

Picosecond X-ray pulses at Elettra 2.0 with "crab cavities"

Simone Di Mitri

Elettra Sincrotrone Trieste & University of Trieste

15th European Biophysical Congress, Sat. Meeting, Rome, June 2025

simone.dimitri@elettra.eu

INUEN ISO 9001-201

Elettra Sincrotrone Trieste

15th European Biophysical Congress, Sat. Meeting, Rome, June 2025

Elettra 2.0 – Diffraction Limit

Almost all experimental techniques gain from either a large 6-D photon density (brilliance) or a large coherent flux (degeneracy parameter):

$$n_{coh} = \frac{B\lambda^{3}}{8c} \quad \text{and} \quad B \leq \frac{dN_{\gamma}/dt}{\Delta\omega/\omega} \frac{1}{(\lambda^{2}/2)}$$

$$\frac{\text{Diffraction Limit}}{\text{for}} \quad \sigma_{u}\sigma_{u'} = \varepsilon_{u} \leq \frac{\lambda}{4\pi}$$

- **D** More flux at the sample, for any given λ -range
- **Higher** λ **-harmonics** by means of low-gap IDs
- **Shorter integrated time** of measurement
- Micro- and nano-focusing
- Transverse x&y **coherence** up to 1 keV

 10^{4}

Ncoh

PETRAII

APS

SLS

ESRE

Photon Energy (eV)

protrons

SPring-8

CS

 10^{6}

Elettra Sincrotrone Trieste

FELs

FLASH

Lasers

 10^{2}

Peak Brightness (photons/s/mrad²/mm²/0.1%-BW)

10

 10^{0}

Science drivers of timing modes at SRLS

- 1. Avoid **sample burning** or ablation
- 2. Avoid **space charge** shielding
- 3. Multi-**MHz** rep. rate
- 4. Wide & continuous λ -tuneability
- 5. Full **polarization** control
- Track non-equilibrium states (e.g. aerosol in free-flight)
- Map reversible dynamics of molecular systems
- > Probe charge transfer dynamics
- Image orbital, spin, and lattice degrees of freedom

- + Improve lateral resolution
- + Improve energy resolution
- + Reduce the **integrated time** of measurements

50-100 ps:

PES, EXAFS,

imaging

New science

1–5 ps processes @ nm size:

- Elementary conformational protein dynamics & protein-protein interaction.
- Atomic motion in molecular vibrations.
- Chemical reaction intermediates.

Elettra 2.0 – Timing Mode

Parameter	Elettra 2.0	FERMI	Units
Spectral range	0.02 - 50	0.01 – 0.7	keV
Rep. rate	1 – 400	0.05	MHz
Pulse duration, rms	30	0.005 – 0.1	ps
Flux at sample, ave	$10^6 - 10^{13}$	10 ⁹ – 10 ¹³	ph/sec
Spectral resolution	10 ⁻⁵ – 10 ⁻⁴	10 ⁻⁴ – 10 ⁻³ (w/o mono)	
Polarization	all	all	
Coherence	Hor. ≤ 1 keV	full	
# Beamlines / Run	31	< 2	

Fill pattern:

- 200 regular bunches, 2 mA/bunch, 4 ns-time sep.
- 1 tilted bunch, 2 mA, ±32 ns time sep., 1.157 MHz

Pulse selection:

- Temporal gating
- distorted orbit
- chopper

UNLEN ISO 9001-201

Flux vs. pulse duration

□ On-the-fly control of pulse duration, flux, rep. rate (chopper), polarization (ID)

 At each beamline, without interference with neither other beamlines nor accelerator operation

Nanospectroscopy @ 800 eV

- The slit selects a sub-space of radiation emitted by the tilted e-bunch
- Transverse coherence and energy resolution largely preserved

90 x 40 µm²

40 x 30 µrad²

toroidal mirror (TM)

