
Introduction to Computer Architecture and Performance

Tim Mattson
… with lots of help from past presentations created by Felice Pantaleo and Severre Jarp

A snorkel

1990-1993
Linda and pre-MPI
message passing

PostDoc 1986
Caltech Concurrent Computation

Project

Introduction to me and
my 40-year Career

Jobs with startups …
numerical analysis, signal

processing,
 scientific computing, and

parallel computing
1987-1990PhD chemistry

1979-1985

1996
ASCI Red:

World’s first TFLOP

2007
World’s First TFLOP

chip

2002-2005
Director of life

sciences

1994
FDIV Bug

1997
Portable

multithreading

2008
Portable GPU programming

2013
GraphBLAS

2015
Sparse Array storage

engine 2015
BigDAWG Polystore

system

Future of
heterogenous

computing
Intention Adaptation

InventionData Data

Data

Machine
Programming

≡

Unified Theory of
data and

computing

2018-Aug’2023

1993
Supercomputing
Systems Division

MPI
1994

Message
Passing

Interface

2023-2038

Tim Mattson
RIP

1958-2038

Here lies the
Christmas bat

Retirement

Write, teach,
kayak, and think

Scientific Computing

Scientific Computing: Turn science into math. Turn math into software. Run software to get answers.

Math

Science

Computing
Scientific Research, by

design, pushes the limits
of human knowledge … so

applications in
computational science
often push the limits of

what is possible
computationally.

High Performance Computing
… Systems (Software and
Hardware) optimized for

performance.

Requires reasoning about
how software maps onto the

features of the hardware

Much of what we do in Scientific Computing requires High Performance Computing (HPC).

4

The most popular programming languages

Consider the changes in most popular programming languages…

Log share of popularity score

http://pypl.github.io/PYPL.html

6%

16%

8%

30%

2016

Share of total
scores

2024

8%

25%

7%

12%

The top 3 languages, used
by the overwhelming

majority of programmers,
hide Hardware details.

Even if workflow
management and data

processing are done with
Python … to “do” HPC today,

you need to be proficient
with an HPC Language

(C++, C, or Fortran)Our focus at ESC’25

The Components of Scientific Computing

5

The low-level interface to the computer presented to a programmer

The microarchitecture: A design for how the ISA is implemented

Scientific Problem

Algorithm

Programming
(languages and APIs)

A well posed scientific problem (This is what you bring to ESC)

System Software
Runtimes and Operating Systems

Instruction Set Architecture (ISA)

Microarchitecture

Physical
(Logic, Devices, semiconductor physics)

A step-by-step procedure that (1) is mathematically correct,
(2) Computationally stable, and (3) Efficiently uses system resources

Languages and Application Programming Interfaces for writing HPC software

Software to manage the system and support program execution

The hardware … processors, memories, interconnects and more.

Com
puter Architecture

The Components of Scientific Computing

6

The low-level interface to the computer presented to a programmer

The microarchitecture: A design for how the ISA is implemented

Scientific Problem

Algorithm

Programming
(languages and APIs)

A well posed scientific problem (This is what you bring to ESC)

System Software
Runtimes and Operating Systems

Instruction Set Architecture (ISA)

Microarchitecture

Physical
(Logic, Devices, semiconductor physics)

A step-by-step procedure that (1) mathematically correct*, (2)
Computationally stable, and (3) Efficiently uses system resources

Languages and Application Programming Interfaces for writing HPC software

Software to manage the system and support program execution

The hardware … processors, memories, interconnects and more.

Com
puter Architecture

Focus of this lecture

Primary focus of ESC’25

* Which includes accounting for the properties of floating point arithmetic … a topic we’ll cover this afternoon

Let’s go back to basics ….

What is a computer?

What is a computer:

• The computer as a black-box is not very helpful. We need a bit more detail.

8

• Computer:
– A machine that transforms input values into output values.

Input computer Output

Computer models: Turing Machine
• Alan Turing proposed a general model of a computer and showed that it was universal:

• Read an “infinite” tape of 1’s and 0’s. Based on the pattern of values, shift the tape, read values
and write values. These are controlled by transition rules (i.e. a program)

• This was useful for proving mathematical theorems about computing, but not for actually working
with computers.

