Probing Light New Physics at LFV Experiments

INFN

Toby Opferkuch

CLFV Searches with the MU2E Experiment

13th of June 2025

SISSA

Minimal Dark Matter

$$\mathcal{G}_{\mathrm{SM}} \supset SU(3)_C \times SU(2)_L \times U(1)_Y$$

1. Dark matter can be **coloured**

2. Dark matter can be electroweak charged

Minimal Dark Matter

$$\mathcal{G}_{\mathrm{SM}} \supset SU(3)_C \times SU(2)_L \times U(1)_Y$$

1. Dark matter can be **colour**

[See V. de Luca et al. 1801.01135]

$$QQ \text{ or } QQQ \text{ bound stat}_{SU(3)_C \text{ octets}} \cup \bigcup_{SU(3)_C \text{ fundamental rep.}} \cup \bigcup_{SU(3)_C \text{ fundamental rep.}$$

2. Dark matter can be electro

Finite set of options based on $SU(2)_L$ representation

Y = 0

real WIMPS [S. Bottaro et. al 21

complex W

Y = 1/2, 1

[S. Bottaro et. al 220 Includes classic Wino & Higgsino WIMPs (minus

Giving up on SM charged dark matter candidates

Singlet Dark Matter

If DM is a SM singlet it need not interact with the SM

Singlet Dark Matter

If DM is a SM singlet it need not interact with the SM

But we might be lucky and observe light thermal relics!

Ex. Neutrinos

Example of a light thermal relic that behaves like dark matter today!

But what do we observe?

Solar neutrinos

Collider neutrinos

Cosmic neutrino background

Many Options, Much Fun?

How do I make sense of the landscape of singlet options?

$$\begin{array}{ll} \textbf{EFT:} \qquad \mathcal{L}_{portal} \supset \frac{c_n}{\Lambda^{\Delta_{dark} + \Delta_{SM} - 4}} \mathcal{O}_{dark} \mathcal{O}_{SM} \\ \textbf{Lower dimensional portals} \\ \mathcal{O}_{dark} = \{\phi, N, V_{\mu}, \dots\} \\ \end{array}$$

Many Options, Much Fun?

How do I make sense of the landscape of singlet options?

Dark Sector Thermal History

Dark Sector Thermal History

Dark Sector Thermal History

Flavoured Axion-like Portal

Accidental symmetries of the SM might be broken by light new particles feebly coupled to the SM

Flavoured Axion-like Portal

Accidental symmetries of the SM might be broken by light new particles feebly coupled to the SM $U(3)_{Q}$

Example: Flavour dependent Peccei-Quinn charges

[Calibbi et al 1612.08040] [Ema et al 1612.05492]

Flavour violating $\mathscr{L} \supset \sum_{i \neq j} \frac{\partial_{\mu} a}{2f_{a}} \bar{f}_{i} C^{A}_{ii} \gamma_{\mu} \gamma_{5} f_{i} + \sum_{i \neq j} \frac{\partial_{\mu} a}{2f_{a}} \bar{f}_{i} \gamma^{\mu} \left(C^{V}_{ij} + C^{A}_{ij} \gamma_{5} \right) f_{j}$ [Feng et al hep-ph/9709411]

 $U(3)_{\mu}$

 $U(3)_d$

 $U(3)_{\rho}$

 $U(3)_L$

Flavoured Axion-like Portal

Accidental symmetries of the SM might be broken by light new particles feebly coupled to the SM $U(3)_{0}$

Example: Flavour dependent Peccei-Quinn charges

[Calibbi et al 1612.08040] [Ema et al 1612.05492]

Flavour conserving $\mathscr{L} \supset \sum_{i} \frac{\partial_{\mu}a}{2f_{a}} \bar{f}_{i} C^{A}_{ii} \gamma_{\mu} \gamma_{5} f_{i} + \sum_{i \neq j} \frac{\partial_{\mu}a}{2f_{a}} \bar{f}_{i} \gamma^{\mu} \left(C^{V}_{ij} + C^{A}_{ij} \gamma_{5} \right) f_{j}$ [Feng et al hep-ph/9709411]

Flavour violating

Hierarchy between **flavour**conserving and flavour-violating depends on the UV theory

Flavour anarchy: $C_{ii}^{A,V}(\Lambda_{\rm UV}) \sim \mathcal{O}(1)$

 $U(3)_{\rho}$

 $U(3)_L$

Minimal favour violation:

$$C^{A,V}_{ij}(\Lambda_{\rm UV})=0$$

 $U(3)_{\mu}$

 $U(3)_d$

Where's the Dark Matter?