scatterina

UNI EN ISO 9001:2019

Diffraction limit, spectral flatness

15th European Biophysical Congress, Sat. Meeting, Rome, June 2025

Timing modes @ SRLS

1	sta	andard	- 100MHz	z			Laser-slicing	PSB	Crab Cavities
	low-o			Stored Curr	rent	mA	2 + 400	2 + 400	2 + 400
LO 10-2	5 10 ⁻²		10MHz	SP Duration	n, fwhm	ps	0.5 - 2	50	1 – 5
niss				SP Repetiti	SP Repetition Rate		0.001 - 0.01	1	1 (<200)
ο 10 ⁻⁴	crab cavities	single bunch	- 1MHz	$\frac{Flux(Sh)}{Flux}$	(400mA)		$\frac{1}{10^8}$	$\frac{1}{200}$	$\frac{1}{20000}$ $\frac{(\times 100)}{2000}$
10 ⁻⁶ 10 ⁻⁸ 0 01	laser slicing		- 100kHz - 10kHz						
0.01	Δt	10 100		Bunch ave.	Photon	Pulse duratio	n, Ave. spectral	flux Ave.	. flux Peak flux
	FWHM "			current [mA]	energy [keV]	FWHM [ps]	[ph/s/0.01%]	bw] [p]	h/s] [ph/pulse]
			E1.0 PSB	5	1	200	1.6×10^{10}	3.3 >	$\times 10^{10}$ 1.1 $\times 10^{4}$
			E2.0 PSB	4	1	60	1.3×10^{10}	2.7 >	$\times 10^{10}$ 1.1 $\times 10^{4}$
CERTIFIED			E2.0 CC	2	1 - 10	1 - 4	$\sim 10^8 - 10^9$) (0.2–2.	8) $\times 10^9$ (0.3–2.4) $\times 10^3$

15th European Biophysical Congress, Sat. Meeting, Rome, June 2025

- \Box Picosecond duration, at several beamlines, for $E_{ph} > 100 \text{ eV}$
- Tunable 0.1–1 (100) MHz rep. rate, 1–10 % flux relative to standard single bunch emission
- □ Transverse coherence, energy resolution & polarization largely preserved
- □ Standard bunches pay a doubled vertical emittance (6 \rightarrow 12 pm rad)
- Conceptual design report is being finalized. Technical design report is in progress
- CCs are not in the Elettra 2.0 baseline. Still, full support from management, international committees and beamline scientists. Search for funds to prototype.

Acknowledgements

A. Zholents (ANL) X. Huang (SLAC) R. Calaga, A. Grudiev (CERN)

for guidance to "Crab Cavs" simulations

The Elettra team for the Crab Cavities:

A. Bianco (*retired*), M. Altissimo, E. Busetto, A. Carniel, S. Cleva, I. Cudin, S. Dastan, B. Diviacco, A. Fabris, E. Karantzoulis, S. Krecic, S. Lizzit, M. Lonza, **K. Manukian, C. Masciovecchio, M. Modica**, **E. Principi**, **N. Shafqat**

Thank you for your attention Questions are welcome!

Back up slides

15th European Biophysical Congress, Sat. Meeting, Rome, June 2025

Magnetic lattice

The present magnetic lattice will be entirely replaced by a denser and stronger one, including combined-function elements (3x dipoles, 4x quadrupoles).

Improved radiation source

EPU: radiation 4-D volume at the source

EPU: on-axis Ang. Spectr. Flux Density of odd harmonics 3 – 11.

15th European Biophysical Congress, Sat. Meeting, Rome, June 2025

CERTIFIED

UNI EN ISO 9001:2019

Deflecting voltages

A. Lunin et al., Phys. Proc. 79 (2015) 54. A. Lunin, T. Khabiboulline, V. Yakovlev, "A White Paper on Design and Fabrication of SRF Deflecting Cavities for Elettra 2.0", FNAL note.

- **Quasi-waveguide Multicell Resonator (QMiR)** @ 2.815 GHz for **APS** (ANL).
- □ Intrinsic low-Q SOMs and HOMs in a sparse frequency pattern.
- Low gap, relatively high surface fields, nonlinear field components.

- Re-design of the ANL prototype for a larger beam aperture, to meet the requirements on short-range wakefields. Aperture > 8 mm-V x 12 mm-H.
- 2 + 2 pure-Nb cavities @ 4,5 K (extension of the 3HC cryogenic system).
- **RF** source input power < 500 W per cavity

INUEN ISO 9001-201

Short pulse production

The mode of short pulse selection depends on the **beamline layout**

The **minimum pulse duration** depends on deflecting voltage, beam emittances, photon energy

Theoretical minimum pulse durations

Theoretical minimum FWHM pulse duration calculated for drift (orange) and hybrid optics (blue), across the beamline's full spectral range and for beam RMS energy spread of 0.1%.

Dashed vertical lines are for the ideal case of a monochromatic electron beam.