Read/Write head –
encompasses

transition rules

0 1 0 0 1 11 1 1 0 0 0 0 01 0 0 1 1 1.

Alan Turing
(1912-1954)

Von Neumann or a “stored Program” Model
• John von Neumann proposed a more useful model where a computer

consists of: (1) control unit, (2) Arithmetic-Logic unit (ALU),
(3) registers that hold values close to the ALU, and (4) memory that
holds both the data and the sequence of instructions(the program).

Image Source: Felice Pantaleo, CERN, ESC’23

Start

End

Stop?

Fetch Instruction pointed to
by the program counter (PC)

Decode the Instruction to
determine actions for the ALU

Load Registers from Memory

Execute Instructions

Write back the result

Increment PC

yes

no

Von Neumann computer model

Program Execution

Von Neumann or a “stored Program” Model
• John von Neumann proposed a more useful model where a computer

consists of: (1) control unit, (2) Arithmetic-Logic unit (ALU),
(3) registers that hold values close to the ALU, and (4) memory that
holds both the data and the program (the sequence of instructions).

Image Source: Felice Pantaleo, CERN, ESC’23

Cache
Hierarchy

L2 …
 com

bined D and I

L1D
 for Data

L1I
for Instructions

Memory is slow compared to the Processor. Add
high speed memory (a cache) close to the processor.

Start

End

Stop?

Fetch Instruction pointed to
by the program counter (PC)

Decode the Instruction to
determine actions for the ALU

Load Registers from Memory

Execute Instructions

Write back the result

Increment PC

yes

no

Program Execution

Modern computers follow the von-Neuman model

To understand computers more deeply, we need
to explore the topic of computer architecture

Computer Architecture:
Conceptual design of a computer

13

RISC-V assembly code for the
“pi program loop” generated by gcc -O3

Intel® Pentium ProTM microarchitecture Electron microscopic image of
an Intel transistor for the 14 nm

process technology

Assembly code from https://godbolt.org/ Transistor: https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

Instruction Set Architecture (ISA)

Microarchitecture

Physical

Computer interface presented to a programmer

Abstract design for how the ISA is implemented

Logic, Devices, semiconductor physics

Combined
L2 Cache

Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Port 0 (Floating Point, Integer ops)

Branch
Prediction

Decoder Decoder

Reorder Buffer/Reservation Station/Retire

µop queue µop cache

Port 1 (Integer ops, jump-target comp)

Port 2 (load)

Port 3 (store address)

Frontend: In-order

Backend: Out-of-order

Port 4 (store data)

Computer Architecture:
Conceptual design of a computer

14

RISC-V assembly code for the
“pi program loop” generated by gcc -O3

Intel® Pentium ProTM microarchitecture Electron microscopic image of
an Intel transistor for the 14 nm

process technology

Assembly code from https://godbolt.org/ Transistor: https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

Instruction Set Architecture (ISA)

Microarchitecture

Physical

Computer interface presented to a programmer

Abstract design for how the ISA is implemented

Logic, Devices, semiconductor physics

Combined
L2 Cache

Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Port 0 (Floating Point, Integer ops)

Branch
Prediction

Decoder Decoder

Reorder Buffer/Reservation Station/Retire

µop queue µop cache

Port 1 (Integer ops, jump-target comp)

Port 2 (load)

Port 3 (store address)

Frontend: In-order

Backend: Out-of-order

Port 4 (store data)

Instruction Set Architecture (ISA)
• The instruction set architecture (ISA), is the interface to the hardware presented to the programmer
• Two major classes of ISA
– CISC: Complex instruction set Computer. Large set of instructions to cover numerous special cases. Example: Intel® x86 ISA
– RISC: Reduced instruction set Computer. Smaller set of instructions, easier to work with and implement. Example: ARMv8

15

ISA features Intel x86* (CISC) ARMv8 (RISC)

Class of ISA Register/memory ISA … operations can
reference registers or memory.

Register ISA … Instructions work on registers only ..
Exposed to memory through load-store operations.

Memory address Bytes addressing Byte addressing, but objects must be aligned
An object of size s bytes is aligned if (Addr mod s = 0).

Registers exposed by
architecture definition

16 general purpose and 16 floating point 31 general purpose
32 floating point registers

Encoding an ISA …
Instruction widths

Variable length, ranging from 1 to 18 bytes.
Can result smaller executables.

