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What are Primordial Black Holes?

» Primordial black holes (PBHs) have been proposed to form
by density fluctuations during post inflationary eras.

» Unlike stellar-collapse black holes, PBHs could have formed
much earlier in cosmic history.

> A key feature is their wide range of possible masses.

» In this context, Light Primordial Black Holes (LPBs) are
defined as PBHs with masses in the range 10g < M < 10%.



When they formed?

10g < M < 10%

107375 <ty <107%s
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Why are PBHs important?

> Wide range of masses: Play roles in cosmology and
astrophysics

» Dark Matter candidates: PBHs have been proposed as
DM candidates

» Window into the early universe: PBHs are sensistive
to processes in this period

> LIGO-Virgo observations: BHs mergers could have
primordial origin
» Cosmic conundra: Thermal history and PBHs could

explain lot of unresolved conundra (galaxies at high
redshifts, some microlensing events, ... )

» Cosmological consequences: Matter and energy density
injection



Constraints from Cosmological Data

Constraints on the masses of PBHs come mainly from:
» Primordial Nucleosynthesis (BBN)

Mppu < 109g .

» Inflation
Mpgy > 10 g.

Furthermore, the are constraints on the initial abundance

QppH; = pPPBH,i/Pr
» Influence of Gravitational Waves on BBN
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PBHs mechanisms

Hawking radiation
> PBHs emit radiation known as Hawking Radiation.

» Causes black hole to lose mass and spin, leading to
evaporation.

» Produces SM particles and (possibly) BSM particles.
Superradiance

» Amplification of wave modes scattering off a rotating black
hole.

» Occurs when wave frequency is less than black hole’s event
horizon angular velocity.

> Waves grow exponentially, extracting energy from the black
hole.



Hawking Radiation

Hawking Temperature of Kerr Black Holes
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Hawking Radiation

The evaporation process leads to a reduction in the BH’s mass

and spin:
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Superradiance

Strictly connected to Hawking radiation is the process of

superradiance, which is a mechanism of radiation
amplification.

Superradiance occurs if the following condition is satisfied:

w < pfl;.

Mirror

In this case, the radiation is
repeatedly amplified, leading \
to a condition of instability. s



Superradiance

The system composed of a black hole and a massive bosonic
field is called a gravitational atom. The boson can be
trapped in hydrogen-like bound states:
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Superradiance

The growth rate can be approximated as:

M,
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and the equations, considering only superradiance, become:
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in which Ng is the number of scalar particles gravitationally
bounded to a PBH.



Superradiance

» Numerical simulations indicate that for a, ~ 1, the
instability is largest when:

o~ 0.42
> Generally, it’s very efficient when:
a~ 0(0.1)
» In the mass range considered:
10g < Mpn $10%g
» The scalar particle mass range should be:

105 GeV < mg < 1012 GeV



Non standard particles

In this work, as a product of the Hawking evaporation, we also
considered:
Axion like particles (ALPs)

» ALPs are hypothetical, light particles predicted by various
extensions of the Standard Model.

» Their properties determine whether they behave as dark
matter or radiation.

» Here ALPs are assumed to be light enough to remain
relativistic — dark radiation

Moduli

» Scalar fields (mg 2 30TeV) predicted by string theory,
arising from the complex Calabi-Yau geometry.
The decay rate of moduli ® is:
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ALPs from Moduli decay

ALPs are produced by processes ® — aa, with a rate:
F@—)aa = B,y )

where B, is the branching ratio, which quantifies how many
moduli decay in ALPs.

» The equation for the conservation of the total number of
moduli is:
ne + 3Hne = —T'eng .

» The equations that describe the energy density evolution of
ALPs and SM particles are:

pa +4Hp, = I'e Bymanag (t) )
psy +4Hpsy = Ta(1 — By)mana(t) .



Complete scenario

Taking into account all the previous equations:
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Superradiant production of moduli

Values are: M = 2.6 x 10%g, ms = 107GeV, Qppn,; = 107'°.



Moduli decay

Moduli decay in ALPs, contributing to the Cosmological

Axion Background (CAB).
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Values are: M = 2.6 x 109, me = 10"GeV, Qppn,; = 107'%, B, = 0.1.



Effective Number of Neutrinos, Neg

In standard cosmology, when the photon temperature drops
below T, ~ 1 MeV, neutrinos decouple from the rest of the
radiation, forming a cosmic neutrino background (CNuB).
The energy density today can be written as:

4
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where Ngg is the effective number of neutrinos and is equal to
3.043, mainly because neutrinos do not decouple
instantaneously.



Extra Effective Number, ANg

Planck satellite measurements indicate N.g = 2.99 £ 0.17.

» Data allow for the existence of an extra radiation
component.

» In our model, this dark radiation component is identified
with ALPs.

The extra contribution AN.g can be expressed as:
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Next step: Redshift this expression to the decay time tq
(temperature Ty).
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Redshift

SM radiation:
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Dark radiation:

Extra effective number:
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AN.g with moduli, me = 10°GeV
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AN.g with moduli, me = 10"GeV
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ANz without moduli
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Conclusions

» Importance of PBHs: Primordial Black Holes (PBHs)
are crucial in cosmology as they can significantly influence
the particle and radiation content of the early universe.

» Superradiance and Hawking Radiation: The
interplay between superradiance and Hawking radiation is
fundamental, especially if heavy particles such as moduli
exist. This interaction can lead to the production of exotic
particles like ALPs.

» Cosmological Implications: ALPs produced in this
context can act as dark radiation.
Their presence can be quantified through the extra effective
number of neutrinos, A Neg.
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