Shortest durations at Elettra 2.0

Beamline		LOWEST photon energy			HIGHEST photon energy				
Name	[keV]	Δt _{FW}	Δt_{FWHM} (ps) $\Delta F/F$ (%)		∆t _{FWHM} (ps)		∆F/F (%)		
		DR	HYB	DR	HYB	DR	HYB	DR	НҮВ
1.2	[0.03-1.7]	17	9	6	2.5	3	1.7	1.5	2.8
2.1	[0.13-4.0]	48.5	1.2	35	1.6	46	0.8	18	1.7
3.2	[0.01-0.2]	48	10.5	20	1.6	42	2.1	5	1.8
4.2	[0.01-1.5]	22	22	15	5	3.1	3.6	1	6.5
5.1	[4-21]	34	6.4	12	2.7	18	3.0	5	2.6
5.2	[3.5-15]	16	0.9	3	2	15	0.9	3	1.9
6.2	[0.34-4.0]	3.7	3.7	0.5	3.6	1.7	1.9	0.5	3
7.2	[3.5-15]	6.5	1	1	2	6.5	0.9	1.5	2
8.1	[0.15-1.5]	27	1	9	1.4	9.6	0.8	1	1.7
8.2	[0.04-1.5]	16	6	7	3	3.2	1.7	1	3.5
9.2a	[0.01-0.2]	38	6.7	15	1.9	13.5	1.8	3	2.0
9.2b	[0.08-1.5]	20	2.8	4	2	5.8	1.1	1	2.3
10.1	[0.5-7.0]	12.5	0.7	1	1.3	8.5	0.7	2	1.6
10.2	[4-15]	2.1	1.2	0.5	2.7	2.2	1.2	1	2.7
11.1	[3-15]	28	33	12	12	14	19	6	17
11.2	[9-25]	38	9	16	2	27	4.8	7	2.4

15th European Biophysical

^{cal} Δ**F/F(%)** is *relative to* single bunch *emission @ ID*

simone.dimitri@elettra.eu

NanoSpectroscopy @ 800 eV (1/3)

Spectral flux in central cone, V/H-polarization, 2 mA/bunch – **DRIFT mode** (blue) photon pulse from standard electron bunch, opening 60 µrad x 60 µrad: **55 ps, 1.9e12 ph/s/0.1%BW**; $S_1/S_0=1$ (EU, $\lambda u = 10$ cm, Lu = 4 m) (green) short photon pulse from tilted electron bunch, opening 60 µrad x 10 µrad: **3.7 ps** FWHM, **4.3e10 ph/s/0.1% or ~1e4 ph/pulse/0.1%**, $S_1/S_0=0.98$ (orange-pink) short photon pulse from tilted electron bunch, opening 60 µrad x 24 µrad: **4 ps** FWHM, **1.1e11 ph/s/0.1% or ~1e5 ph/pulse/0.1%**, $S_1/S_0=0.98/-1$

Example @ 0.8 keV

15th European Biophysical Congress, Sat. Meeting, Rome, June 2025

Nanospectroscopy-*like* soft x-ray beamline. 3% transmission efficiency.

Beamline optics	Standard	SP Drift	SP Hybrid
Photon energy [keV]	0.8	0.8	0.8
FE slit gap $(x \times y)$ [µm]	690×690	690×280	690 × 690
FE angular acceptance $(x \times y)$ [µrad]	60×60	60×24	60×60
Slit gap at the monochromator entrance (y) [µm]	8	-	10
Slit gap at the monochromator exit (y) [µm]	6	12	10
Energy resolving power	4500	2000	2900
Light pulse			
Spatial size* at the FE slit, FWHM [µm]	90×42	90×80	90 × 99
Angular divergence* at the FE slit, FWHM [µrad]	38×32	38×23	38 × 59
Duration, FWHM [ps]	55	4	4
Degree of linear polarization, S_1/S_0	1	0.98	0.98
Spectral flux at source point [10 ¹⁰ ph/s/0.01%bw]	19	1.1	1.7
Relative spectral flux at source point [%]	100	6	9
Flux at sample [10 ¹⁰ ph/s]	1.3	0.15	0.18
Relative spectral flux at sample [%]	100	12	14
Spatial size at sample, FWHM (x \times y) [µm]	1.0×0.9	1.0×2.3	1.0 × 1.3

HBSAXS-like tender x-ray beamline. 11% transmission efficiency.

Beamline optics	Standard	SP Drift-1	SP Drift-2
Photon energy [keV]	12	12	12
FE slit gap $(x \times y) [\mu m]$	550×550	550×400	550×200
FE angular acceptance $(x \times y)$ [µrad]	48×48	48×35	48×17
Energy resolving power	5700	5700	5700
Light pulse			
Spatial size* at the FE slit, FWHM [µm]	86 × 13	86×80	86 × 65
Angular divergence* at the FE slit, FWHM [µrad]	24×24	24×35	24×28
Duration, FWHM [ps]	55	2.7	2.3
Spectral flux at source point [10 ¹⁰ ph/s/0.01%bw]	3.8	0.2	0.1
Relative spectral flux at source point [%]	100	6	3
Flux at sample [10 ¹⁰ ph/s]	0.73	0.04	0.02
Relative spectral flux at sample [%]	100	6	3