Fixed length, 4 byte
Thumb instructions: 2-byte

Number of instructions Exact count is difficult … over 3500 Base = 354, SIMD/FP = 404, SVE = 508 … total ~1266

* these numbers are for the Intel® 64 x86 ISA. * SIMD: single instruction multiple data or vector instructions. FP: floating point SVE: Scalable vector instructions

ISA details are challenging to nail down. The Intel ISA manual is over 5000 pages.
Hence numbers on this slide convey a general sense of size and miss many details and special cases.

Instruction sets: Complex (CISC) vs Reduced (RISC)

16

https://godbolt.org/

• Load double at address [r0] into register d16
• Load double at address [r1] into register d17
• Add double in d17 to double in d16, put result in d16
• Store double in d16 to address [r2]
• Branch to return address lr

• Load double at address [rdi] into register xmm0
• Add double at address [rsi] to xmm0, put result in xmm0

• Store double in xmm0 to address [rdx]
• Branch to return address on the stack

All ops on registers

Consistency means
smaller and

simpler instruction
set

Ops work on
registers and
addresses in

memory.

Complex but extra
options for
aggressive

optimization

CISC
RISC

Compare assembly code for a simple
function for CISC (x86-64) and RISC
(ARM) processors

Computer Architecture: CISC vs RISC
• Intel pioneered mass-market-computing through the IBM PC.

• Intel’s x86 ISA is a CISC instruction set and that played a key role in the history of computing.
- Starting with the Intel 8086 CPU in 1978 and continuing to today as a frequently used

architecture for servers and laptops.

• ARM: the dominant commercial RISC vendor starting with the ARM1.
- ARM1, 1985, 25 thousand transistors compared to Intel’s 1985 CPU (i386) with 275 thousand

transistors.

• Every new CPU ISA since 1980 has been based on a RISC ISA.
- As we’ll see later, internal to a modern CISC CPU from Intel is a RISC execution engine.

The “golden handcuffs” of legacy applications will keep CICS/x86 around for many years. But in
terms of innovative designs and the future, RISC has “won”.

RISC across the computer industry
• ARM licenses CPU designs for others to implement.
– Used extensively in cell-phones, tablets, Apple laptops, embedded

processors, and other devices. The number one CPU by volume.
– ARM is moving into Servers and HPC … For example, Nvidia is

shipping chips for HPC using ARM (Nvidia® HopperTM)
– ARM charges a royalty for each unit sold and vigorously

protects its monopoly over the ISA.

• Just as Open-Source Software changed the nature of the
software industry, an Open-Source ISA will change the
hardware industry.

• RISC-V (pronounced RISK-Five) is an open-source ISA.
– 2010: research project in the Computer Science Department at the University of

California, Berkeley.
– 2011: The first RISC-V specifications were released.
– 2015: RISC-V International was established to promote adoption and

standardization of the RISC-V ISA. Now has over 200 members.

18

• Load-store ISA
• 32 bit instruction format
• RISC-V base ISA has only 50

instructions compared to 354 for
ARM8 base ISA

Big companies like Apple and Google will tire of paying royalties per unit to ARM. The future is RISC-V

RISC-V block diagram

Computer Architecture:
Conceptual design of a computer

19

RISC-V assembly code for the
“pi program loop” generated by gcc -O3

Intel® Pentium ProTM microarchitecture
Electron microscopic image of an

Intel transistor for the 14 nm
process technology

Assembly code from https://godbolt.org/ Transistor: https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

Instruction Set Architecture (ISA)

Microarchitecture

Physical

Computer interface presented to a programmer

Abstract design for how the ISA is implemented

Logic, Devices, semiconductor physics

Combined
L2 Cache

Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Port 0 (Floating Point, Integer ops)

Branch
Prediction

Decoder Decoder

Reorder Buffer/Reservation Station/Retire

µop queue µop cache

Port 1 (Integer ops, jump-target comp)

Port 2 (load)

Port 3 (store address)

Frontend: In-order

Backend: Out-of-order

Port 4 (store data)

20Image Source: Victor Eijkhout, processor architecture lecture, 2023

A modern CPU

Intel® X86
architecture

Sandy Bridge
Microarchitecture

By the time we are done, most
of this will make sense to you.

