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Introduction
Quantum annealing is a specialized optimization
technique designed for solving combinatorial
problems by leveraging quantum adiabatic
theorem to find the lowest energy state,
representing the optimal solution. It is particularly
effective for optimization tasks in logistics, finance,
and machine learning. Implemented in hardware
like D-Wave quantum processors, it is less versatile
than gate-based quantum computing but highly
efficient for specific problem types.

The gate model is a general-purpose approach to
quantum computing that uses quantum gates,
similar to classical logic gates, to manipulate qubits
for solving complex problems.
It supports a wide range of applications, including
cryptography,  chemistry simulations and
machine learning. 
Their construction is challenging due to qubit
coherence and error correction requirements.
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PART 1: QUANTUM INTRODUCTION 



Quantum superposition
Imagine you have a coin in your hand. If you hold it still, it is either heads or tails. This is similar to a
classical bit, which can be in one of two states: 0 or 1.

Now you spin the coin on a table. In that moment it’s not just heads or tails, it’s a combination of both of
them at the same time. You can think of it as existing in a superposition of both states until you stop it
and observe whether it lands on heads or tails.
The bits that can be put in a superposition state of 0 and 1 are called qubits
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The general state of a single qubits can be written as:

where         is the probabilty to observe the state |0⟩ after the measurement
and          the probability to observe |1⟩.
It follows that        +         =1



Quantum superposition

For two qubits we have: 

We can decide to measure one qubit at a time. Suppose that we measure the first
qubit and we get the state |0⟩, the state becames:
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Quantum entanglement
Now you have a special pair of coins that are strongly related: if you spin both coins and stop one of
them, the other one will stop also and they will fall on the same face.

It works indipendently from the coins distance. 

In this case we say that the coins are entangled.
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Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or
sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be
described independently of the state of the others, including when the particles are separated by a large
distance.

An example are the Bell states:



Hamiltonian operator
As we know, we can change our potential energy increasing the height of our position.
If we are moving on a ramp we can occupy any position and our energy change continously. 
If we are on a staircase, we can only occupy certain strairs and have only specific energy values. 
In this case our energy is quantized. 

In classical physics the Hamiltonian is a function that associates to coordinates and momenta
components of the elements in the system to the energy of the system.

In quantum mechanics exists its analogous which is the Hamiltonian operator.
It maps certain states, called eigenstates, to energies. Only when the system is in an eigenstate of the
Hamiltonian, its energy is well defined and called the eigenenergy. When the system is in any other state,
its energy is uncertain. The collection of eigenstates with defined eigenenergies make up the
eigenspectrum. 
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Quantum adiabatic theorem
Imagine yourself on a staircase that’s not static but is slowly reshaping its steps. If it changes slowly
enough, you can adjust your balance and stay on the same step without jumping to another.

Quantum adiabatic theorem states:
A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough
and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.
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Quantum tunneling
In an optimization problem, the goal is to find a solution that minimizes a given cost function. Classical
algorithms search through the solution space to locate the absolute minimum. However, they are
susceptible to getting trapped in local minima, where a solution appears optimal within a limited region
but is not the best overall.

Quantum tunneling plays a crucial role in quantum annealing by allowing the system to move through
energy barriers rather than going over them.
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PART 2: D-WAVE QUANTUM ANNEALING



D-wave QPU
The D-Wave Quantum Processing Unit (QPU) is the core computational component of quantum
computers developed by D-Wave Systems. 
The qubit consists of a small superconducting loop made of niobium, which has nearly zero electrical
resistance at ultra-low temperatures.
The loop includes one or more Josephson junctions, which are thin insulating barriers between
superconducting regions.
These Josephson junctions allow quantum tunneling of Cooper pairs, enabling superposition and
quantum coherence.
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D-Wave One → 2011 (128 qubits)
D-Wave Two → 2013 (512 qubits, Chimera topology)
D-Wave 2X → 2015 (1,152 qubits)
D-Wave 2000Q → 2017 (2,048 qubits)
D-Wave Advantage → 2020 (5,000+ qubits, Pegasus topology)
D-Wave Advantage2 (Prototype) → 2023 (Prototype with 1,200+ qubits, testing new Zephyr topology)
D-Wave Advantage2 (Full System) → Expected 2024-2025 (~7,000 qubits)

D-wave QPU
Timeline of QPU Releases
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D-wave QPU
QPU Topologies: Chimera graph

