Theory overview of charged Lepton Flavour Violation

Paride Paradisi

University of Padova and INFN

CLFV Searches with the MU2E Experiment 9-13 June 2025 INFN - LNF

- **1** Strategies to look for New Physics at low-energy
- Ourrent status of LFV
- **3** EDMs, g-2 and LFV interrelationship
- 4 LFV @ FCC-ee & Muon Collider (MuC)
- **6** Conclusions and future prospects

Where to look for New Physics at low-energy?

- Processes very suppressed or even forbidden in the SM
- Processes predicted with high precision in the SM

High-intensity frontier: A collective effort to determine the NP dynamics

Experimental status

Process	Present	Experiment	Future	Experiment	
$\mu ightarrow oldsymbol{e}\gamma$	$1.5 imes 10^{-13}$	MEG	$pprox 6 imes 10^{-14}$	MEG II	
$\mu ightarrow$ 3 e	$1.0 imes 10^{-12}$	SINDRUM	pprox 10 ⁻¹⁶	Mu3e	
$\mu^- \: { m Au} ightarrow {\it e}^- \: { m Au}$	$7.0 imes10^{-13}$	SINDRUM II	?		
μ^- Ti $ ightarrow e^-$ Ti	$4.3 imes10^{-12}$	SINDRUM II	?		
$\mu^- \: Al o oldsymbol{e}^- \: Al$	—		$pprox 10^{-16}$	COMET, MU2e	
$ au ightarrow oldsymbol{e} \gamma$	$3.3 imes10^{-8}$	Belle & BaBar	$\sim 10^{-9}$	Belle II	
$ au o \mu \gamma$	$4.4 imes10^{-8}$	Belle & BaBar	$\sim 10^{-9}$	Belle II	
$ au ightarrow {f 3} {m e}$	$2.7 imes10^{-8}$	Belle & BaBar	$\sim 10^{-10}$	Belle II	
$ au ightarrow {f 3} \mu$	$2.1 imes 10^{-8}$	Belle & BaBar	$\sim 10^{-10}$	Belle II	
<i>d</i> _e (e cm)	$1.1 imes 10^{-29}$	ACME	$\sim 3 imes 10^{-31}$	ACME III	
$d_{\mu}({ m e~cm})$	$1.8 imes 10^{-19}$	Muon (g-2)	$\sim 10^{-22}$	PSI	

Table: Present and future experimental sensitivities for relevant low-energy observables.

- So far, only upper bounds. Still excellent prospects for exp. improvements.
- We can expect a NP signal in all above observables below the current bounds.

Experimental bounds on $\mu \rightarrow e$ processes

 $\mu \rightarrow e\gamma, \mu \rightarrow 3e, \mu A \rightarrow eA$

- The possibility of extremely intense muon beams make these the golden channels for LFV
- · Experimental sensitivities are expected to be improved by up to five orders of magnitude

M. Ardu

5

Charged LFV in the SM

- GIM mechanism very effective in LFV transitions
- amplitude proportional to $A(\mu \rightarrow e\gamma) \propto m_{\nu}^2$ Very small !!!

$$\mathrm{BR}(\mu \to e\gamma) \simeq \frac{\Gamma(\mu \to e\gamma)}{\Gamma(\mu \to e\nu\bar{\nu})} = \frac{3\alpha}{32\pi} \left| \sum_{k=1,3} \frac{U_{\mu k} U_{ek}^* m_{\nu_k}^2}{M_W^2} \right|^2$$

 $BR(\mu \to e\gamma) = 10^{-55} \div 10^{-54}$ • similar suppressions for $\mu \to 3e, \tau \to 3\mu, \mu \to e, \dots$

Why flavor violation is visible in neutrino oscillation while it's not in charged LFV? The uncertainty principle sets the oscillation time for $\mu \rightarrow e_{\gamma}$ to be $t \sim h/M_W!$

Message: Any evidence for LFV would be an unambiguous signal of NP!

Why do we need New Physics (NP)?

