Introduction to Computer Architecture and Performance

Tim Mattson

... with lots of help from past presentations created by Felice Pantaleo and Severre Jarp

Introduction to me and
my 40-year Career

2023-2038
Retirement

2018-Aug’2023

‘i:g . from »
¢ T Tim Mattson
[
> _ RIP
[t 1 le] DB | oneAPI 1958-2038
2015 F / Future of
H lies th
Sparse Array storage P s eteroger.‘lous Unified Theory of ChilirStr:]eass baet
engine 2015 computing data and
BigDAWG Polystore Machine computing Write, teach,
system Programming kayak, and think

SEE
& a

OpenCL
2013 2008
GraphBLAS Portable GPU programming 2007

World’s First TFLOP

chip

Jobs with startups ...
numerical analysis, signal
processing,
scientific computing, and

parallel computing
1987-1990

PostDoc 1986
Caltech Concurrent Computation
Project

PhD chemis.f;\—/w
1979-1985

mmme® DNA

2002-2005 1997
Director of life P(.')rtable'
sciences multithreading 1996
ASCI Red:
World’s first TFLOP

/

S MPI ??N.de
Yale University intel — 1994 il
1990-1993 1993 Message 1994
Linda and pre-MPI SupercomPgt!ng Passing FDIV Bug
message passing Systems Division Interface

Scientific Computing

Scientific Research, by . .
design, pushes the limits Computing High Performance Computing

of human knowledge ... so ... Systems (Software and

applications in Hardware) optimized for

computational science performance.

often push the limits of
what is possible
computationally.

Requires reasoning about
how software maps onto the
features of the hardware

Much of what we do in Scientific Computing requires High Performance Computing (HPC).

* Scientific Computing: Turn science into math. Turn math into software. Run software to get answers.

The most popular programming languages

Consider the changes in most popular programming languages... -
Share of tota

scores
PYPL PopularitY of Programming Language 2016 2024
— C/C++ 8% 6%
— — [— Java 25% 16%
JavaScript 7% 8%
—— Python 12% 30%

W

The top 3 languages, used
by the overwhelming
majority of programmers,
hide Hardware details.

Even if workflow
management and data
2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 processing are done with
Python ... to “do” HPC today,

you need to be proficient
with an HPC Language

Our focus at ESC’25 »(C++) C, or Fortran)

9402s Ajluejndod jo aJeys 307

http://pypl.github.io/PYPL.html

The Components of Scientific Computing

Scientific Problem

Algorithm

Programming
(languages and APlIs)

System Software
Runtimes and Operating Systems

Instruction Set Architecture (ISA)

Microarchitecture

94N32911YdJy Ja3ndwo) |

Physical
(Logic, Devices, semiconductor physics)

A well posed scientific problem (This is what you bring to ESC)

A step-by-step procedure that (1) is mathematically correct,
(2) Computationally stable, and (3) Efficiently uses system resources

Languages and Application Programming Interfaces for writing HPC software

Software to manage the system and support program execution

The low-level interface to the computer presented to a programmer

The microarchitecture: A design for how the ISA is implemented

The hardware ... processors, memories, interconnects and more.

94N32911YdJy Ja3ndwo) |

The Components of Scientific Computing

\

Scientific Problem

Algorithm

Programming
(languages and APlIs)

Primary focus of ESC’25 y,

A well posed scientific problem (This is what you bring to ESC)

A step-by-step procedure that (1) mathematically correct®, (2)
Computationally stable, and (3) Efficiently uses system resources

Languages and Application Programming Interfaces for writing HPC software

S——sysrEmTSottware——

Runtimes and Operating Systems

Software to manage the system and support program execution

Instruction Set Architecture (ISA)

/-?-'-'_-'___-'__-'__—'-'-'E ---

The low-level interface to the computer presented to a programmer

Microarchitecture

The microarchitecture: A design for how the ISA is implemented

Physical

(Logic, Devices, semiconductor physics)

The hardware ... processors, memories, interconnects and more.

\o

Focus of this lecture

j * Which includes accounting for the properties of floating point arithmetic ... a topic we’ll cover this afternoon

Let’s go back to basics

What is a computer?

What is a computer:

« Computer:
— A machine that transforms input values into output values.

Input Output

 The computer as a black-box is not very helpful. We need a bit more detail.

Computer models: Turing Machine

e Alan Turing proposed a general model of a computer and showed that it was universal:

Read/Write head — S
encompasses Alan Turing
transition rules (1912-1954)
]
a1 11 0000100111001 1100 1as
——

* Read an “infinite” tape of 1’'s and 0’s. Based on the pattern of values, shift the tape, read values
and write values. These are controlled by transition rules (i.e. a program)

* This was useful for proving mathematical theorems about computing, but not for actually working
with computers.

