pdf

https://hnbes3.ihep.ac.cn/HyperNews/get/paper822.html

+/-7%

Yadi

outon mitomapo.

 $\psi(2S) \to K^+ K^-$

negative Parameter positive $\Phi_{g,EM}(^{\circ})$ 114.1 ± 6.5 -110.2 ± 5.6 $S_{\rm E}~({
m MeV}/c^2)$ 1.39 ± 0.08 1.39 ± 0.08 3.18 ± 0.15 3.76 ± 0.13 С \mathcal{F} $0.476 \pm 0.009 | 0.476 \pm 0.009$ ${\cal B}$ (10⁻⁵) 10.90 ± 0.47 7.41 ± 0.39

@ memo stage (comments by Simone and me), request for CWR

FIG. 3: The contours in the $\mathcal{B}(\psi(2S) \to K^+K^-)$ and the relative phase Φ plane. The filled areas are up to 3σ contours.

https://docbes3.ihep.ac.cn/DocDB/0012/001218/019/ph e_psip2KK_draft_v6.pdf

Large effect of the interference

$\Gamma(\ \psi(2S) o K^{\!+}K^{\!-})/\Gamma_{ m total}$							Γ_{59}/Γ	-
VALUE (10^{-5})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT		
$7.48 \pm 0.23 \pm 0.39$		1.3k	¹ METREVELI	2012		$\psi(2S) o K^+ K^-$		

Parameter	positive	negative	
$\Phi_{g,EM}(^{\circ})$	114.1 ± 6.5	-110.2 ± 5.6	
$S_{\rm E} \; ({\rm MeV}/c^2)$	1.39 ± 0.08	1.39 ± 0.08	
C	3.18 ± 0.15	3.76 ± 0.13	
\mathcal{F}	0.476 ± 0.009	0.476 ± 0.009	
${\cal B}~(10^{-5})$	7.41 ± 0.39	10.90 ± 0.47	

Measurement of the $\omega\pi0$ final state cross section in the near-threshold energy region of $\psi(2S)$

ψ" measurements @BESIII

BESIII Collaboration, Phys. Lett. B 735, 101 (2014)

 $e^+e^- \rightarrow \psi(3770) \rightarrow p\overline{p}$

Even the interference is between A_{con} and A_{ψ} , the phase $\Phi_{3g,\gamma}$ is still close to -90° since A_g is much larger than A_{γ}

BESIII Collaboration, Phys. Rev. D 90, 032007 (2014)

 $e^+e^- \rightarrow \psi(3770) \rightarrow p\overline{p}\pi^0$

- The phase $\Phi_{3g,\gamma}$ is still close to -90° since A_g is much larger than A_{γ}
- Significance for $\psi(3770)$ resonance ~ 1.5 σ

BESIII Collaboration, Phys. Rev. Lett. 132, 131901 (2024)

 $e^+e^- \rightarrow \psi(3770) \rightarrow K_S K_L$

$$\sigma^{\text{dressed}} = \left| BW \cdot e^{i\phi} + \frac{a}{(\sqrt{s})^n} \cdot \sqrt{\Phi(\sqrt{s})} \right|^2$$

$$BW = \frac{\sqrt{12\pi\Gamma_{ee}\Gamma B}}{s - M^2 + iM\Gamma} \sqrt{\frac{\Phi(s)}{\Phi(M)'}}, \Phi(s) = \frac{q^3}{s}$$

determine $a = (0.016 \pm 0.007)$ GeV^{n-0.5} pb^{0.5} and $n = 4.60 \pm 0.31$. By including the data at $\sqrt{s} = 3.774$ GeV

- $\mathcal{B} = (2.63^{+1.40}_{-1.59}) \times 10^{-5}$ and $\phi = (-0.39^{+0.05}_{-0.10})\pi$ within 1σ likelihood contour.
- Significance of $\psi(3770)$ resonance contribution determined to be 10σ .
- First observe the charmless decay $\psi(3770) \rightarrow K_S K_L$.

2024 result!!!!

 Measurement of Born cross-section for e+e− → K+Ξ0Σ − + c.c. between 3.5 and 4.9 GeV Minghang Cai

https://docbes3.ihep.ac.cn/DocDB/0015/001590/001/mem o_KXISIG_V1.00.pdf

Resonance	$\Gamma_{ee}\mathcal{B}\left(10^{-3}\mathrm{eV}\right)$	<i>\phi</i> (rad)	χ^2	$S(\sigma)$
$\psi(3773)$ (Solution I)	17.8 ± 6.2	-0.80 ± 0.12	41.23	5.5
$\psi(3773)$ (Solution II)	479.8 ± 20.3	-1.46 ± 0.04	41.17	5.5

$\Gamma_{ee}B$	$(6.65 \pm 0.48) \times 10^{-8}$
ϕ	-1.54 ± 0.16
а	0.55 ± 0.34
Ν	5.13 ± 0.46

$\Gamma_{ee}B$	$(7.67 \pm 4.16) \times 10^{-10}$
ϕ	-1.14 ± 0.98
а	0.54 ± 0.33
Ν	5.13 ± 0.45

Measurement of $e^+e^- \rightarrow \phi \eta'$ cross sections at center-of-mass energies from 3.508 to 4.951 GeV and search for the decay $\psi(3770) \rightarrow \phi \eta'$

https://iournals.aps.org/prd/pdf/10.1103/PhysRevD.108.05

FIG. 3. Dressed cross sections of the $e^+e^- \rightarrow \phi \eta'$ process and the fits under different assumptions: (a) continuum amplitude only; (b) coherent sum of continuum and $\psi(3770)$ amplitudes, the solution with $\Phi = 2.0$ rad, $\mathcal{B}_{\phi\eta'} = 4.6 \times 10^{-6}$, and the significance of the $\psi(3770) \rightarrow \phi \eta'$ decay is 1.5σ ; (c) coherent sum of continuum and $\psi(3770)$ amplitudes, the solution with $\Phi = 4.7$ rad, $\mathcal{B}_{\phi\eta'} = 1.9 \times 10^{-3}$, and the significance of the $\psi(3770) \rightarrow \phi \eta'$ decay is 1.6σ . The black dots with error bars are data. The red solid lines are the total fits, the magenta dot dashed lines represent the $\psi(3770)$ component, and the blue dashed lines the continuum process.

$$a = 1.97 \pm 0.40 (GeV^{n-0.5}pb^{0.5})$$

 $n = 4.35 \pm 0.14$

$$\Phi = 1.49 \, rad$$

Work ongoing to further investigate the method

les miserabl

Fig. 12: The comparisons of efficiencies for $e^+e^- \rightarrow K^+K^-\pi^0$ in each iteration.

The problem of lack of documentation

Some groups use Born xs with SE effect as input to Conexc--> <u>This has to be done because SE seems</u> to be simulated but is not!

Figure 1: The comparisons of efficiencies for $e^+e^- \rightarrow K^+K^-\pi^0$ of input cross section as Born with energy spread effect and Born.

The issue of different boss versions

Venons Nous

Ricordiamoci

https://doi.org/10.1103/physrevd.105.114001

Summary

- Results and on going analyses were presented
- On going studies on the analyses methods were presented as well
- A lot of work to follow the on-going analyses is needed
- The effect can be large, the precision is high...the check needs to be done
 Thanks!!!!