- Gravity $\implies \Lambda_{Planck} \sim 10^{18-19} \ {\rm GeV}$
- Neutrino masses $\implies \Lambda_{see-saw} \lesssim 10^{15} \ {\rm GeV}$
- BAU: evidence of CPV beyond SM
 - ► Electroweak Baryogenesis $\implies \Lambda_{NP} \lesssim \text{TeV}$
 - Leptogenesis $\implies \Lambda_{see-saw} \lesssim 10^{15} \text{ GeV}$
- Dark Matter (WIMP) $\Longrightarrow \Lambda_{NP} \lesssim \text{TeV}$
- Hierarchy problem: $\implies \Lambda_{NP} \lesssim \text{TeV}$

SM = effective theory at the EW scale

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{d \geq 5} rac{\mathcal{L}_{ij}^{(d)}}{\Lambda_{NP}^{d-4}} \; \mathcal{O}_{ij}^{(d)}$$

- $\mathcal{L}_{\text{eff}}^{d=5} = \frac{y_{\nu}^{ij}}{\Lambda_{\text{see-saw}}} L_i L_j \phi \phi,$
- $\mathcal{L}_{eff}^{d=6}$ generates FCNC operators

EFT approach to NP

• Dynamics below the scale \wedge [\sim mass of new particles] is described by $L_{
m eff}$

L_{eff} is built out of relevant low-energy degrees of freedom (SM fields)

- $L_{\rm eff}$ respects the SM gauge symmetries $G_{\rm SM} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$
- L_{eff} is organized in inverse powers of Λ (amplitudes suppressed by powers of E/Λ)

Experiments at the precision frontier probe energy scale ∧ and symmetries of the new interactions (coeff. & structure of Ô^(d)_n)

	4-leptons operators	Dipole operators						
$egin{array}{c} Q_{\ell\ell} \ Q_{ee} \ Q_{\ell e} \end{array}$	$egin{aligned} & (ar{L}_L\gamma_\mu L_L)(ar{L}_L\gamma^\mu L_L) \ & (ar{e}_R\gamma_\mu e_R)(ar{e}_R\gamma^\mu e_R) \ & (ar{L}_L\gamma_\mu L_L)(ar{e}_R\gamma^\mu e_R) \end{aligned}$	$Q_{eW} \ Q_{eB}$	$(\bar{L}_L \sigma^{\mu\nu} e_R) \tau_I \Phi W^I_{\mu\nu} \\ (\bar{L}_L \sigma^{\mu\nu} e_R) \Phi B_{\mu\nu}$					
	2-lepton 2-c	quark operators						
$egin{aligned} Q^{(1)}_{\ell q} \ Q^{(3)}_{\ell q} \ Q_{\ell q} \ Q_{\ell q} \ Q_{\ell d} \ Q_{\ell d} \ Q_{\ell d} \ Q_{\ell d} \ \end{array}$	$\begin{pmatrix} (\bar{L}_L \gamma_\mu L_L) (\bar{Q}_L \gamma^\mu Q_L) \\ (\bar{L}_L \gamma_\mu \tau_I L_L) (\bar{Q}_L \gamma^\mu \tau_I Q_L) \\ (\bar{e}_R \gamma^\mu e_R) (\bar{Q}_L \gamma_\mu Q_L) \\ (\bar{L}_L \gamma_\mu L_L) (\bar{d}_R \gamma^\mu d_R) \\ (\bar{e}_R \gamma_\mu e_R) (\bar{d}_R \gamma^\mu d_R) \end{pmatrix}$	$egin{array}{c} Q_{\ell u} & & \ Q_{eu} & & \ Q_{\ell edq} & & \ Q_{\ell equ} & & \ Q_{\ell equ}^{(1)} & & \ Q_{\ell equ}^{(3)} & & \ Q_{\ell equ}^{(3)} & & \ \end{array}$	$ \begin{array}{c} (\bar{L}_L\gamma_{\mu}L_L)(\bar{u}_R\gamma^{\mu}u_R) \\ (\bar{e}_R\gamma_{\mu}e_R)(\bar{u}_R\gamma^{\mu}u_R) \\ (\bar{L}_a^Le_R)(\bar{d}_RQ_L^a) \\ (\bar{L}_a^Le_R)\epsilon_{ab}(\bar{Q}_L^bu_R) \\ (\bar{L}_i^a\sigma_{\mu\nu}e_R)\epsilon_{ab}(\bar{Q}_L^b\sigma^{\mu\nu}u_R) \end{array} $					
	Lepton-Hi	iggs operators						
$Q^{(1)}_{\Phi\ell} \ Q_{\Phi e}$	$\mu \to e\gamma \qquad \mu \to e\gamma$	$Q_{\Phi\ell}^{(3)}$ $Q_{e\Phi3}$ $\rightarrow 3e \qquad \mu =$	$(\Phi^{\dagger}i \stackrel{\leftrightarrow}{D}{}^{I}_{\mu} \Phi)(\bar{L}_{L}\tau_{I}\gamma^{\mu}L_{L}) \\ (\bar{L}_{L}e_{R}\Phi)(\Phi^{\dagger}\Phi) \\ \rightarrow e$					