Von Neumann or a “stored Program” Model

* John von Neumann proposed a more useful model where a computer
consists of: (1) control unit, (2) Arithmetic-Logic unit (ALU),
(3) registers that hold values close to the ALU, and (4) memory that
holds both the data and the sequence of instructions(the program).

lllllllllllllllllll
{1

|||||||||||

Memory Processor

Arithmetic-
Logic Unit
data

|
instructions

Registers

Control

Von Neumann computer model

Image Source: Felice Pantaleo, CERN, ESC’23

Program Execution

Fetch Instruction pointed to
by the program counter (PC)

|

Decode the Instruction to
determine actions for the ALU

Load Registers from Memory

A

Execute Instructions

A

Write back the result

|

Increment PC

no

Von Neumann or a “stored Program” Model

* John von Neumann proposed a more useful model where a computer
consists of: (1) control unit, (2) Arithmetic-Logic unit (ALU),
(3) registers that hold values close to the ALU, and (4) memory that
holds both the data and the program (the sequence of instructions).

Program Execution

Fetch Instruction pointed to
by the program counter (PC)

|

I Cache
Memory I Hierarchy Processor
|
| —+
— S ~ Arithmetic-
| N o
I : o U Logic Unit
(@) Q
data : S
ANE
<& =. o egisters
. REEE
Instructions | 1| (S| |5 —
NHEHE
= 9
| o o
I 2
|

Memory is slow compared to the Processor. Add
high speed memory (a cache) close to the processor. ,

Decode the Instruction to
determine actions for the ALU

Load Registers from Memory

A

Execute Instructions

A

Write back the result

|

Increment PC

no

Image Source: Felice Pantaleo, CERN, ESC’23

Modern computers follow the von-Neuman model

To understand computers more deeply, we need
to explore the topic of computer architecture

L1 Instruction Cache |<—

{
Fetch Buffer Bre{nc.h
Prediction
Combined
| Decoder | | Decoder | | Decoder | L2 Cache
v 3y iy
| Hop queue | | pop cache |
iy
Reorder Buffer/Reservation Station/Retire

Frontend: In-order

Backend: Out-of-order

'_4 Port 0 (Floating Point, Integer ops) |<_>

l—il Port 1 (Integer ops, jump-target comp) |<—>

13|Npayds

1

Port 2 (load)

[

'_'l Port 3 (store address) |1—>

4—" Port 4 (store data)

[

ayoe) ejeq

Intel® Pentium Pro™ microarchitecture

Computer Architecture:

Conceptual design of a computer

Instruction Set Architecture (ISA)

Computer interface presented to a programmer

Microarchitecture

Abstract design for how the ISA is implemented

Physical

Logic, Devices, semiconductor physics

Assembly code from https://godbolt.org/

12 .L3:

13 fevt.
14 fevt.
15 addi
16 fadd.
17 fmul.
18 fevt.
19 fmul.
20 fevt.
21 fadd.
22 fdiv.
23 fadd.
24 fevt.
25 bne

26 fmul.
27 ret

RISC-V assembly code for the
“pi program loop” generated by gcc -O3

Electron microscopic image of
an Intel transistor for the 14 nm

d.w

d.

d
d

S.

S

d.

d
d
d

S.

S

d

S

d

fa5,a5
fad4,fasd
a5,a5,1
fa5,fa5,£ft0
fa5,fa5,fa3
fa5,fa5
fa5,fa5,fa5
fa5,fa5
fa5,fa5, fal
fa5,fa2,fa5
fa5,fa5,fa4
fa4,fab
a0,a5,.L3
fa0,fal,fa4

process technology

Transistor: https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

13

L1 Instruction Cache |<—

{
Fetch Buffer Bre{nc.h
Prediction
Combined
| Decoder | | Decoder | | Decoder | L2 Cache
v 3y iy
| Hop queue | | pop cache |
iy
Reorder Buffer/Reservation Station/Retire

Frontend: In-order

Backend: Out-of-order

'_4 Port 0 (Floating Point, Integer ops) |<_>

l—il Port 1 (Integer ops, jump-target comp) |<—>

13|Npayds

1

Port 2 (load)

[

'_'l Port 3 (store address) |1—>

4—" Port 4 (store data)

[

ayoe) ejeq

Intel® Pentium Pro™ microarchitecture

Computer Architecture:

Conceptual design of a computer

Instruction Set Architecture (ISA)

Computer interface presented to a programmer

Microarchitecture

Abstract design for how the ISA is implemented

Physical

Logic, Devices, semiconductor physics

Assembly code from https://godbolt.org/

12 .L3:

13 fevt.
14 fevt.
15 addi
16 fadd.
17 fmul.
18 fevt.
19 fmul.
20 fevt.
21 fadd.
22 fdiv.
23 fadd.
24 fevt.
25 bne

26 fmul.
27 ret

RISC-V assembly code for the
“pi program loop” generated by gcc -O3

Electron microscopic image of
an Intel transistor for the 14 nm

d.w

d.

d
d

S.

S

d.

d
d
d

S.