Three unit cells in the Chimera topology. Each of the three green squares contains 8 qubits, 4 horizontal
and 4 vertical. External couplers couple horizontal qubits to adjacent horizontal qubits (shown as
connected blue circles) and vertical qubits to adjacent vertical qubits (not shown). Internal couplers, shown
in green, couple horizontal to vertical qubits inside each unit cell

Internal couplers per qubit: 4
External Couplers per qubit: 2
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D-wave QPU
QPU Topologies: Pegasus graph

Internal couplers per qubit: 12
External couplers per qubit: 2
Odd couplers per qubit: 1

Internal couplers connect pairs of orthogonal qubits
(green qubit with black qubits)
External couplers connect consecutive qubits with
the same orientation (green qubit with blue qubits)
Odd couplers connect similarly aligned "parallel"
pairs of qubits (green qubit and red qubit)
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D-wave QPU
QPU Topologies: Zephyr graph

Internal couplers per qubit: 16
External couplers per qubit: 2
Odd couplers per qubit: 2

Internal couplers connect pairs of
orthogonal qubits,
in green
External couplers connect consecutive qubits
with the same orientation, in blue
Odd couplers connect similarly aligned
"parallel" pairs of qubits, in red
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Annealing process
Any optimization problem can be reformulated into the task of minimizing a function. In quantum
annealing, this function is expressed as a Hamiltonian, which represents the total energy of a quantum
system.
The ground state of this Hamiltonian (its state of lowest energy) encodes the solution to the optimization
problem.

This Hamiltonian can be written using Ising formulation or QUBO (Quadratic unconstrained binary
optimization) formulation.

Ising formulation QUBO formulation
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Annealing process
Taking advantage of the quantum adiabatic
theorem, if we can create a system in the ground
state of a specific Hamiltonian, we can transform it in
the Hamiltonian of our problem so we will end up in
its ground state and find our solutions! 

It is possible to set the annealing time and the
number of annealing performed
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Problem formulation

The elbow joint primarily involves one
degree of freedom, meaning its motion can
be described by a single angular
parameter. 
However, this movement is controlled by
multiple muscles, in our case we have three
muscles (1 flexor and 2 extensors).

Case study: elbow flexion-extension 

15



16Data provided by Istituto Ortopedico Rizzoli

Problem formulation
Case study: elbow flexion-extension 

At each instant of time we know the value of Momentum, arms components, angles and the maximum
force of each muscle.  We want to find the activations value of each muscle



Problem formulation

With three muscles controlling one degree
of freedom, the system is redundant. This
means there are infinitely many ways to
activate the muscles to produce the same
net torque at the joint.

Case study: elbow flexion-extension 

We need a criterion to select the optimal
muscle activation pattern. Typically, this
involves minimizing a physiological or
biomechanical cost function. A common
approach is to minimize the squared
activations sum
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Problem formulation

As we already said, we want to formulate the problem such that the optimal solution is associated with
the minimun of the Hamiltonian, thus we have to rewrite the first equation as a function with the
solutions in the minima: 

Case study: elbow flexion-extension 
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Problem formulation

Putting everything together:

But this is not the end of the story, we have to find the QUBO matrix to write it in the form:

so our Hamiltonian is:

Case study: elbow flexion-extension 
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Problem formulation

To encode the activations we used a simple binary encoding:

with

Using 3 qubits we have

and substituting in the Hamiltonian

Case study: elbow flexion-extension 

and is a scaling factor 
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Problem formulation
Case study: elbow flexion-extension 
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Problem formulation
Case study: elbow flexion-extension 
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Problem formulation
Case study: elbow flexion-extension 
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QUBO matrix

Problem formulation
Case study: elbow flexion-extension 
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QUBO matrix

Problem formulation
Case study: elbow flexion-extension 

We have a symmetric sparse matrix that can
be decpomosed in a 3x3 block matrix. 
Each block along the main diagonal is related
with an activation while the off-diagonal block
encode the information about interaction of
different activations.
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QUBO matrix

We can see the QUBO matrix as an
Adjiacency Matrix of an undirected weighted
graph. Each qubit is a node and the value in
the cell i-j is the weight of the link between the
qubit-i and qubit-j. 
To apply the quantum annealing we have to
map our graph in the QPU topology
performing an embedding.

Problem formulation
Case study: elbow flexion-extension 
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Problem embedding
Case study: elbow flexion-extension 

If we have only two qubits:
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Problem embedding
Case study: elbow flexion-extension 

Larger problems often require chains because the QPU topology is not fully connected. 