MuonBridge: a $\mu \rightarrow e$ conversion in Nuclei code

Bounds on the NP scale

[Physics Briefing Book, 1910.11775]

Correlating LFV signals

LFV operators @ dim-6

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda_{LFV}^2} \, \mathcal{O}^{dim-6} + \dots \, . \label{eq:left}$$

 $\mathcal{O}^{\dim -6} \ni \ \bar{\mu}_{R} \, \sigma^{\mu\nu} \, H \, \boldsymbol{e}_{L} \, \boldsymbol{F}_{\mu\nu} \, , \ \left(\bar{\mu}_{L} \gamma^{\mu} \boldsymbol{e}_{L} \right) \left(\bar{f}_{L} \gamma^{\mu} f_{L} \right) \, , \ \left(\bar{\mu}_{R} \boldsymbol{e}_{L} \right) \left(\bar{f}_{R} f_{L} \right) \, , \ f = \boldsymbol{e}, \boldsymbol{u}, \boldsymbol{d}$

- $\ell \to \ell' \gamma$ probe ONLY the dipole-operator (at tree level)
- $\ell_i \rightarrow \ell_j \bar{\ell}_k \ell_k$ and $\mu \rightarrow e$ in Nuclei probe dipole and 4-fermion operators
- When the dipole-operator is dominant:

$$BR(\ell_i \to \ell_j \ell_k \bar{\ell}_k) \approx \alpha \times BR(\ell_i \to \ell_j \gamma)$$
$$CR(\mu \to \boldsymbol{e} \text{ in } \mathsf{N}) \approx \alpha \times BR(\mu \to \boldsymbol{e} \gamma)$$

$$\frac{\mathrm{BR}(\mu \to \mathbf{3e})}{\mathbf{3} \times \mathbf{10^{-15}}} \approx \frac{\mathrm{BR}(\mu \to \mathbf{e}\gamma)}{\mathbf{5} \times \mathbf{10^{-13}}} \approx \frac{\mathrm{CR}(\mu \to \mathbf{e} \text{ in } \mathsf{N})}{\mathbf{3} \times \mathbf{10^{-15}}}$$

- Ratios like $Br(\mu
 ightarrow e\gamma)/Br(\tau
 ightarrow \mu\gamma)$ probe the NP flavor structure
- Ratios like $Br(\mu
 ightarrow e\gamma)/Br(\mu
 ightarrow eee)$ probe the NP operator at work

Flavor structure in SMEFT

Dimension 6: [Grzadkowski, Iskrzynski, Misiak, Rosiek]

- Single generation: 59 parameters
- Three generations: 2499 parameters

Proliferation arises from flavor: What if we assume flavor? [Greljo, Palavrić, Thomsen]

SME	FT $O(1)$ terms	Lepton sector															
(dia	m-6, $\Delta B = 0$)	MF	V_L	U(;	$B)_V$	U(2) ²	$\times U(1)^2$	U($(2)^2$	U(:	$2)_V$	U($1)^{6}$	U($1)^{3}$	No s	ymm.
Quark sector	MFV_Q	41	6	45	9	59	6	62	9	67	13	81	6	93	18	207	132
	$U(2)^2 \times U(3)_d$	72	10	78	15	95	10	100	15	107	21	122	10	140	28	281	169
	$\mathrm{U}(2)^3 \times \mathrm{U}(1)_{d_3}$	86	10	92	15	111	10	116	12	123	21	140	10	158	28	305	175
	$U(2)^{3}$	93	17	100	23	118	17	124	23	132	30	147	17	168	38	321	191
	No symmetry	703	570	734	600	756	591	786	621	818	652	813	612	906	705	1350	1149

4

The relevant SMEFT operators drastically reduce adding more flavor structures!

