Updates on Electron Gun @ LNGS

Presentation for PTOLEMY National Meeting - Rome, 19 February 2025

Francesca Maria Pofi - GSSI, INFN LNGS

How the Full Setup Looks Like

A Versatile Setup

Faraday cup &/or phosphor screen mounted on a feedthrough

Custom-made, in collaboration with LNGS Mechanics Workshop

Allows shifts on y-axis with sub-mm precision

Allows to completely remove beam monitoring unit from beam path

Francesca M. Pofi

S

Output Monitoring: Ingredients

- Phosphorous screen: High luminosity blue phosphor disk, 4 cm diameter & 75 µm thickness on stainless steel
 - for preliminary gun focusing & centering

Brass double Faraday cup

- Outer grounded to shield, 3 mm hole diameter
- Inner to read current, 3.5 mm hole diameter

What's Inside?

EMG-4212 / EGPS-3212

- Grounded Anode
- ➢ HV to accelerate electrons (up to -20 kV)
- Wehnelt (or grid, up to -500 V)
- Focus system (Einzel lens, up to -20 kV)
- \ge X/Y deflection plates (up to \pm 300 V)

Francesca M. Pofi

S (j S

Wehnelt as a Beam Intensity Filter

What is?

- Tubular housing for cathode with fixed aperture
- Negative bias --> secondary electric field in cathode proximity
- How can be employed?
 - <u>Mid-range</u> voltage \rightarrow adjust beam divergence & uniformity \rightarrow beam characterization lacksquare(spot size, I-V curve etc.)
 - <u>High</u> voltage —> reduce electron emission from cathode edges till complete beam suppression ullet

-----> Beam Intensity Filter

possible needing for future usage as electron trap calibration source

Francesca M. Pofi

	I
5	
	I
	-

Vacuum Chamber

Beam Current Optimized by Wehnelt

Setup:

- Keithley 2450 SourceMeter + double Faraday cup
- Beam electron energy: 1 keV, 5 keV, 10 keV, 18.6 keV
- Source voltage (V_{source}) set to 1.521 V
- Focusing & deflection voltages optimized through Phosphor screen for each energy
- Base pressure: 10-7 mbar

- Similar behaviors, different V_{grid} optimizing beam current
- Better I_{beam}/I_{em} ratio for lower electron energies Francesca M. Pofi

```
G S
S I
```


	 1
	 1

Up to 10⁻⁴ Reduction Factor

Example Let's define: - "collection" efficiency $\epsilon = I_{beam}/I_{em}$ - reduction factor $r = I_{beam}/I_{em}(V_{grid} = 0V)$

Focusing on run @ 18.6 keV:

- beam current I_{beam} maximized for V_{grid} = 30 kV
- ϵ from 11% to ~100% for V_{grid} > 45 kV
- $r > 10^{-4}$ for $V_{grid} > 57 \text{ kV}$

from 140 µA to 700 pA! not able to read higher reduction for instrumental limit

I-V Source Curve Linear in Emission Region

Source = Refractory metal thermionic emitter

- Tantalum disc, diameter 25 mm on tungsten hairpin filament
- Circular, planar emission surface
- Emitting electrons when filament heated by voltage source with <u>energy spread</u> 0.5 eV
- Both voltage applied & current in filament displayed on power supply monitor
- I-V curve to characterize source
 - Linear behavior in the emission region ($V_{source} > 1 V$)
 - ~1 day stabilization

Francesca M. Pofi

G S S I

5	
	I

Vacuum Chamber

- optimized through Phosphor screen

Discrepancy & stabilization time increase with V_{source} increasing Francesca M. Pofi

Preliminary Estimate of Beam Size

Aims:

estimate beam size + find correlation deflection voltage - position shift

Scan of 3 mm Faraday cup hole moving beam with deflection voltages

- I_{em} fixed to 5 uA
- V_v from -240 V to 150 V with 5 V steps

Result = convolution of - <u>gaussian</u> (e-gun spatial current distrib) - <u>step function</u> (FC hole)

Sub-mm Spot Size

 \gg From 1st derivative of I_{beam} vs V_y points (computed as $I_{beam}(V_y^i) - I_{beam}(V_y^{i-1}) / V_y^i - V_y^{i-1}$)

- Gaussians reflecting beam spatial distribution with
 - Distance (peak to peak) \simeq 170 V = FC hole diameter = 3 mm \rightarrow 1 V = 0.0176 mm
 - $\sigma = 30 \pm 0.3$ V (fitted from 2nd gaussian) $\rightarrow \sigma = 0.53$ mm

Electron Injection in the Trap: The Magnet

Aim: simulate injection of beam electrons in actual RF region setup in LNGS (F. Virzi talk)

- Now: ^{83m}Kr injection → 30.4 keV e⁻ (L line) produced in random point of trap
- With e-gun: 18.6 keV e- with more controlled initial info

- Magnet in LNGS:
 - Halbach cylinder permanent magnet
 - 1 T uniform magnetic field in limited region inside
 - Just z profile of B module given
 - Field lines difficult to simulate (field produced by array of magnets)

Francesca M. Pofi

Exploiting Laplace Equation for Scalar Potential

Aim: know magnetic field behavior **outside** magnet to simulate e⁻ injection

- No sources in region of interest \longrightarrow governing laws:
- Procedure:
 - 1. Solve Laplace equation with **Neumann boundary conditions** = B_{\perp} on infinte plane
 - 2. Derive B from ϕ_m
 - 3. Outcome = magnetic field lines
- \triangleright Only need to measure B₁ on "infinite" plane

Francesca M. Pofi

14

- Gauss's Law for Magnetism:
- $\nabla \cdot \mathbf{B} = 0$ (No monopoles)
 - Ampère's Law (Static, No Currents):
- $\nabla \times \mathbf{B} = 0$ (Field is curl free)

• Implications:

Existence of a scalar potential:

$$\mathbf{B} = -\nabla \phi_m$$

• Laplace's Equation for ϕ_m :

$$\nabla^2 \phi_m = 0$$

Measure of Boundary Conditions

Aim:

measure B_{\perp} on infinite plane outside magnet

• plane // to cylinder face, 3 mm from it

Setup:

- Halbach magnet dismounted from RF setup
- Hirst GM08 Gaussmeter
- cap by LNGS Mechanics Workshop with slots for inserting probe 7 mm apart on both diagonal

Francesca M. Pofi

15

ONGOING! measurement planned this week

From Measurements to Simulation Setup

Given boundary conditions \rightarrow solution of Laplace equation

- using COMSOL simulation software based on advanced numerical methods (in collab with Dr. Carlo Rizza from UnivAq)
- Result = Magnetic Field Map for the whole region of interest in txt (or other format) file
- Next steps:
 - Map Upload & Implementation of possible electrodes configurations in CST
 - Multiparticle Simulations with <u>measured</u> characteristics of electrons from E-gun
 - In CST
 - Using Lorentz4 ROOT code --

Francesca M. Pofi

ONGOING! new implementation with Dr. Nicola Rossi to read electric & magnetic fields from files

Recap & Next Steps

 Beam Current with reduction factor 10⁻⁴ exploiting Wehnelt grid

1st beam size estimate of ~0.5 mm
 + correlation deflection voltage - position shift

 \checkmark I vs V from 0.1 μA to 180 μA

✓ Setup to measure B on extended plane ready

Francesca M. Pofi

Beam Current with femtoammeter to probe higher reduction

Estimate using manual shift via feedthrough + optimize focusing voltage

Curve down to pA (or fA)

Measurement, COMSOL solution, File Upload, Geometry implementation, Multiparticle Simulation

Helmholtz coils cage