S

d

S

d

fa5,a5
fad4,fasd
a5,a5,1
fa5,fa5,£ft0
fa5,fa5,fa3
fa5,fa5
fa5,fa5,fa5
fa5,fa5
fa5,fa5, fal
fa5,fa2,fa5
fa5,fa5,fa4
fa4,fab
a0,a5,.L3
fa0,fal,fa4

process technology

Transistor: https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

14

Instruction Set Architecture (ISA)

» The instruction set architecture (ISA), is the interface to the hardware presented to the programmer

« Two major classes of ISA
— CISC: Complex instruction set Computer. Large set of instructions to cover numerous special cases. Example: Intel® x86 ISA
— RISC: Reduced instruction set Computer. Smaller set of instructions, easier to work with and implement. Example: ARMv8

ISA features Intel x86* (CISC) ARMv8 (RISC)
Class of ISA Register/memory ISA ... operations can Register ISA ... Instructions work on registers only ..
reference registers or memory. Exposed to memory through load-store operations.
Memory address Bytes addressing Byte addressing, but objects must be aligned
An object of size s bytes is aligned if (Addr mod s = 0).
Registers exposed by | 16 general purpose and 16 floating point 31 general purpose
architecture definition 32 floating point registers
Encoding an ISA ... Variable length, ranging from 1 to 18 bytes. | Fixed length, 4 byte
Instruction widths Can result smaller executables. Thumb instructions: 2-byte
Number of instructions | Exact count is difficult ... over 3500 Base = 354, SIMD/FP =404, SVE = 508 ... total ~1266

ISA details are challenging to nail down. The Intel ISA manual is over 5000 pages.
Hence numbers on this slide convey a general sense of size and miss many details and special cases.

* these numbers are for the Intel® 64 x86 ISA. * SIMD: single instruction multiple data or vector instructions. FP: floating point SVE: Scalable vector instructions 15

Instruction sets: Complex (CISC) vs Reduced (RISC)

1 void add_abc(double *a, double *b, double *c)

2 v Compare assembly code for a simple |€ COMPILER
function for CISC (x86-64) and RISC ~* EXPLORER
) e = S (ARM) processors
4) P https://godbolt.org/
Ops work on x86-64 gcc 14.2 v Z © -02
registers and _)) .
addresses in A~ £ Output..v VFilter..v @ Libraries 4 Overrides

(@]

7 memory. 1 add abc(double*, double*, double*):

o Complex but extra 2 movsd xmm0, QWORD PTR [rdi] Load double at address [rdi] into register xmmO
options for 3 addsd xmm0, QWORD PTR [rsi] Add double at address [rsi] to xmmO, put result in xmmO
aggressive 4 movsd QWORD PTR [rdx], xmmO Store double in xmmO to address [rdx]
optimization 5 ret Branch to return address on the stack

ARM GCC 14.2.0 vz @ -02
A~ L Output...>v VFilter...~ [Libraries 4 Overrides
Al ops onregisters ", 44 abc(double*, double*, double*):
a Consistency means 2 vldr.64/ dl16, [r0] Load double at address [r0] into register d16
' s:nalllertandt. 3 vldr.64 d17, [rl] Load double at address [r1] into register d17
er instruction
sImp ;et uctl 4 vadd.f64 dlé, dlé6, dl7 Add double in d17 to double in d16, put result in d16
5 vstr.64 dl6, [r2] Store double in d16 to address [r2]
6 bx 1r

Branch to return address Ir

16

Computer Architecture: CISC vs RISC

Intel pioneered mass-market-computing through the IBM PC.

Intel’s x86 ISA is a CISC instruction set and that played a key role in the history of computing.

- Starting with the Intel 8086 CPU in 1978 and continuing to today as a frequently used
architecture for servers and laptops.

ARM: the dominant commercial RISC vendor starting with the ARM1.

- ARM1, 1985, 25 thousand transistors compared to Intel’s 1985 CPU (i386) with 275 thousand
transistors.

Every new CPU ISA since 1980 has been based on a RISC ISA.
- As we’ll see later, internal to a modern CISC CPU from Intel is a RISC execution engine.

The “golden handcuffs” of legacy applications will keep CICS/x86 around for many years. But in
terms of innovative designs and the future, RISC has “won”.

RISC across the computer industry RISC-V block diagrarm

 ARM licenses CPU designs for others to implement.

— Used extensively in cell-phones, tablets, Apple laptops, embedded Instruction =

processors, and other devices. The number one CPU by volume. i i

. . . c e . Execution Pipeline
— ARM is moving into Servers and HPC ... For example, Nvidia is

shipping chips for HPC using ARM (Nvidia® Hopper™) Data
— ARM charges a royalty for each unit sold and vigorously g
protects its monopoly over the ISA.

=
[0
3
o
<

Register File

Pre-Decode

Execute

Decode/Optimize
Write Back

« Just as Open-Source Software changed the nature of the
software industry, an Open-Source ISA will change the
hardware indUStry. e |Load-store ISA

« 32 bit instruction format

Cy RISC-V base ISA has only 50
e RISC-V (pronounced RISK-Five) is an open-source ISA. instructions compared to 354 for

— 2010: research project in the Computer Science Department at the University of ARMS base ISA
California, Berkeley.

— 2011: The first RISC-V specifications were released.

— 2015: RISC-V International was established to promote adoption and
standardization of the RISC-V ISA. Now has over 200 members.