Structure of a
Sandy Bridge

CPU core

21Source: Eijkhout – Processor Architecture – Fall’2023

Block Diagram of an Intel Sandy Bridge Core (used in Core i7, i5, i3 CPUs)

By the time we are done, much
of this will make sense to you.

Launched 2011 and the core microarchitecture at Intel until 2013

• The point of a
microarchitecture is to

support the architecture
with aggressive

optimization to achieve
high performance.

• A modern
microarchitecture can be

extremely complex … both
for CISC and RISC chips

The key to performance inside a CPU:
Instruction level parallelism (ILP)

• The fundamental equation of quantitative architecture analysis:

22

• An architecture that lets multiple instructions make forward progress each cycle reduces the Cycles per
Instruction (CPI) … if all goes well, we can design architectures where CPI < 1.

• We do this with Instruction Level Parallelism (ILP)

𝑻𝒊𝒎𝒆𝑪𝑷𝑼 = 𝑵𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔 ∗
𝒄𝒚𝒄𝒍𝒆𝒔

𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 ∗
𝒔𝒆𝒄𝒐𝒏𝒅𝒔
𝒄𝒚𝒄𝒍𝒆

𝒄𝒚𝒄𝒍𝒆𝒔
𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏

= -./01	345678	9:917;	/.	7<794/7	0	=8.>805	
?!"#$%&'$!("#

 = CPI

𝑁@3;/849/@.3;≡ Number of instructions in an executable

Let’s go back to the late 80’s and 90’s to
look at Instruction level parallelism through

the lens of x86 CPUs

X86 … ”an architecture that is difficult to explain and impossible to love”
Hennessy and Patterson, 2nd ed, page D-2

While we focus on x86 chips, all the techniques we’ll
discuss are found in modern in RISC chips as well

Pipelining

24

• Intel added pipelined instructions to i486 in 1989

• More than doubled the performance compared to a i386 at the same clock rate.

• The five stage i4586 pipeline, one cycle per stage

- Fetch an instruction from the instruction cache.
- Decode the instruction.
- Translate memory addresses and displacements for the instruction
- Execute the instruction.
- Retire the instruction, write results back to registers and/or memory.

Five
instructions
going through
the pipeline

Cycles (each stage takes one cycle)
1 2 3 4 5 6 7 8 9

Note: after five cycles, the pipeline is full and we get a result per cycle.

Cache

Fetch Buffer

Decoder

Scheduler

Execution
Pipeline

Registers

i486TM 1.2 Million transistors, 50 Mhz

… plus an integrated floating point unit

1989

Pipelining
Performance

25

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

Five
instructions
going through
the pipeline

Cycles (assuming each stage takes one cycle)
1 2 3 4 6 7 8 9 10

Note: after five cycles, the pipeline is full and we get a result per cycle.

ℓ = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑡𝑎𝑔𝑒𝑠
𝜏 = 𝑡𝑖𝑚𝑒	𝑝𝑒𝑟	𝑐𝑦𝑐𝑙𝑒

• Given the following definitions:

• Runtime without pipelining:	 t(𝑛) = 𝑛ℓ𝜏

• With pipelining you need to setup the pipeline (costs 𝑠 cycles) and fill the pipeline
(costs ℓ cycles) at which point you have completed one instruction. Then for the
next (𝑛 - 1) cycles you get one result per cycle. The runtime with pipelining is:

𝑡 𝑛 = (𝑠 + ℓ + 𝑛-1) 𝜏

• For n much greater than (𝑠 + 	ℓ − 1),
	

Cache

Fetch Buffer

Decoder

Scheduler

Execution
Pipeline

Registers

i486TM 1.2 Million transistors, 50 Mhz

… plus an integrated floating point unit

1989

𝑡 𝑛 ≈ 𝑛 𝜏 , so	the	code	runs	ℓ	times	faster.

Superscalar + branch prediction

26

L2
Unified
Cache

L1 Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Registers

Execution
Pipeline

Execution
Pipeline

Branch
Prediction

• The Pentium CPU was introduced in 1993 with major innovations
- Superscalar execution: Added a second execution pipeline so it could

keep two pipelined instruction streams in flight at the same time.
- Branch prediction: Speculate on branches a program might take to load

next instructions and get a head start should the branch be taken.
- Separate L1 caches for data and instructions: A unified second level

cache that holds data and instructions but separate L1 caches for data
and instructions to reduce conflicts.