On the left we have the logical qubits and on the right the physical qubits
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Annealing process
To perform the annealing you can use the simulator installing D-wave ocean sdk

import dimod
import neal

sampler = neal.SimulatedAnnealingSampler()
bqm = dimod.BinaryQuadraticModel.from_qubo(matrix)
Q = (bqm.to_qubo())[0]
results = sampler.sample_qubo(Q, num_reads=1000)

pip install dwave-ocean-sdk
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Annealing process
D-wave provides also cloud-based quantum computing platform named Leap. 

Go to: D-Wave Leap
Sign up for an account (you get for free one minute of quantum processing time every month).
Once logged in, go to "My Account" > "Token" to find your API token.

import dwave.cloud 
from dwave.system import DWaveSampler, EmbeddingComposite 
from dimod import BinaryQuadraticModel

dwave.cloud.config.save_config(profile='dwave', token="YOUR-LEAP-API-TOKEN")
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bqm = BinaryQuadraticModel.from_qubo(matrix) 
sampler = EmbeddingComposite(DWaveSampler())
results = sampler.sample(bqm, num_reads=1000) 

https://cloud.dwavesys.com/leap/login?next=/leap


PART 3 

     Results

             

                  Conclusions



TIME INSTANT BITSTRING SOLUTION ENERGY
NUM
OCCURRENCES

57 (0, 1, 0, 0, 0, 1, 1, 0, 1) -119.894 57

57 (0, 0, 1, 0, 1, 0, 1, 0, 1) -119.894 62

57 (0, 1, 1, 0, 0, 0, 1, 0, 1) -119.894 46

57 (0, 0, 0, 0, 1, 1, 1, 0, 1) -119.894 56

57 (0, 0, 1, 0, 0, 1, 1, 0, 1) -119.861 7

57 (0, 0, 0, 0, 1, 0, 1, 0, 1) -119.861 4

57 (0, 1, 0, 0, 0, 0, 1, 0, 1) -119.861 6

Results 
Number of qubits per activations:3 
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TIME INSTANT BITSTRING SOLUTION ENERGY
NUM
OCCURRENCES

57 (0, 1, 0, 0, 0, 1, 1, 0, 1) -119.894 57
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Number of qubits per activations:3 
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Results 



TIME INSTANT BITSTRING SOLUTION ENERGY
NUM
OCCURRENCES

57 (0, 1, 0, 0, 0, 1, 1, 0, 1) -119.894 57

57 (0, 0, 1, 0, 1, 0, 1, 0, 1) -119.894 62

57 (0, 1, 1, 0, 0, 0, 1, 0, 1) -119.894 46

57 (0, 0, 0, 0, 1, 1, 1, 0, 1) -119.894 56

57 (0, 0, 1, 0, 0, 1, 1, 0, 1) -119.861 7

57 (0, 0, 0, 0, 1, 0, 1, 0, 1) -119.861 4

57 (0, 1, 0, 0, 0, 0, 1, 0, 1) -119.861 6

Number of qubits per activations:3 
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Results 



Number of qubits per activations:3 
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TIME INSTANT BITSTRING SOLUTION ENERGY
NUM
OCCURRENCES
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57 (0, 1, 0, 0, 0, 0, 1, 0, 1) -119.861 6

Results 



Results
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Results
Number of qubits per activation: 3
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Results
Decoupling antagonists muscles

The highlighted blocks encode the interaction
between flexor and extensors. We know that
they are antagonists muscles so don’t act in the
same moment. They can be decoupled setting
every entries equal to zero.

QUBO matrix
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Results
Number of qubit per activation: 3
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Results
Number of qubits per activation: 3
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Results
Number of qubits per activation: 5

40



Results
Number of qubits per activation: 8
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Results
Number of qubits per activation: 8, antagonists muscles decoupled
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Conclusions
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and future works

We have shown that using quantum annealing it is possible to find an optimal solution for this type of problem.

These are the activations observed in a person under standard conditions. The main interest is to predict the
activation pattern of a person with muscle alteration caused by diseases or malformations. These solutions are
actually computed using a stochastic approach that takes a long time. The quantum approach can simplify it.
As shown, during annealing we find not only the ground state but also some higher energy levels that are
associated with sub-optimal solutions.

We are conducting further studies to verify the compatibility of the results obtained with the stochastic and
quantum annealing approaches.



Thanks for your attention