Big companies like Apple and Google will tire of paying royalties per unit to ARM. The future is RISC-V

18

12 .L3:

Computer Architecture: : e

= 15 addi a5,a5,1
Conceptual design of a computer o fdd tenone e
17 fmul.d fa5,fa5,fa3
18 fcvt.s.d fa5,fa5
19 fmul.s fa5,fa5,fa5
20 fevt.d.s fa5,fa5
Instruction Set Architecture (ISA) 21 i
22 fdiv.d fa5,fa2,fa5
23 fadd.d fa5,fa5,fa4
L1 Instruction Cache |<— ‘ 24 fovt.s.d £ad . £as
' Branch . 25 bne a0,a5,.L3
Fetch Buffer Prediction Computer interface presented to a programmer 26 fmul.s fa0,fa0,fad
! 27 ret
Decoder Decoder Decoder y
| i | | T | | T || r2cace RISC-V assembly code for the
| 1op queue | | wop cache | “pi program loop” generated by gcc -03
¥
Reorder Buffer/Reservation Station/Retire . .
k —— 5 Microarchitecture
ST T T -é;i;h:-6L£;ﬂ;d;'— 1!
Port 0 (Floating Point, Integer ops) q . .
— [Abstract design for how the ISA is implemented
§ 1—u| Port 1 (Integer ops, jump-target comp) |<—> g
3 <—.| Port 2 (load) |<—> g
'_'l Port 3 (store address) |1—>
4—" Port 4 (store data) |4—’ Physical

Intel® Pentium Pro™ microarchitecture i .
Electron microscopic image of an

Intel transistor for the 14 nm

Logic, Devices, semiconductor physics
process technology

Assembly code from https://godbolt.org/ Transistor: https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

A modern CPU

Intel® X86
architecture

Sandy Bridge
Microarchitecture

By the time we are done, most
of this will make sense to you.

Sandy Bridge 8-Core Die Layout

Gh2-(Channeltﬁ
“DDR3 I/0 = -

8 Sandy Bridgs CPU cores
20MB LL Cache
32nm Bulk Process

435 mm2
2.27B Transistors

Copyright (c) 2011 Hiroshige Goto All rights reserved.

PCle PLL

Last Level

1.Cache Slice Sandy Bridge

2 5MB s CPU Core

.

.
.
]
.

e

LL Cache Slice
.5MB

o ol 2-Channel
== DDR31/O0

4-Channel DDR3 IF
2 QPI Links
40 lanes PCI Express

Image Source: Victor Eijkhout, processor architecture lecture, 2023

20

Stru ctu re of a Block Diagram of an Intel Sandy Bridge Core (used in Core i7, i5, i3 CPUs)

i 32K L1 Instruction Cach Pre-decod Instr Q =
Sandy Brldge nstruction Lache & | Fre-decode | INSIr UeUe-DLLL T
CPU core

1

Branch Predictor

1.5K uOP Cache

Load | store [Reorder —
+ The point of a Buffers Buffers [| Buffers 3 Allocate/Rename/Retire
microarchitectureisto | § - — — — _ n-omdes
] out-of-order
support the architecture Scheduler
with aggressive Port 0 Port 1 Port 5 Port 2 Port 3 Port 4
optimization to achieve t t t t ’
high performance. ALU ALU ALU Load Load STD
V-Mul V-Add |MP StAddr StAddr
e A V-Shufflé V-Shuffle 256- FP Shuf
| modern Ediv 256- FP Add | | 256- FP Bool
microarchitecture can be >56- EP Blend
| | both 256- FP MUL
extremely complex ... bo >t6. EP Blend Memory Control
for CISC and RISC chips

Line Fill
Buffers

‘ 48 bytes/cycle

32K L1 Data Cache

By the time we are done, much 256K L2 Cache (Unified)
of this will make sense to you.

Launched 2011 and the core microarchitecture at Intel until 2013

Source: Eijkhout — Processor Architecture — Fall’2023

The key to performance inside a CPU:
Instruction level parallelism (ILP)

 The fundamental equation of quantitative architecture analysis:

Timecpy = Ninstructions *

cycles

. seconds

Instruction

cycle

Ninstructions= Number of instructions in an executable

cycles __ Total number cycles to execute a program

= CPI

Instruction Ninstructions

* An architecture that lets multiple instructions make forward progress each cycle reduces the Cycles per
Instruction (CPI) ... if all goes well, we can design architectures where CPI < 1.

* We do this with Instruction Level Parallelism (ILP)

22

Let’s go back to the late 80’s and 90’s to
look at Instruction level parallelism through
the lens of x86 CPUs

X86 ... "an architecture that is difficult to explain and impossible to love”

Hennessy and Patterson, 2™ ed, page D-2

While we focus on x86 chips, all the techniques we’ll
discuss are found in modern in RISC chips as well

i486™ 1.2 Million transistors, 50 Mhz

Fetch Buffer

»
»

v

<&
«

Decoder

v

Scheduler

v

Execution
Pipeline

A

Cache

A
A 4

Registers

... plus an integrated floating point unit

1989

* Intel added pipelined instructions to i486 in 1989

* More than doubled the performance compared to a i386 at the same clock rate.