Granada Dictionary

[de Blas, Criado, Pérez-Victoria, Santiago]

- All possible renormalizable heavy extensions in the leptonic sector
- Their matching to the SMEFT is automatized at tree-level and one-loop
- SMEFT directions: Classification with a flavor assumption

UV Field	$-{\cal L}_{ m uv}^{(4)} \supset$
$\mathcal{S}_1 \sim (1, 1)_1$	$[y_{\mathcal{S}_1}]_{rij}\mathcal{S}_{1r}^{\dagger}\bar{\ell}_i i\sigma_2\ell_j^c$
$\mathcal{S}_2 \sim (1, 1)_2$	$[y_{\mathcal{S}_2}]_{rij}\mathcal{S}_{2r}^{\dagger}ar{e}_ie_j^c$
$arphi \sim ({f 1},{f 2})_{1\over 2}$	$[y_{arphi}]_{rij} arphi_r ar{\ell}_i e_j$
$\Xi_1 \sim (1, 3)_1$	$[y_{\Xi_1}]_{rij} \Xi_{1r}^{a\dagger} \bar{\ell}_i \sigma^a i \sigma_2 \ell_j^c$
$N \sim (1, 1)_0$	$[\lambda_N]_{ri} \bar{N}_{R,r} \tilde{\phi}^{\dagger} \ell_i$
$E \sim (1, 1)_{-1}$	$[\lambda_E]_{ri} \bar{E}_{R,r} \phi^{\dagger} \ell_i$
$\Delta_1 \sim (1, 2)_{-\frac{1}{2}}$	$[\lambda_{\Delta_1}]_{ri}\bar{\Delta}_{1L,r}\phi e_i$
$\Delta_3 \sim (1, 2)_{-rac{3}{2}}$	$[\lambda_{\Delta_3}]_{ri}\bar{\Delta}_{3L,r}\tilde{\phi}e_i$
$\Sigma \sim (1, 3)_0$	$\frac{1}{2}[\lambda_{\Sigma}]_{ri}\bar{\Sigma}^{a}_{R,r}\tilde{\phi}^{\dagger}\sigma^{a}\ell_{i}$
$\Sigma_1 \sim (1, 3)_{-1}$	$\frac{1}{2} [\lambda_{\Sigma_1}]_{ri} \bar{\Sigma}^a_{1R,r} \phi^{\dagger} \sigma^a \ell_i$
$\mathcal{B} \sim (1, 1)_0$	$[g^{\ell}_{\mathcal{B}}]_{rij}\mathcal{B}^{\mu}_{r}\bar{\ell}_{i}\gamma_{\mu}\ell_{j} + [g^{e}_{\mathcal{B}}]_{rij}\mathcal{B}^{\mu}_{r}\bar{e}_{i}\gamma_{\mu}e_{j}$
$\mathcal{W} \sim (1, 3)_0$	$\frac{1}{2}[g_{\mathcal{W}}^{\ell}]_{rij}\mathcal{W}_{r}^{\mu a}\bar{\ell}_{i}\sigma^{a}\gamma_{\mu}\ell_{j}$
$\mathcal{L}_3 \sim (1, 2)_{-rac{3}{2}}$	$[g_{\mathcal{L}_3}]_{rij}\mathcal{L}_{3r}^{\mu\dagger}\bar{e}_i^c\gamma_\mu\ell_j$

Paride Paradisi (University of Padova and INFN) Theory overview of charged Lepton Flavour Violation CLFV Searches with the MU2E Experiment 15/3

SMEFT parameters [Sanchez @ this workshop]

Consider the UV interaction

$$[y_{\mathcal{S}_1}]_{rij}\mathcal{S}_{1r}^\daggerar\ell_i i\sigma_2\ell_j^c$$

Extract the flavor tensor

$$[y_{\mathcal{S}_1}]_{rij} = \frac{y_{\mathcal{S}_1}^{(1)}}{2} \Big[\delta_{r1}(\delta_{i2}\delta_{j3} - \delta_{i3}\delta_{j2}) + \delta_{r2}(\delta_{i3}\delta_{j1} - \delta_{i1}\delta_{j3}) + \delta_{r3}(\delta_{i1}\delta_{j2} - \delta_{i2}\delta_{j1}) \Big],$$