[Pani, Redigolo, Schwetz & Ziegler 2209.03371]

Lepton flavour violating IR freeze-out dominates over flavour diagonal freeze-in

Flavour diagonal: $\ell\ell \to \gamma a \quad \& \quad \ell\gamma \to \ell a$ $\Omega_a h^2 |_{\text{scattering}} \approx 9 \times 10^{-4} \left(\frac{m_a}{50 \text{ keV}}\right) \left(\frac{5 \times 10^9 \text{GeV}}{f_c / C_{\ell\ell}}\right)^2 \left(\frac{m_\ell}{m_e}\right) \left(\frac{75}{a (m_\ell)}\right)^{3/2}$

Flavour violating: $\ell_i \to \ell_j a$ $\Omega_a h^2|_{\ell_i \to \ell_j a} \approx 0.12 \left(\frac{m_a}{50 \,\mathrm{keV}}\right) \left(\frac{m_{\ell_i}}{m_{\tau}}\right) \left(\frac{5 \times 10^9 \mathrm{GeV}}{f_{\tau}/C_{\ell_i \ell_i}}\right)^2 \left(\frac{75}{a \,(m_{\tau_i})}\right)^{3/2}$

Flavour violating domination also helps suppress $a \rightarrow \gamma \gamma$ and $a \rightarrow \nu \nu$ (DM stability & indirect detection signals)

Why Muons?

BR $[\mu \to X] \sim \frac{\epsilon^2}{8\pi}$

Muons are pretty **special**:

Sensitivity to tiny couplings

 m_{μ}

O(10¹/) Two-orders of magnitude larger than next best candidate

muon = 3.53e+17
tau = 7.84e+11
pion = 5.52e+15
kaon_pm = 9.29e+15
K0_s = 6.77e+13
K0_l = 3.87e+16
B0 = 1.22e+13

Why Muons?

Muons are pretty **special**:

$$BR\left[\mu \to X\right] \sim \frac{\epsilon^2}{8\pi} \left[\frac{m_{\mu}}{\Gamma_{\mu}}\right]$$

O(10¹⁷) Two-orders of magnitude larger than next best candidate

Sensitivity to tiny couplings

muon = 3.53e+17
tau = 7.84e+11
pion = 5.52e+15
kaon_pm = 9.29e+15
K0_s = 6.77e+13
K0_l = 3.87e+16
B0 = 1.22e+13

There are **very many** of them:

Why Muons?

<u>Goal:</u> show how rare decays of the muon, usually used to search for heavy new physics, can be used to search for light new physics

- Motivation hinges on huge amount of upcoming data
- Single purpose detectors where new detection strategies must be established as soon as possible

$$\mu \rightarrow 3e$$
 $\mu \rightarrow e\gamma$ $(g-2)_{\mu}$ $\mu N \rightarrow eN$
Mu3e MEG-II Muon $g-2$ Mu2e COMET DeeMe

What New Physics?

<u>Lepton-flavour</u> <u>Violating</u>

$$\mathscr{L}_{\text{FV-a}} = \frac{m_{\mu}}{2f_a} \frac{1}{|C_{e\mu}|} a\bar{\mu}(C_{e\mu}^V + C_{e\mu}^A \gamma_5)e$$

Bump hunt in electron momentum p_e

[Bayes et al (TWIST Collaboration) 1411.1770] [Perrevoort et al (Mu3e Collaboration) 1812.00741]

<u>Lepton-flavour</u> <u>Conserving</u>

Bump hunt in e^+e^- -pair invariant mass

[Echenard et al 1411.1770] [Perrevoort et al (Mu3e Collaboration) 1812.00741]

What New Physics?

