### LAB report

**March 2025** 

1

### Objectives



ss = sensor side s<sub>2</sub> = distance between pinholes I = distance source-pinholes f = distance pinholes-sensor

d = pinhole diameter p = pixel pitch

**Output image (8x8 pixel)** 

a-particle 5 MeV in [0,0,0]

1) Check the scintillator performances

#### 2) verify MC simulations results



### Geometry of the detector

| distance source-pinhole   | I              | [10,20] mm     |
|---------------------------|----------------|----------------|
| distance pinhole-sensor   | f              | 30 mm          |
| sensor side               | SS             | 50 mm          |
| distance between pinholes | S <sub>2</sub> | 12.5 mm        |
| pinhole diameter          | d              | 0.6 mm         |
| Magnification factor      | М              | 3              |
| pixel pitch               | р              | 1 mm           |
| Number of pixels          |                | 50 x 50 pixels |

| Field of View            | FoV             | [4,21] mm       |
|--------------------------|-----------------|-----------------|
| Transversal uncertainty  | ε <sub>xy</sub> | [0.69, 0.82] mm |
| Longitudinal uncertainty | ٤z              | [0.02, 0.2] mm  |
| Number of photons        | Nd              | [10,20] photons |
| Dept of Field            | DoF             | 10 mm           |

# **Materials**









# Preliminary



## Preliminary



#### **FWHM-BAIS** response



### First test using Cs137



Ratio measured photons / estimatet photons = 0.61

i.e. I am underestimating of ~1/3 (due to optical coupling or other factors) 1) extract  $\mu$  and  $\sigma$  (MCA channels).

2) convert channels in Voltage (#channels = 2048 - range = 1 Volt)

3) divide for the Timing Filter Amp gain (Gain = x4)

4) convert Voltage to Current ( $I = V/R - R = 100\Omega$  Time filter input impedence)

5) convert current into charge (*Charge = I \* time integral – time integral = 20 ns*)

6) convert charge into number of electrons

7) divide photoelectron per PMT gain (1E5)

#### I HAVE THE NUMBER OF PHOTOELECTRONS DETECTED BY THE PMT

8) Compare this value to he number of photons produced by the  $\gamma$  of Cs137 (661 keV) multiplied bu the QE of PMT (11.5%), coupling (50%) and scintillator (70%)

(Photoelectrons =  $E_{\gamma}$ \*Yield<sub>GAGG</sub> \* QE<sub>scintillator</sub> \* QE<sub>coupling</sub> \* QE<sub>pmt</sub>)



# Cs137 spectrum

(peak at 661 keV)

Cs137 peak is not visible



30000 photons/MeV

9045 photons/MeV

13065 photons/MeV



# Am241 spectrum – in air

(α a 5.5 MeV)