• Perform the matching to the SMEFT

$$\frac{1}{M_{\mathcal{S}_1}^2} [y_{\mathcal{S}_1}]_{rjl}^* [y_{\mathcal{S}_1}]_{rik} [\mathcal{O}_{\ell\ell}]_{ijkl}$$

Flavor tensor with various different couplings

- Combined fit with correlations
- Projected two-dimensional likelihoods
- Blind lines

Polarising the muon to distinguish operators

Kuno, Okada hep-ph/9909265

Paride Paradisi (University of Padova and INFN) Theory overview of charged Lepton Flavour Violation CLFV Searches with the MU2E Experiment 17/33

Probing NP in the leptonic sector

• NP effects are encoded in the effective Lagrangian

$$\mathcal{L} = \boldsymbol{e} \frac{\boldsymbol{m}_{\ell}}{2} \left(\bar{\ell}_{\boldsymbol{R}} \sigma_{\mu\nu} \boldsymbol{A}_{\ell\ell'} \ell_{\boldsymbol{L}}' + \bar{\ell}_{\boldsymbol{L}}' \sigma_{\mu\nu} \boldsymbol{A}_{\ell\ell'}^{\star} \ell_{\boldsymbol{R}} \right) \boldsymbol{F}^{\mu\nu} \qquad \ell, \ell' = \boldsymbol{e}, \mu, \tau \,,$$

Branching ratios of $\ell
ightarrow \ell' \gamma$

$$\frac{\mathrm{BR}(\ell \to \ell' \gamma)}{\mathrm{BR}(\ell \to \ell' \nu_{\ell} \bar{\nu}_{\ell'})} = \frac{48\pi^3 \alpha}{G_F^2} \left(|A_{\ell\ell'}|^2 + |A_{\ell'\ell}|^2 \right).$$

Δa_ℓ and leptonic EDMs

$$\Delta a_{\ell} = 2m_{\ell}^2 \operatorname{Re}(A_{\ell\ell}), \qquad \qquad \frac{d_{\ell}}{e} = m_{\ell} \operatorname{Im}(A_{\ell\ell}).$$

• "Naive scaling": a broad class of NP theories contributes to Δa_{ℓ} and d_{ℓ} as

$$\frac{\Delta a_{\ell}}{\Delta a_{\ell'}} = \frac{m_{\ell}^2}{m_{\ell'}^2}, \qquad \qquad \frac{d_{\ell}}{d_{\ell'}} = \frac{m_{\ell}}{m_{\ell'}}$$

Model-independent predictions

•
$${
m BR}(\ell_i o \ell_j \gamma)$$
 vs. $(m{g}-m{2})_\mu$

$$\begin{aligned} \mathrm{BR}(\mu \to \boldsymbol{e}\gamma) &\approx 3 \times 10^{-13} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{e\mu}}{10^{-5}}\right)^2 \\ \mathrm{BR}(\tau \to \mu\gamma) &\approx 4 \times 10^{-8} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{\mu\tau}}{10^{-2}}\right)^2 \end{aligned}$$

• EDMs vs.
$$(g-2)_{\mu}$$

$$\begin{array}{ll} d_e &\simeq& \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 10^{-29} \left(\frac{\phi_e^{PV}}{10^{-5}}\right) \ e \ \mathrm{cm} \,, \\ \\ d_\mu &\simeq& \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 2\times 10^{-22} \ \phi_\mu^{CPV} \ e \ \mathrm{cm} \,, \end{array}$$

• Main messages:

- $\blacktriangleright~\Delta a_{\mu} pprox$ (3 \pm 1) imes 10 $^{-9}$ requires a nearly flavor and CP conserving NP
- **Large effects in the muon EDM** $d_{\mu} \sim 10^{-22} \ e \ {
 m cm}$ are still allowed!