• Branch prediction is important. With two execution pipelines, its
challenging to keep enough work in the execution units so they are
fully occupied.

PentiumTM 3.1 Million transistors, 66
Mhz, 5 stage pipeline

… plus an integrated floating point unit
shared between pipelines

1993

Out of Order (OOO) + speculation

27

• The Pentium Pro CPU was a major performance upgrade and
made Intel CPUs suitable for demanding technical computing
workloads (and was used inside the computer ranked as the
fastest computer in the world from 1996 to 2000).

• It added the following microarchitectural innovations:
- Input CISC instructions were decoded into fixed-length, load/store

micro-ops (µop). This made the internal execution engine inside
the Intel CPU a RISC chip.

- Micro-ops were reordered and executed based on availability of
data … hence compared to input CISC instructions, they execute
Out of Order (OOO)

- Micro-ops complete in-order … i.e., they are retired in an order
consistent with the input program

- Register usage efficiency greatly enhanced by renaming them to
avoid spurious conflicts due to register naming in code.

- Dynamic speculative execution to generate enough work to fully
occupy the execution units ... a powerful capability but branch
misprediction is very expensive as all involved pipelines must be
flushed.

1995

Combined
L2 Cache

Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Port 0 (Floating Point, Integer ops)

Branch
Prediction

Decoder Decoder

Reorder Buffer/Reservation Station/Retire

µop queue µop cache

Port 1 (Integer ops, jump-target comp)

Port 2 (load)

Port 3 (store address)

Frontend: In-order

Backend: Out-of-order

Pentium Pro CPU, 5.5 Million transistors, 200 MHz,
14 stage pipeline

Port 4 (store data)

Simultaneous Multithreading … or the Intel Marketing term, hyperthreading

28

• Out of order execution of pipelined execution units creates
so much opportunity for instruction level parallelism that it
can be challenging to keep the resources fully occupied.

• Solution … replicate the in-order front end of the processor
so two front-ends feed a single out-of-order backend.

• These two in-order front ends are managed as distinct
threads by the OS typically with single cycle context
switching overhead between them. We call these
hardware threads.

• They are usually exposed to the operating system as an
additional core … so the case hyperthreading case on this
slide results in the OS treating the system having two
cores.

2002

Combined
L2 Cache

Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Port 0 (Floating Point, Integer ops)

Branch
Prediction

Decoder Decoder

Reorder Buffer/Reservation Station/Retire

µop queue µop cache

Port 1 (Integer ops, jump-target comps)

Port 2 (load)

Port 3 (store address)

Port 4 (store data)

Register Alias Table

L1 Instruction Cache

Fetch Buffer

Decoder

Branch
Prediction

Decoder Decoder

µop queue µop cache

Register Alias Table

Pentium 4 CPU, 125 Million transistors, 3.06 GHz, 20 stage pipeline

Be careful with hyperthreading. If your work load can saturate
the functional units on a CPU with a single thread,
hyperthreading adds overhead and can slow down your code.

HPC programmers working highly optimized, compute bound
codes often turn it off by default.

Frontend: In-order

Backend: Out-of-order

ILP is great, but we can get carried away

Normalized Power vs. scalar performance for Intel CPUs

30

Assume multiple generations of
Intel CPUs using the same
process technology as for i486.

Any changes are due to
microarchitectural
enhancements

This shows the unsustainable
power demands of every
deepening pipelines.

Energy per instruction Trends in Intel® Microprocessors,
Ed Grochowski and Murali Annavaram, 2006

31 stage
pipeline

20 stage
pipeline

12 stage
pipeline

5 stage
pipelinePower and Performance

scaled to the i486 … e.g.,
Petium 4 is 6 times faster
than an i486 but uses 22
times more power. 1989

1995

2001

2006

Normalized Power vs. scalar performance for Intel CPUs

31

Assume multiple generations of
Intel CPUs using the same
process technology as for i486.

Any changes are due to
microarchitectural
enhancements

This shows the unsustainable
power demands of every
deepening pipelines.