* The five stage i4586 pipeline, one cycle per stage

instructions
going through 3:
the pipeline -

F | Fetch an instruction from the instruction cache.
D1 | Decode the instruction.
D2 | Translate memory addresses and displacements for the instruction
EX | Execute the instruction.
WB | Retire the instruction, write results back to registers and/or memory.
Cycles (each stage takes one cycle)
1 2 3 4 5 6 7 8 9
1: [F]([D1l][D2] [EX] [WB]
Five

[F]1([D1] [D2] [EX] [WB]
[F] [D1] [D2] [EX] [WB]
[F] [D1][D2] [EX] [WB]
S: [F][D1] [D2] [EX] [WB]

Note: after five cycles, the pipeline is full and we get a result per cycle.

24

Pipelining

Performance

i486™ 1.2 Million transistors, 50 Mhz

Fetch Buffer

v

Decoder

<&
«

v

Scheduler

v

Execution
Pipeline

»
»

A

Cache

Given the following definitions: 1989

n = number of operations
£ = number of stages
T = time per cycle

Runtime without pipelining: t(n) = nft

With pipelining you need to setup the pipeline (costs s cycles) and fill the pipeline

(costs £ cycles) at which point you have completed one instruction. Then for the

next (n - 1) cycles you get one result per cycle. The runtime with pipelining is:
tn)=(s+f+n-1)t

For n much greater than (s + £ — 1), t(n) = n 7, so the code runs # times faster.

A
A 4

Registers

... plus an integrated floating point unit

:Eri\s/fructions - LF] [D1] p0e) [EX) S
coing through 3 ° [F][D1] [D2] [EX] [WB]
the pipeline : [F][D1][D2] [EX] [WB]

Cycles (assuming each stage takes one cycle)
1 2 3 4 6 7 8 9 10

1: [F][D1l] [D2] [EX] [WB]

St [F][D1] [D2] [EX] [WB]

Note: after five cycles, the pipeline is full and we get a result per cycle.

25

1993

Superscalar + branch prediction

Pentium™ 3.1 Million transistors, 66

Mhz, 5 stage pipeline

L1 Instruction Cache <
Fetch Buff Branch
Bl [ETatss Prediction L2
Unified
* Cache
Decoder
Scheduler 1
I v y
—
=Y
Execution Execution -~ g
Pipeline Pipeline i’ py
a
=
o
F N y N A
L \ 4
v N *
Registers

... plus an integrated floating point unit

shared between pipelines

* The Pentium CPU was introduced in 1993 with major innovations

- Superscalar execution: Added a second execution pipeline so it could
keep two pipelined instruction streams in flight at the same time.

- Branch prediction: Speculate on branches a program might take to load
next instructions and get a head start should the branch be taken.

- Separate L1 caches for data and instructions: A unified second level
cache that holds data and instructions but separate L1 caches for data
and instructions to reduce conflicts.

Branch prediction is important. With two execution pipelines, its
challenging to keep enough work in the execution units so they are

fully occupied.

26

1995

Out of Order (OOO) + speculation

Pentium Pro CPU, 5.5 Million transistors, 200 MHz,

14 stage pipeline

L1 Instruction Cache

A

v
Fetch Buffer Branch
Prediction
v
Decoder Decoder Decoder
v v v
HOp queue Hop cache
v

Reorder Buffer/Reservation Station/Retire

Frontend: In-order

Combined
L2 Cache

Backend: Out-of-order

<

4_.| Port O (Floating Point, Integer ops)

P
<«

+#+—>»| Port 1 (Integer ops, jump-target comp)

J3|nNpayds

Port 2 (load)

\4

A

\ 4

Port 3 (store address)

\ 4

A

A
\ 4

Port 4 (store data)

v

9yde) ejeq

The Pentium Pro CPU was a major performance upgrade and
made Intel CPUs suitable for demanding technical computing
workloads (and was used inside the computer ranked as the
fastest computer in the world from 1996 to 2000).

It added the following microarchitectural innovations:

- Input CISC instructions were decoded into fixed-length, load/store
micro-ops (Lop). This made the internal execution engine inside
the Intel CPU a RISC chip.

- Micro-ops were reordered and executed based on availability of
data ... hence compared to input CISC instructions, they execute
Out of Order (O0O0)

- Micro-ops complete in-order ... i.e., they are retired in an order
consistent with the input program

- Register usage efficiency greatly enhanced by renaming them to
avoid spurious conflicts due to register naming in code.

- Dynamic speculative execution to generate enough work to fully
occupy the execution units ... a powerful capability but branch
misprediction is very expensive as all involved pipelines must be
flushed.

