The use and Abuse of Random Numbers | -x

Long Island

Tim Mattson

The view below is
Looking Southeast
from Here

llwaco

/,A§toria’::; ‘
/ “ (——"USve
Lewis and Clark
4 National \Historical Par

Solving problems with random samples

* For a large and important class of algorithms, we sample a problem domain and then use a statistical
analysis over those samples to generate an answer. These are called Monte Carlo algorithms.

MC Simulation

MonteCarlo simulations

Interaction of charged particles with matter: 6\ GEANT4 https://geant4.web.cern.ch/
_ <‘;_E> - 4_“2 . %2 . (%)2 . [ln(fr(';"_cz@z> - ﬁﬂ] (Bethe-Bloch)
e ’)) (GEometry ANd Tracking)
o 0:0 _.5 2 e i .,MNV C++ simulation toolkit of the passage of particles through
o Proton oo matter, using Monte Carlo methods

ﬁ ° ——— O§ ,cv 0
(o Cre BB O . — @
2 O
S, Y\/[/V‘/ Fast neutron

C
6, L

vix W\ —-f\/\z\/\/\/vW\?\/\/\/vv\/\

foOd o4

Z% ®o — -
Thermal neutron

Matter

https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples

Example: Monte Carlo Integration

* Asimple and direct method to approximate definite integrals

 The definite integral for the integrand f (x) over a d-dimensional domain x is:

1
Hﬂ=jf@ﬂf
0

The limits of the integral are normalized over a d-dimensional cube [0,1]¢
Randomly sample points within [0,1]¢ over a uniform distribution to create a sequence {x; }.
The empirical approximation to the definite integral is Iy[f].

N
Wil = Y £ lim Iy[f] = I1f]
i=1

The rate of convergence ... independent of the dimension, d ... is O(N-12)

This is a slow rate of convergence, but it is independent of the dimension of the integral. For integrals solved
over grids over [0,1]9 the rate of convergence is O(N-*d) where k is the order of the numerical quadrature
method. Also, defining a grid over [0,1]¢ for large d results in a prohibitively large number of points to sample.

Monte Carlo integration is robust, easy to implement, and for higher
dimension problems (any time k/d < %) the rate of convergence (while still
slow) beats traditional numerical quadrature methods.

Choosing the random samples

* For Monte Carlo algorithms to work, the random samples must be:

- Distributed according to the statistics required of the problem ... that is, uniformly distributed or as samples
of a predefined distribution (e.g., Gaussian, Poison, etc.).

- Each Sample must be unpredictable given knowledge of other samples.

// function returns a
* A sequence of such numbers are called Random Numbers. // random number
* We can generate a sequence of Random numbers from natural int random()
processes (e.g. white noise from a thermocouple), but not by any {
algorithm running on a deterministic machine (i.e., a computer). } return 3;

The best we can do on a computer is produce numbers that appear to be random
... that lack correlations between numbers or other features in the sequence that
make the numbers predictable. We call these Pseudo-Random numbers.

Monte Carlo Methods require high quality
pseudo-random numbers

Pseudo-Random Numbers

* High Quality Pseudo-Random numbers are indistinguishable from true Random numbers.

* They are generated by deterministic algorithms which means they can generate the same sequence
between runs of a program (critical for validation purposes) ... Reproducibility is your friend!!!!

* Pseudo-Random numbers, however, present their own challenges.
- They aren’t truly Random ... the key is to use formal testing to show they are random enough.

- It is depressingly easy to generate bad sequences of pseudo-random numbers and never know that your scientific
results are garbage.

- Its easy to write Pseudo-Random number generators but extremely difficult to write ones that are dependably
random enough in all situations. Leave creating such generators to the pros ... use libraries.

How to create sequences of Pseudo-Random Numbers

We call the software that generates our pseudo-random numbers a random number generator or RNG

There are at least two parts to an RNG ... the algorithm and the parameters.

Some common algorithms (we’ll talk about parameters later)
- Linear Congruential Generator (LCG)
Lagged Fibonacci Generator

Mersenne Twister
XORshift generator
Wichmann-Hill generator

* There is no single “best” generator ... the key is to pick the generator best suited to your needs.

- LCG is easy to implement and has decent quality if you get the parameters right.
- Wichmann-Hill is a family of independent generators ... quite handy for parallel applications
- XORshift is very efficient (3 shift and 3 XOR operations)

Random Numbers: Linear Congruential Generator (LCG)

* LCG: Easy to write, cheap to compute, portable, OK quality

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

- If you pick the multiplier and addend correctly, LCG has a period of PMOD.