[Giudice, P.P., & Passera, '12]

Experimental status of the muon EDM

[Crivellin, Hoferichter & Schmidt-Wellenburg, '18]

$$d_\mu ~~\simeq~~ \left(rac{\Delta a_\mu}{3 imes 10^{-9}}
ight) 2 imes 10^{-22} ~\phi_\mu^{\scriptscriptstyle CPV} ~~ e~{
m cm} \,,$$

[Giudice, PP & Passera, '12]

Many Options, Much Fun?

How do I make sense of the landscape of singlet options?

Flavoured Axion-like Portal

Accidental symmetries of the SM might be broken by light new particles feebly coupled to the SM

Example: Flavour dependent Peccei-Quinn charges

[Calibbi et al 1612.08040] [Ema et al 1612.05492]

$$\mathscr{L} \supset \sum_{i} \frac{\partial_{\mu} a}{2f_{a}} \bar{f}_{i} C_{ii}^{A} \gamma_{\mu} \gamma_{5}.$$

Hierarchy between flavourconserving and flavour-violating depends on the UV theory

Flavour anarchy: $C_{ij}^{A,V}(\Lambda_{\rm UV}) \sim \mathcal{O}(1)$ Minimal favour $C_{ij}^{A,V}(\Lambda_{\rm UV}) = 0$ violation:

What New Physics?

<u>Lepton-flavour</u> <u>Violating</u>

$$\mathcal{L}_{\mathrm{FV-a}} = \frac{m_{\mu}}{2f_a} \frac{1}{|C_{e\mu}|} a\bar{\mu} (C_{e\mu}^V + C_{e\mu}^A \gamma_5) e$$

$\begin{array}{c} \text{Bump hunt in electron} \\ \text{momentum } p_e \end{array}$

[Bayes et al (TWIST Collaboration) 1411.1770] [Perrevoort et al (Mu3e Collaboration) 1812.00741]

<u>Lepton-flavour</u> <u>Conserving</u>

[Echenard et al 1411.1770] [Perrevoort et al (Mu3e Collaboration) 1812.00741]

Lepton Flavour Conserving ALP

[See also Jure Zupan's talk @ this workshop]

LFV from light NP: axionlike particles (ALP)

$$\begin{split} \mathcal{L}_{\text{eff}}^{d\leq 5} &= \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{m_{a}^{2} a^{2}}{2} \\ &+ e^{2} c_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \widetilde{F}^{\mu\nu} + g_{s}^{2} c_{gg} \frac{a}{\Lambda} G_{\mu\nu} \widetilde{G}^{\mu\nu} - \frac{\partial_{\mu} a}{\Lambda} \sum_{f,i,j} \bar{f}_{i} \gamma^{\mu} (v_{ij}^{f} - a_{ij}^{f} \gamma_{5}) f_{j} \end{split}$$

Message: correlations among LFV signals discriminate heavy vs. light NP!

<u>Complementary (not ALTERNATIVE!)</u> approach → HIGH-PRECISION SMALL/MID-SCALE EXPS.

Low-energy high-precision exps. can exploit :

- many recent advances in experimental techniques and technologies + (experimental as well as theoretical) synergies with adjacent areas of particle physics (atomic, molecular, optical, nuclear, particle physics)
- the relevant impact of *quantum mechanical virtual effects* on physical phenomena
 → access to the exploration of BSM new physics areas (large energy scales, very
 feebly coupled new particles, hidden sectors, etc.) difficult to be probed by
 traditional HE particle physics

<u>SYNERGY</u> between small/mid-scale & large-scale experiments → casting a wider and tighter net for possible effects of BSM physics

Community Planning Exercise: Snowmass 2021 Blum, Winter et al. arXiv:2209.08041v2 2023 P5 (Particle Physics Project Prioritization Panel) Report

[Masiero @ this workshop]

Low-energy vs high-energy LFV

Energy dependence of LFV signals

$$\Gamma(au o 3e) \sim rac{m_ au^5}{\Lambda^4} \qquad \qquad \Gamma(Z o au e) \sim rac{m_Z^5}{\Lambda^4} \qquad \qquad \sigma(ee o au e) \sim rac{E_{CM}^2}{\Lambda^4}$$

- # of Z events @ FCC-ee: $N_Z(e^+e^- \rightarrow Z) \sim 10^{11}$
- # of Z events @ MuC: $N_Z(\mu^+\mu^- \rightarrow \bar{\nu}\nu Z) \sim 10^{11} \left(\frac{\sqrt{s}}{30 \text{ TeV}}\right)^4$