Bump hunt in electron momentum p_e

[Bayes et al (TWIST Collaboration) 1411.1770] [Perrevoort et al (Mu3e Collaboration) 1812.00741]

<u>Lepton-flavour</u> <u>Conserving</u>

Bump hunt in e^+e^- -pair invariant mass

[Echenard et al 1411.1770] [Perrevoort et al (Mu3e Collaboration) 1812.00741]

What New Physics?

Bump hunt in electron momentum p_e

[Bayes et al (TWIST Collaboration) 1411.1770] [Perrevoort et al (Mu3e Collaboration) 1812.00741]

For generic $\Gamma_{X \to e^+e^-} \approx \frac{g_e^2}{8\pi} m_X$ $c\tau_X \approx 5 \,\mathrm{mm} \left(\frac{10^{-5}}{g_o}\right)^2 \left(\frac{10 \,\mathrm{MeV}}{m_{\mathrm{V}}}\right)$ **Three possibilities: Most relevant** Long-lived for DM **<u>2.</u>** Prompt decays **3.** Displaced decays

Long-lived Scenario

ALPs long-lived escaping the detector

Rare muon decays with missing energy

 $\mathbf{Z}_{\bullet} \ \mu
ightarrow e \mathbf{a} \gamma$

[TWIST collaboration 1409.0638]

「WIST

[Hill, et. al 2310.00043] **Mu3e** [Perrevoort et. al (Mu3e Collaboration) 1812.00741]

MEG-II [Jho, et. al 2112.07720]

Ginormous irreducible background from Michel decays $\mu \to e \nu \bar{\nu}$

Muon polarisation can help discriminating signal [systematics are large for left-[see Calibbi et. al 2006.04795] handed couplings]

Require a final state photon to reconstruct missing mass distribution

[reduces signal rate but MEG-II has lower energy thresholds]

 $\underline{\mathbf{5}}_{\bullet} \mu \to 3ea$

[Knapen, Langhoff, **<u>Opferkuch</u> & Redigolo 2311.17915**]

Require a final state photon internally converting to electron-positron pair

Mu3e Experiment

Mu3e Experiment

Mu3e Experiment

Long-lived Scenario

Long-lived Scenario

Lepton-flavour **Violating** challenge as signal lies near the Michel edge e+ Events per 100keV 1.5×10^{6} 1.5×10^{6} [Perrevoort PhD thesis] **SM bkg** $\mu^+ \rightarrow e^+ \bar{\nu}_{\mu} \nu_e$ **`**• a $\mathscr{L}_{\text{FV-a}} = \frac{m_{\mu}}{2f_{a}} \frac{1}{|C_{e\mu}|} a\bar{\mu}(C_{e\mu}^{V} + C_{e\mu}^{A}\gamma_{5})e$ 0.6 0.4 here Bump hunt in electron 0.2 momentum p_{ρ}

[Bayes et al (TWIST Collaboration) 1411.1770] [Perrevoort et al (Mu3e Collaboration) 1812.00741]

For $m_a \lesssim 25 \,\mathrm{MeV}$ calibration

Systematics \implies Statistics

"A Robust Search for Lepton Flavour Violating Axions at Mu3e" [Knapen, Langhoff, **Opferkuch** & Redigolo 2311.17915] Systematics \implies Statistics

"A Robust Search for Lepton Flavour Violating Axions at Mu3e" [Knapen, Langhoff, **Opterkuch** & Redigolo 2311.17915]

<u>The price to pay:</u>

- Extra factor α^2
- Phase-space suppression
- Additional detector acceptance suppression $p_{e^{\pm}} \ge 10 \text{ MeV}$

Systematics \implies Statistics

"A Robust Search for Lepton Flavour Violating Axions at Mu3e" [Knapen, Langhoff, Opferkuch & Redigolo 2311.17915]

<u>The price to pay:</u>

- Extra factor α^2
- Phase-space suppression
- Additional detector acceptance suppression $p_{e^{\pm}} \ge 10 \text{ MeV}$

 e[±] momenta now lie away from Michel calibration edge!