27

Simultaneous Multithreading ... or the Intel Marketing term, hyperthreading %%

Pentium 4 CPU, 125 Million transistors, 3.06 GHz, 20 stage pipeline

L1 Instruction Cache L1 Instruction Cache <
v v
Fetch Buffer Bra.nc.h Fetch Buffer Bra.nc.h
Prediction Prediction
Decoder Decoder Decoder Decoder Decoder Decoder Combined
L2 Cache
v + v v v ¢
HOp queue pop cache HOp queue Hop cache
v v
Register Alias Table Register Alias Table
Reorder Buffer/Reservation Station/Retire

A

A
Frontend: In-order
Backend: Out-of-order {
y
4_.| Port O (Floating Point, Integer ops) < >

g 4—>»| Port 1 (Integer ops, jump-target comps) < > 9

o o

3 Q

o < Port 2 (load) < » =1

o

> Port 3 (store address) < >
<+—>| Port 4 (store data) < I[

Out of order execution of pipelined execution units creates
so much opportunity for instruction level parallelism that it
can be challenging to keep the resources fully occupied.

Solution ... replicate the in-order front end of the processor
so two front-ends feed a single out-of-order backend.

These two in-order front ends are managed as distinct
threads by the OS typically with single cycle context
switching overhead between them. We call these
hardware threads.

They are usually exposed to the operating system as an
additional core ... so the case hyperthreading case on this
slide results in the OS treating the system having two
cores.

Be careful with hyperthreading. If your work load can saturate
the functional units on a CPU with a single thread,
hyperthreading adds overhead and can slow down your code.

HPC programmers working highly optimized, compute bound
codes often turn it off by default.

28

ILP is great, but we can get carried away

Normalized Power vs. scalar performance for Intel CPUs

40
Pentium 4

Assume multiple generations of 35 - (Cedarmill
Intel CPUs using the same 31 stage
process technology as for i486. power = perf A 1.75 pipeline

30 - '
Any changes are due to
microarchitectural 25 Pentium 4
enhancements .

5 (Willamette 20 stage
= 20 - pipeline

This shows the unsustainable &3
power demands of every 12 stage
deepening pipelines. 15 - pipeline

10 Pentium Pr
Power and Performance > stage

. pipeline
scaled to the i486 ... e.g., S
Petium 4 is 6 times faster
than an i486 but uses 22 0 - [l .
times more power. 1989
0 2 4 6 8
Energy per instruction Trends in Intel” Microprocessors, Scalar Perform ance
Ed Grochowski and Murali Annavaram, 2006 30

Normalized Power vs. scalar performance for Intel CPUs

Assume multiple generations of 40
Intel CPUs using the same Pentium 4
process technology as for i486. 35 - (Cedarmill
31 stage
Any changes are due to power = perf A 1.75 pipeline
microarchitectural 30 -
enhancements
| | 25 Pentium 4
This shows the unsustainable = (Willamette /& [205t0ge
power demands of every 3 20 - pipeline
deepening pipelines. ff
12 stage
This plot ended around 2006. 15 7 pipeline peﬁ?fam M Core
More modern CPUs have T TS Duo
ipeline depths of 14 to 20 10 - - / \
pPIp P — Pen“um Pr [DOtham \(Yona.h)
ge .
e \ ®Banias /
For example the Raptor Cove 5 - PP N /& 10-12
Intel® Xeon™ microarchitecture S Pipeline
(2023) has 12 pipeline. stages | stages
0 1989 ! ' !
0 2 4 6 8
Energy per instruction Trends in Intel” Microprocessors, Scalar Perform ance
Ed Grochowski Murali Annavaram, 2006

31

Branch prediction

e Percentage of instructions wasted for SPEC integer benchmarks on an Intel core i7 due to incorrect branch prediction.

40%
35% |
30% |
25% |
20% |
15% |
10% -
5% |

PERLBEN

If you cancel a

if you have deep
pipelines

SJENG |

HMMER [
H264REF [&2

. mispredicted
0
branch, you have
0
24% L 22% to flush the
[
o as§oc .ated
pipelines
That’s really bad
e = a4
a8 &5 = E<
N O = an] h
(@)

XALANCBMK Fg

LIBQUANTUM fI5

* On average, 19% of the instructions are wasted for these benchmarks on an Intel Core i7. The amount of
wasted energy is greater, however, since the processor must use additional energy to restore the state when

it speculates incorrectly.

Image from “A New Golden Age for Computer Architecture”, John Hennessy and David Patterson, CACM, 2019

Enough about the processors, what about the
memory hierarchy

the Memory Hierarchy

We like to draw pictures like this s

Random Access Memory

CPU core CPU core

L1 Instruction Cache | L1 Data Cache L1 Instruction Cache L1 Data Cache

A A A

A \ 4 \ 4 \ 4

L2 Unified Cache L2 Unified Cache

A

A 4

Shared L3

€= But reality is much more complex

A

v

Memory Controller

!

Random Access Memory

- ~—

Clusters of DRAM chips

DRAM: Dynamic Random Access Memory L1, L2, L3 pronounced Level 1, Level 2, Level 3. Also written sometimes as $L1, $L2, $L3 34

Latencies across the Memory Hierarchy

26
cycles

4

cycles / registers

12
cycles

(/ L1 cache \

L2 cache \

P

L3 cache

230-360
cycles

main memory

Size (bytes)

192

32k

256k

2M

2G v

Data accessed by cache lines. Your algorithms need to organize data access patterns around the caches.