This plot ended around 2006.
More modern CPUs have
pipeline depths of 14 to 20

For example the Raptor Cove
Intel® XeonTM microarchitecture
(2023) has 12 pipeline. stages

Energy per instruction Trends in Intel® Microprocessors,
Ed Grochowski Murali Annavaram, 2006

20 stage
pipeline

12 stage
pipeline

5 stage
pipeline

10-12
Pipeline
stages

1989

1995

2001

31 stage
pipeline

2006

2003

Branch prediction
• Percentage of instructions wasted for SPEC integer benchmarks on an Intel core i7 due to incorrect branch prediction.

• On average, 19% of the instructions are wasted for these benchmarks on an Intel Core i7. The amount of
wasted energy is greater, however, since the processor must use additional energy to restore the state when
it speculates incorrectly.

Image from “A New Golden Age for Computer Architecture”, John Hennessy and David Patterson, CACM, 2019

If you cancel a
mispredicted

branch, you have
to flush the
associated
pipelines

That’s really bad
if you have deep

pipelines

Enough about the processors, what about the
memory hierarchy

34

the Memory Hierarchy

Random Access Memory

We like to draw pictures like this

But reality is much more complex

CPU core
L1 Instruction Cache L1 Data Cache

L2 Unified Cache L2 Unified Cache

Shared L3

Memory Controller

Random Access Memory

CPU core
L1 Instruction Cache L1 Data Cache

Clusters of DRAM chips

DRAM: Dynamic Random Access Memory L1, L2, L3 pronounced Level 1, Level 2, Level 3. Also written sometimes as $L1, $L2, $L3

Latencies across the Memory Hierarchy

35Source: Victor Eijkhout – Processor Architecture – Fall’2023

Data accessed by cache lines. Your algorithms need to organize data access patterns around the caches.

36

Latencies across the Memory Hierarchy

We will have MUCH more to say about memory later this week with
lectures on “Efficient Memory Management”

In most cases … computing
is “free”. Performance is
driven by memory costs.

Computer Architecture:
Conceptual design of a computer

37

RISC-V assembly code for the
“pi program loop” generated by gcc -O3

Intel® Pentium ProTM microarchitecture Electron microscopic image of
an Intel transistor for the 14 nm

process technology

Assembly code from https://godbolt.org/ Transistor: https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

Instruction Set Architecture (ISA)

Microarchitecture

Physical

Computer interface presented to a programmer

Abstract design for how the ISA is implemented

Logic, Devices, semiconductor physics

Combined
L2 Cache

Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Port 0 (Floating Point, Integer ops)

Branch
Prediction

Decoder Decoder

Reorder Buffer/Reservation Station/Retire

µop queue µop cache

Port 1 (Integer ops, jump-target comp)

Port 2 (load)

Port 3 (store address)

Frontend: In-order

Backend: Out-of-order

Port 4 (store data)

Moore's Law

Moore’s Law

Slide source: UCB CS 194 Fall’2010

• In 1965, Intel co-founder Gordon Moore predicted (from just 3 data points!) that semiconductor
density would double every 18 months.
– He was right! Over the last 50 years, transistor densities have increased as he predicted.

“Cramming more components onto integrated circuits”, G.E. Moore, Electronics, 38(8), April 1965

We’ve come a long way since Gordon
Moore proposed his famous law

39

We put billions of these
transistors on a single chip

How small is a nm (nanometer)? One nm is 10-9 meters. Light travels about one foot in 10-9 seconds.

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

An electron microscope image of a single Intel transistor using the 14 nm process

We’ve come a long way since Gordon
Moore proposed his famous law

We put billions of these
transistors on a single chip

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

An electron microscope image of a single Intel transistor using the 14 nm process

An influenza virus is around 100 nm across!
http://www.cdc.gov/flu/images/h1n1/3D_Influenza/3D_Influenza_transparent_no_key_full_med2.gif

40

Moore's Law: A personal perspective

Intel’s ASCI Option Red

Intel’s ASCI Red Supercomputer
9000 CPUs

 one megawatt of electricity.

1600 square feet of floor space.