LFV @ FCC-ee

Energy dependence of LFV signals

$$\Gamma(au o 3e) \sim rac{m_{ au}^5}{\Lambda^4} \qquad \qquad \Gamma(Z o au e) \sim rac{m_Z^5}{\Lambda^4} \qquad \qquad \sigma(ee o au e) \sim rac{E_{CM}^2}{\Lambda^4}$$

Message: The high luminosity FCC-ee is competitive with Belle II to probe LFV

[Bartocci, Pagani, PP & Scantamburlo, to appear. See also Calibbi et al., '21 & Altmannshofer et al. '23]

LFV @ Muon Collider

Energy dependence of LFV signals

$$\Gamma(au o 3e) \sim rac{m_{ au}^5}{\Lambda^4} \qquad \Gamma(Z o au e) \sim rac{m_Z^5}{\Lambda^4} \qquad \sigma(\mu\mu o au e) \sim rac{E_{CM}^2}{\Lambda^4}$$

Message: Energy helps accuracy!

[Bartocci, Pagani, PP & Scantamburlo, to appear.]

Probes of Neutrino Magnetic Moments

· Astrophysical and cosmological observations

Astrophysical bounds from stellar energy loss measurements

 $\mu_{\nu} \lesssim 2 \times 10^{-12} \,\mu_B$

From the red giant branch of modular clusters [Capozzi, Raffelt, PRD 102 (2020) 8, 083007]

Bounds from CMB and BBN measurements of the effective neutrino number

 $\mu_{
u} \lesssim 3 imes 10^{-12}\,\mu_B$ [Li, Xu, JHEP 02 (2023) 085] V V

• Low energy (solar) neutrino scattering experiments

 $\mu_{
u} \lesssim 6.3 imes 10^{-12} \, \mu_B$ XENONNT Phys.Rev.Lett. 129 (2022) 16, 161805 $\mu_{
u} \lesssim 6.2 imes 10^{-12} \, \mu_B$ LUX-ZEPLIN Phys.Rev.Lett. 131 (2023) 4, 041002

(Future) Collider Probes: Hadron Colliders

Background evaluated from a recast of the ATLAS search [arXiv:2403.15016 [hep-ex]]. "Search for heavy Majorana neutrinos in $e^{\pm}e^{\pm}$ and $e^{\pm}\mu^{\pm}$ final states via WW scattering in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector"

 $\begin{array}{ll} \mbox{2σ excl. sensitivity} & \mbox{In the most optimistic case of a negligible background} \\ \mbox{HL-LHC} & |\mu_{e\mu}| < 6.1 \cdot 10^{-8} \, \mu_B \ \{300 \, {\rm fb}^{-1}\}, \ |\mu_{e\mu}| < 1.9 \cdot 10^{-8} \, \mu_B \ \{3 \, {\rm ab}^{-1}\} \\ \mbox{FCC-hh} & |\mu_{e\mu}| < 3.4 \cdot 10^{-9} \, \mu_B \ \{3 \, {\rm ab}^{-1}\}, \ |\mu_{e\mu}| < 1.0 \cdot 10^{-9} \, \mu_B \ \{30 \, {\rm ab}^{-1}\} \end{array}$

Large electron-muon transition moments of the order of $10^{-12}\mu_B$ for Majorana neutrinos are accessible experimentally at a high-energy Muon Collider.

Conclusions and future prospects

Important questions in view of ongoing/future experiments are:

- What are the expected deviations from the SM predictions induced by TeV NP?
- Which observables are not limited by theoretical uncertainties?
- In which case we can expect a substantial improvement on the experimental side?
- What will the measurements teach us if deviations from the SM are [not] seen?

(Personal) answers:

- We can expect any deviation from the SM expectations below the current bounds.
- LFV processes and leptonic EDMs do not suffer from theoretical limitations and there are still excellent prospects for experimental improvements.
- FCC-ee and a high-energy Muon Collider are complementary with each other and also with Belle II and LHCb to probe LFV.

Message: an exciting program is in progress at the Intensity Frontier which would greatly benefit from the next high-energy frontier program (FCC & MuC)!