2. Analysis can be done offline leading to improved event reconstruction

Search Strategy

MEG-II Experiment

Not a **hermetic** detector:

Detector geometry and trigger assume:

• e^+ and γ back-to-back

•
$$E_{e^+} \simeq m_{\mu}/2$$

e.g. B-field is non-uniform designed to sweep soft e⁺ away from tracker

MEG-II Experiment

Not a **hermetic** detector:

Detector geometry and trigger assume:

- e^+ and γ back-to-back
- $\bullet E_{e^+} \simeq m_{\mu}/2$

e.g. B-field is non-uniform designed to sweep soft e⁺ away from tracker

ALP Signal

[Rate maximised for soft collinear photon] $\cdot \epsilon$

 e^{\neg}

MEG Triggers Extremely oversimplified

Triggers from radiative muon decay search (RMD) [MEG Collaboration 1312.3217]

1. Remove back-to-back requirement

<u>2.</u> Reduce E_{γ}^{cut} by lowering beam intensity

Missing Mass at MEG-II

Can reconstruct the missing invariant mass from the $e + \gamma$

A low intensity run (1/50 of normal) is better because:

- Allows for looser cut on photon energy
- Reduced background from coinciding decays

LFV ALPs at Mu2e

What's required for $\mu \rightarrow ea$?

[Hill, Plestid & Zupan 2310.00043]

1. Need μ^+ and π^+ (modify transport solenoid)

<u>2.</u> Need reduced intensity proton beam

Michel background overwhelms detector

Degraded energy resolution

But for $m_a \lesssim 20 \,\mathrm{MeV}$ calibration challenge as for Mu3e

Can a similar approach to Mu3e be implemented?

Final Reach Long-lived ALP

Final Reach Long-lived ALP

Final Reach Long-lived ALP

Going Displaced at Mu3e

Going Displaced at Mu3e

Backgrounds

1. Require e^+ pointing to muon decaying on stopping target

<u>2.</u> Require $e^+ - e^-$ pair reconstructed to decay inside target (With at least 3mm displacement)

<u>3.</u>(optional) Require $e^+-e^$ pair to point to muon decay on surface

<u>4.</u> Insist $p_{\text{miss}}^{\mu} = 0$ or $p_{\text{miss}}^2 > 0$

Without $\nu's$

With $\nu's$

Backgrounds

1. Require e^+ pointing to muon decaying on stopping target

<u>2.</u> Require e^+-e^- pair reconstructed to decay inside target (With at least 3mm displacement) **<u>3.</u>(optional)** Require $e^+-e^$ pair to point to muon decay on surface **<u>4.</u>** Insist $p_{\text{miss}}^{\mu} = 0$ or $p_{\text{miss}}^2 > 0$

With $\nu's$

27

Lepton Flavour Violating ALP

Lepton Flavour Conserving ALP

Questions?

Lepton Flavour Violating ALP

Search Strategy

 n_X is the e^-e^- -pair that reconstructs the mass of the hypothesised resonance

Search Strategy

Background Combinatorics

Incorrect pair for m_X

Collinear singularity for background only!

Background Combinatorics

Collinear singularity for background only!

Kinematic Correlations

Two additional model-dependent discriminating variables

Dominant muon coupling behaves differently

Kinematic Correlations

Limited by MC statistics to binning in 2 variables only

Example 1: Dark Photon

[Echenard et al 1411.1770] [Perrevoort et al (Mu3e Collaboration) 1812.00741]

Example 2: Scalar Coupling to Muons

<u>Other models investigated</u> (Mu3e not competitive):

- Scalars coupled only to electrons
- Scalars with mass hierarchical couplings
- $L_{\mu} L_e$ (also twisted)

Angular Observables