First TeraScale* computer: 1997

Intel’s 80 core teraScale Chip

1 CPU

97 watt

275 mm2

First TeraScale% chip: 2007

%Single Precision TFLOPS running stencil

10 years
later

*Double Precision TFLOPS running MP-Linpack

A TeraFLOP in 1996: The ASCI TeraFLOP Supercomputer,
Proceedings of the International Parallel Processing
Symposium (1996), T.G. Mattson, D. Scott and S. Wheat.

Programming Intel's 80 core terascale processor
SC08, Austin Texas, Nov. 2008, Tim Mattson,
Rob van der Wijngaart, Michael Frumkin

CPU Frequency (GHz) over time (years)

42Source: James Reinders (from the book “structured parallel programming”)

What happened to
performance around 2004?

Dennard Scaling
• Process technology (translates to Transistors per chip) and power per mm2

Image from “A New Golden Age for Computer Architecture”, John Hennessy and David Patterson, CACM, 2019

Dennard scaling: Assume voltage drops as
transistors shrink: power/mm2 is flat.

~2005: threshold voltage limits
voltage drops. Plus static power

effects began to dominate.
Dennard scaling ends

Process technology nodes defined by the smallest feature on a chip (i.e. gate length in nm).
After 22 nm, it’s become a marketing term that doesn’t map to a specific feature’s length.

Growing Performance in a post-Dennard-Scaling world?

48

As we’ll see in our next lecture, the path forward is parallel computing …
spreading your work across many processing elements.

Parallel Programming is the essence of HPC. At ESC, we’ll explore parallel programming in detail:
• OpenMP: a particularly simple API for CPU programming
• Threaded Building Blocks (TBB): a C++ based approach for task parallel programing on CPUs
• CUDA: GPU programming using NVIDIA’s CUDA programing model.
• MPI: parallel programming across distributed memories … the standard model for clusters

Summary … Getting the most from
our processors

Getting the most from a CPU

50

Intel® Pentium ProTM microarchitecture

Combined
L2 Cache

Data Cache

L1 Instruction Cache

Fetch Buffer

Decoder

Scheduler

Port 0 (Floating Point, Integer ops)

Branch
Prediction

Decoder Decoder

Reorder Buffer/Reservation Station/Retire

µop queue µop cache

Port 1 (Integer ops, jump-target comp)

Port 2 (load)

Port 3 (store address)

Frontend: In-order

Backend: Out-of-order

Port 4 (store data)

We can think of a CPU in two parts: A front-end and a back-end

The CPU Front-end is
where instructions are
fetched and decoded

Helping the Front-end
• Avoid complex branching

that jumps through the
programs set of instructions.

• Keep code local. If possible,
inline functions when
possible

• Keep loops short so they fit
in the 𝛍op cache

The CPU Back-end is
where instructions execute

Helping the Back-end
• Organize data so you are

computing from data in-cache

• Use all available functional
units including vector-units
(topic of next lecture)

• Remember … not all
operations are created equally.
Divisions and Square root ops
cost 10 to 40 times the cost of
a multiply.

Roofline plots: Understanding algorithm performance

51

Arithmetic Intensity:
operations per data

transfer

Different algorithms hit different
performance limits:

• Alg1: compute bound
• Alg2: bandwidth bound.

52

Algorithm 2 is not
effectively using all the

functional units.

Roofline plots: Understanding algorithm performance

Imbalance of adds and mults

53

Algorithm 1 has non-
optimal data transfer

behavior.

Roofline plots: Understanding algorithm performance

Imbalance of adds and mults

54

Roofline plots: Understanding algorithm performance

Conclusion … and a summary of the ESC technical program

• Scientific computing and HPC are tightly coupled … as you move from math to algorithm to software,
performance needs to on your mind.

• Dennard Scaling has ended … so even as Moore’s law marches on, we need parallelism to get higher
performance (a major topic of the next lecture)

• At ESC we will cover the core topics every scientific computing professional needs to master:
- Using all the resources of a processor to maximize performance

- Writing, debugging, and optimizing C++ software.

- Supporting Python by mapping python onto C++ functions

- Mathematics on computers … from computer arithmetic to pseudo-random numbers

- Effective memory management

- Parallel programming for CPUs (OpenMP and TBB), GPUs (CUDA and a quick survey of other GPU
programming models), and clusters (MPI)