Source: Victor Eijkhout — Processor Architecture — Fall’2023

35

Latencies across the Memory Hierarchy

15 sec

Time
o _A Time for a 64-bit Today’s computers now take
Atanasoff- Multiply-Add much longer to fetch or store
than to add and multiply.
msecC .
In most cases ... computing
l1usec Cray M is “free”. Performance is
: : Cray 2 riven by mem .
Time for a 64-bit ASQSC 130 driven by memory costs
usec4 Memory Fetch 5 100nseC g0 sec
ILLIAC IV '_P . T
entium
sansec e Xeon 5500
a 4 nsec 1.3 nsec
| | | | | | | : |)
1940 1950 1960 1970 1980 1990 2000 2010
Year

We will have MUCH more to say about memory later this week with

lectures on “Efficient Memory Management”

36

L1 Instruction Cache |<—

{
Fetch Buffer Bre{nc.h
Prediction
Combined
| Decoder | | Decoder | | Decoder | L2 Cache
v 3y iy
| Hop queue | | pop cache |
iy
Reorder Buffer/Reservation Station/Retire

Frontend: In-order

Backend: Out-of-order

'_4 Port 0 (Floating Point, Integer ops) |<_>

l—il Port 1 (Integer ops, jump-target comp) |<—>

13|Npayds

1

Port 2 (load)

[

'_'l Port 3 (store address) |1—>

4—" Port 4 (store data)

[

ayoe) ejeq

Intel® Pentium Pro™ microarchitecture

Computer Architecture:

Conceptual design of a computer

Instruction Set Architecture (ISA)

Computer interface presented to a programmer

Microarchitecture

Abstract design for how the ISA is implemented

Physical

Logic, Devices, semiconductor physics

Assembly code from https://godbolt.org/

12 .L3:

13 fevt.
14 fevt.
15 addi
16 fadd.
17 fmul.
18 fevt.
19 fmul.
20 fevt.
21 fadd.
22 fdiv.
23 fadd.
24 fevt.
25 bne

26 fmul.
27 ret

RISC-V assembly code for the
“pi program loop” generated by gcc -O3

Electron microscopic image of
an Intel transistor for the 14 nm

d.w

d.

d
d

S.

S

d.

d
d
d

S.

S

d

S

d

fa5,a5
fad4,fasd
a5,a5,1
fa5,fa5,£ft0
fa5,fa5,fa3
fa5,fa5
fa5,fa5,fa5
fa5,fa5
fa5,fa5, fal
fa5,fa2,fa5
fa5,fa5,fa4
fa4,fab
a0,a5,.L3
fa0,fal,fa4

process technology

Transistor: https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

37

Moore's Law

1975 1980 1985 1990 1995

]
10M Micro 500
P 9 2000 mips)
™ Pantium” 25
‘ ~ Processor
80486
100K . 180386 1.0
‘ BO2B6
10K 3086 0.1
‘ ‘BU&U
4004 0.01

* In 1965, Intel co-founder Gordon Moore predicted (from just 3 data points!) that semiconductor
density would double every 18 months.

— He was right! Over the last 50 years, transistor densities have increased as he predicted.

“Cramming more components onto integrated circuits”, G.E. Moore, Electronics, 38(8), April 1965
Slide source: UCB CS 194 Fall’2010

We’ve come a long way since Gordon
Moore proposed his famous law

An electron microscope image of a single Intel transistor using the 14 nm process

We put billions of these
transistors on a single chip

8 nm Fin Width

42 nm Fin Pitch

' Si Substrate

How small is a nm (nanometer)? One nm is 10-° meters. Light travels about one foot in 10-° seconds.

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf

39

We’ve come a long way since Gordon
Moore proposed his famous law

An electron microscope image of a single Intel transistor using the 14 nm process

We put billions of these
transistors on a single chip

8 nm Fin Width

42 nm Fin Pitch

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf 40

Moore's Law: A personal perspective

First TeraScale* computer: 1997

Intel’s ASCI Red Supercomputer
9000 CPUs
one megawatt of electricity.

1600 square feet of floor space.

*Double Precision TFLOPS running MP-Linpack

A TeraFLOP in 1996: The ASCI TeraFLOP Supercomputer,

Proceedings of the International Parallel Processing
Symposium (1996), T.G. Mattson, D. Scott and S. Wheat.

First TeraScale” chip: 2007

10 years
later

Intel’s 80 core teraScale Chip
1 CPU
97 watt
275 mm2

%Single Precision TFLOPS running stencil

Programming Intel's 80 core terascale processor
SCO08, Austin Texas, Nov. 2008, Tim Mattson,
Rob van der Wijngaart, Michael Frumkin

CPU Frequency (GHz) over time (years)

10

Clock Rates

1 GHz

0.1

g 20 What happened to
performance around 20047

0.01 g, &

0.001

0.0001
1969 1974 1979 1984 1989 1994 1999 2004 2009 2014

Source: James Reinders (from the book “structured parallel programming”)

42

Dennard Scaling

Process technology (translates to Transistors per chip) and power per mm?

