Analysis Test Beam

Giovanni Gaudino – FCC Napoli – 2025, 29th January

Waveform Example - BGO

• We should find the templates

29th January, 2025

Fitting Strategy - Templates

Step 1: Model single photon response (SPR) from data

SPR modelled using LED pulse data.

- Shape modelled as double exponential + high-pass filter (preAmp AC is coupled to SiPM cathode) on LED driver data
- Amplitude calibrated from LED driver data (finger plots \rightarrow see Lucrezia's slide)

29th January, 2025

Fitting Strategy - Templates

Scintillation Template

Signal modelled from the convolution of **SPR** with the characteristic crystal time distribution (measured in cosmic data using PMT)

29th January, 2025

Fitting Strategy - Templates

Čerenkov Template

Čerenkov photons are prompt, so same signal shape as **SPR**

SPR

29th January, 2025

Calibration with Laser

SPR from Calibration with Laser, see Lucrezia slide for experimental details

Templates of Čerenkov and Scintillation waveforms, with new SPR

 Čerenkov time is assumed to be prompt (τ=0.1ns)

23/01/2025	sipm 6x6 serie 1	preamp 2			
finestra temporale	oiù grande				
misure led PLP	run	gain	configurazione lenti	power	trigger led PLP
~175 fotoni	475	28	3x3	15	
~275 fotoni	477	28	2x3	15	
~400 fotoni	478	18	2x3	15	
~200 fotoni	479	18	3x3	15	
	sipm 3x3	preamp 1			
misure led PLP	run	gain	configurazione lenti	power	trigger led PLP
	480	28	2x3	15	
	481	18	2x3	15	
			LNO		
	sipm 3x3	preamp passivo			
misure led PLP	run	gain	configurazione lenti	power	trigger led PLP
	483	-	1x2	15	

29th January, 2025

An example of fit

- Čerenkov signal: it is prompt, so same shape as SPR;
- Scintillation signal: from the convolution of SPR with the characteristic crystal time distribution;

Floating parameters:

- normalizations \rightarrow C and S yields
- Trigger time
- Offset fixed at 0

- The templates follow the decay time of the waveform very well, also for negative values
- We can estimate the Čherenkov yield wrt the scintillation yield

29th January, 2025

Un poco di zoom

29th January, 2025

Angle Scan

Repeating the fit for all the runs with BGO we obtain the expected shape

We improved the framework and put all the scripts in a github repo: <u>FCCNA/fcc-testbeam_analysis</u>

Lucrezia is working on BSO

