Significant Results from TES Latest Measurements

Alice Apponi <u>Benedetta Corcione</u> Hobey Garrone Federico Malnati Eugenio Monticone Francesco Pandolfi Carlo Pepe Mauro Rajteri Alessandro Ruocco

Istituto Nazionale di Fisica Nucleare

Differences from the Previous Setup

Differences from the Previous Setup

Differences from the Previous Setup **CNTs reduced** to send less electrons on the shield $3 \text{ mm} \times 3 \text{ mm}$ $1 \text{ mm} \times 1 \text{ mm}$ carbon nanotubes - **HV** copper ×1 sapphire spacer (gold shield to protect TES chip (0.5 mm)wiring and substrate **GND** TES from electron hits) cryostat smaller TES to improve energy resolution $100 \,\mu\text{m} \times 100 \,\mu\text{m}$ $60 \ \mu m \times 60 \ \mu m$ $\sigma_e \propto \sqrt{Area_{TES}} \Rightarrow$ expected 40% improvement!

Differences from the Previous Setup

Reducing the CNTs and facilitating the thermalization, the TES working point does not change for different V_{cnt}

3 mm × 3 mm 1 mm × 1 mm (area reduced of a factor 10)

Reducing the CNTs and facilitating the thermalization, the TES working point does not change for different V_{cnt}

 $3 \text{ mm} \times 3 \text{ mm} \xrightarrow{1 \text{ mm}} 1 \text{ mm}$ (area reduced of a factor 10)

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Reducing the CNTs and facilitating the thermalization, the TES working point does not change for different V_{cnt}

3 mm × 3 mm 1 mm × 1 mm (area reduced of a factor 10)

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Reducing the CNTs and facilitating the thermalization, the TES working point does not change for different V_{cnt}

3 mm × 3 mm 1 mm × 1 mm (area reduced of a factor 10)

Reducing the CNTs and facilitating the thermalization, the TES working point does not change for different V_{cnt}

 $3 \text{ mm} \times 3 \text{ mm} \xrightarrow{1 \text{ mm}} 1 \text{ mm}$ (area reduced of a factor 10)

Histogram Shape more Defined!

Histogram Shape more Defined!

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

What Did we Achieve?

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

High-Amplitude Peak is Narrower!

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

High-Amplitude Peak is Narrower!

Left Tail of High-Amplitude Peak is Reduced!

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Left Tail of High-Amplitude Peak is Reduced!

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Trigger Threshold is Known in Energy!

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Trigger Threshold is Known in Energy!

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

optical fiber

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

× ×

Fiber could not be aligned

we are sending a lot of photons towards the TES and we can see at most <u>2 or 3</u> simultaneous photons on the TES (last time we calibrated the TES up to ~ 45 photons!)

increasing the laser power we steadily heat the TES

More Defined Peak is much Easier to Fit

> Asymmetric Gaussian fit on the high-amplitude peak

More Defined Peak is much Easier to Fit

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Reducing the TES from 100 μ m × 100 μ m to 60 μ m × 60 μ m, it saturates in energy at ~ 100 eV!

$\mathbb{H} \to \mathbb{H}$

Reducing the TES from 100 μ m × 100 μ m to 60 μ m × 60 μ m, it saturates in energy at ~ 100 eV!

Reducing the TES from 100 μ m × 100 μ m to 60 μ m × 60 μ m, it saturates in energy at ~ 100 eV!

Reducing the TES from 100 μ m × 100 μ m to 60 μ m × 60 μ m, it saturates in energy at ~ 100 eV!

Signal Charge Preferred to Amplitude

Signal Charge Preferred to Amplitude

Signal Charge Preferred to Amplitude

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Charge has Worse Resolution than Amplitude

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Charge has Worse Resolution than Amplitude

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Same Fit on Charge Distributions

> Asymmetric Gaussian fit on the high-charge peak

$$f(x) = \begin{cases} A \cdot exp\left(-\frac{(x-\mu)^2}{2\sigma_L^2}\right) & x < \mu \\ A \cdot exp\left(-\frac{(x-\mu)^2}{2\sigma_R^2}\right) & x > \mu \end{cases}$$

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Same Fit on Charge Distributions

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Optimistic Conjectures on Resolution :D

Comparing results we found:

CHARGE $\implies \frac{resolution (december 2024)}{resolution (paper data)} \sim 0.6$

if we <u>impose</u> that:

 $0.6 = \frac{resolution (december 2024)}{resolution (paper)}$

if we say that the paper energy resolution is 1 eV, we <u>would obtain</u> an energy resolution on amplitudes of

 $\sigma_e(E) \sim 0.6 \text{ eV}$ for 92 - 106 eV electrons

Optimistic Conjectures on Resolution :D

Simulations on how to Improve the Setup Ongoing

WHAT DID WE LEARN?

18

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

18

NEXT STEPS:

Backup Slides

Low Amplitude Peak not Reached Before

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Low Amplitude Peak not Reached Before

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Optimistic Conjectures on Resolution :D

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Workfunctions Play a Role in Electron Kinetic Energy c

$$E_e = (eV_{cnt} - \varphi_{cnt}) + (\varphi_{cnt} - \varphi_{tes}) = eV_{cnt} - \varphi_{tes}$$

Workfunctions Play a Role in Electron Kinetic Energy

Workfunctions Play a Role in Electron Kinetic Energy

Workfunctions Play a Role in Electron Kinetic Energy

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025
$$\tau_{eff} = \tau_{th} \left\{ 1 + \frac{\alpha}{n} \left(1 - \frac{T_{bath}^n}{T_c^n} \right) \right\}^{-1} \approx \frac{n}{\alpha} \tau_{th} \approx \frac{C}{G} \propto T_c^{-3}$$

D

$$\Delta E_{FWHM} = 2.36 \sqrt{4k_B T_c^2 \frac{C}{\alpha} \sqrt{\frac{n}{2}}} \propto T_c^{3/2}$$

energy FWHM

$$E_{sat} = C\Delta T_{sat} = \frac{C}{\alpha} \frac{\Delta R_{sat}}{R} T_c \propto T_c$$

energy saturation

 $\alpha = \frac{T}{R} \frac{dR}{dT}$

transition sharpness

Electric Field does not have Relevant Effect

F

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025

Rate of Signals Follows FE expectation

dark counts seem not to have relevant rates but they were acquired with different trigger, hence they have a rate not
comparable to the signal one

 $V_{\rm cnt}$ (V)

Nanotube voltage

Benedetta Corcione - PTOLEMY Italian Meeting, 19.02.2025