—=— Technology (hm) —=—Power/nm?
200] 4.5
180 Dennard scaling: Assume voltage drops as
transistors shrink: power/mm? is flat. 4
160 I
3.5
g 140 - e
« 120 -
- - 2.5
€ 100 - |
: =
(1] 80 g \ 2
B 60 ~2005: threshold voltage limits - 1.5
voltage drops. Plus static power
40 effects began to dominate. Fol
Dennard scaling ends
20 —— = — - 0.5
0 I o

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Process technology nodes defined by the smallest feature on a chip (i.e. gate length in nm).
After 22 nm, it's become a marketing term that doesn’t map to a specific feature’s length.

Image from “A New Golden Age for Computer Architecture”, John Hennessy and David Patterson, CACM, 2019

Relative Power per nm?

Growing Performance in a post-Dennard-Scaling world?

10

Clock Rates

—— P 2
200] Technology (nm) Power/nm?

180 9
el 35
140

3

1 GHz

©
c
0.1 & s
L. $ 120 5
L E 100 | 25 3
c [2 a
0.01 8a 8 (1] 80 - o
"1 Z 60| ~ 15 2
a 40 | i g

0.001 - 20 | \\\’0.5

a
0 I 0

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

0.0001
1969 1974 1979 1984 1989 1994 1999 2004 2009 2014

As we’ll see in our next lecture, the path forward is parallel computing ...
spreading your work across many processing elements.

Parallel Programming is the essence of HPC. At ESC, we’ll explore parallel programming in detail:

OpenMP: a particularly simple API for CPU programming

Threaded Building Blocks (TBB): a C++ based approach for task parallel programing on CPUs
CUDA: GPU programming using NVIDIA's CUDA programing model.

MPI: parallel programming across distributed memories ... the standard model for clusters

Summary ... Getting the most from
our processors

Getting the most from a CPU

We can think of a CPU in two parts: A front-end and a back-end

The CPU Front'end |S L1InstructlonCache < .
where instructions are e ry— The CPU Back-end is
fetched and decoded Prediction where instructions execute
‘ Combined

Helping the Front-end pecoder Decoder pecoder L2 Cache Helping the Back-end

* Avoid complex branching * ' * * Organize data so you are
that jumps through the HoP queve Hop cache computing from data in-cache
programs set of instructions. y

Reorder Buffer/Reservation Station/Retire) . Use a” available funCtionaI

« Keep code local. If possible, 1 Frontend: In-order units including vector-units

inline functions when 1T T T T T 7 7 TBackend: Outoforder | (topic of next lecture)

POSSI ble Port 0 (Floating Point, Integer ops) <

\ 4

« Remember ... not all
operations are created equally.
Divisions and Square root ops
cost 10 to 40 times the cost of
a multiply.

++—»| Port 1 (Integer ops, jump-target comp) <

v

» Keep loops short so they fit
in the pop cache

J

\ 4

J3|npayds
ayae) eleq

Port 2 (load) <

A 4

\ 4

Port 3 (store address)

A
\ 4

Port 4 (store data)

Intel® Pentium Pro™ microarchitecture

Roofline plots: Understanding algorithm performance

Different algorithms hit different
performance limits:

* Algl: compute bound
e Alg2: bandwidth bound.

Performance

Peak performance

Alg2

Arithmetic intensity

>

Arithmetic Intensity:

operations per data
transfer

51

Roofline plots: Understanding algorithm performance

Peak performance

A
)
= Algorithm 2 is not
g effectively using all the
S Alg2 functional units.
-
O
o

Arithmetic intensity
>

52

Roofline plots: Understanding algorithm performance

Performance

Peak performance

OQ’
Q}(\
@ Imbalance of adds and mults
<)
<
,@6

o
&

Algorithm 1 has non-
optimal data transfer
Alg2 behavior.

Arithmetic intensity
>

53

Roofline plots: Understanding algorithm performance

10000
MAX GFLOPS
7 ~
o 1000 / ’
(Al , 7
O y
LL , 7
2 RN IO
§ 100 v , QX.‘-'".
/ RS :
c .7 % Bandwidth Compute
S A Bound Bound
Dq_J 10 » 7
O(log(N))
o(1) A O(N)

o’ 1 { \ 1
[| [\
Sparse matrix Spectral methods Dense matrix Particle methods

1
0.01 0.1 1 10 100 1000

Arithmetic Intensity (FLOPS/Byte)

54

Conclusion ... and a summary of the ESC technical program

» Scientific computing and HPC are tightly coupled ... as you move from math to algorithm to software,
performance needs to on your mind.

» Dennard Scaling has ended ... so even as Moore’s law marches on, we need parallelism to get higher
performance (a major topic of the next lecture)

« At ESC we will cover the core topics every scientific computing professional needs to master:

Using all the resources of a processor to maximize performance

Writing, debugging, and optimizing C++ software.

Supporting Python by mapping python onto C++ functions

Mathematics on computers ... from computer arithmetic to pseudo-random numbers
Effective memory management

Parallel programming for CPUs (OpenMP and TBB), GPUs (CUDA and a quick survey of other GPU
programming models), and clusters (MPI)