- Picking good LCG parameters is complicated, so look it up (Numerical Recipes is a good
source). | often use the following:

MULTIPLIER = 1366
ADDEND = 150889

PMOD =714025 If the ADDEND is zero, then we have a Multiplicative Linear
Congruential Generator. (MLCG)

If you are careful in selecting the MULTIPLIER and PMOD, MLCG
can be quite good.

LCG code

static long MULTIPLIER = 1366;
static long ADDEND =150889;

static long PMOD =714025;
long random_last = 1597;

Seed the pseudo random sequence

‘\ by setting random_|ast
double drandom ()

{

| often just pick a prime number that
is less than PMOD.

long random_ next;

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);

Be careful with your random number generators

Famous PseudoRandom Generators: RANDU
« RANDU was a standard RNG from IBM. It was used heavily on their systems in the 1960s and 1970s.

 RANDU is a Multiplicative Linear congruential generator with multiplier, M, equal to 65539 and the

modulus, mod, equal to 231. The seed (Xy) must be odd.
* The following is Python code for RANDU

class RANDU:
def __init_ (self, seed=483647):
self.seed = xval
selfMod =2 147 483 648
self.Mult = 65539
self.last = seed

def random(self):
self.last = (self.Mult*self.last)%self.Mod
return self.last

RANDU generates integers
ranging from 1 to (231-1)

 RANDU passes basic frequency tests (build a histogram of a sequence. Use a chi-squared test to verify numbers per

bin are appropriately equal)

11

... but RANDU has problems

It passes frequency tests, but those test overall statistics.
They can’t find local correlations.

To look for such correlations, we can take consecutive blocks
of three values and plot them as x,y,z coordinates in a 3D
scatter plot.

We see that the values fall along 15 hyperplanes. The
generator exhibits local correlations between values.

This means Monte Carlo results with this generator are
suspect since such methods assume uniform random
sampling.

Problems with this generator were known as early as 1963. ' 0.5

0.0

0.0
It wasn’t until the 1990s that it was widely eliminated,

though some Fortran compilers were found using it as late as Each point in the plot (x, vy, z)) is three consecutive
1999. values from RANDU. The points all fall into 15 planes.

12

Fixing RANDU

We can fix this generator by more carefully selecting the Multiplier and the modulus value.

Looking up values from a rigorous (peer reviewed) mathematical work™ | updated the values in RANDU:

class MultLCG:
def __init_ (self, seed=483647):
self.seed = xval
self.Mod =2_147 483 647
self.Mult =1_583 458 089
self.last = seed

def random(self):
self.last = (self.Mult*self.last)%self.Mod
return self.last

This new generator passed my frequency tests and removed the
local correlations

*Pierre L'Ecuyer, "Tables of Linear Congruential Generators of different sizes and good
lattice structure", Mathematics of Computation, Vol 68, Numb 225, jan 1999, pp 249-260

13

If you are curious, here is the

PIOt generation COde code | used to make the plots

X, Y, and z are triplets of consecutive values
from mpl_toolkits import mplot3d

import numpy as np
import matplotlib.pyplot as plt

o mm mm m e mm m e R e M M M M M M R R M e e e e

randuTest = RANDU()

|

I Generate a sequenced of
I nvals=30000 # make this divisible by three

1

|

1

1

pseudo random numbers
using our RANDU
generator

seq=np.zeros(nvals,dtype=int)
foriin range(nvals):
‘ seq[i] = randuTest.random() ’

,~ x = np.zeros(nvals//3) \
y = np.zeros(nvals//3)
z = np.zeros(nvals//3)
iseq=0;i=0
while iseq < (nvals):
x[i] = seq[iseq]
yli] = seq[iseq+1]
z[i] = seq[iseq+2]
iseq=iseq+3
\ i=i+1 !

Gather consecutive values in the
sequence by triples into three
distinct sequences for plotting

- o e o o o e e o e —

” “ax = plt.axes(projection ='3d")
ax.scatter(x, vy, z, 'blue’)
ax.view_init(-140, 60)
plt.show()

Plot x,y,z points and view at
an angle chosen to show 0.5

the parallel hyperplanes 0.0 0.0

—— - ——

Numbers are ints in units of billions 14

Key Lesson from the RANDU mess

Maintain a healthy level of skepticism for any default, built-in Random number generator.

Run your own tests to make sure the numbers are random enough.

Insist on knowing:
- Which method the generator is using (e.g. LCG, lagged Fibonacci, Mersenne Twister, etc.)
- That the period of the generator is sufficient for your problem.
- That the parameters used in the generator are good and from a reputable source

| often write my own generator if | can’t verify the details of built-in generators, but that is dangerous. Itis
best to find (and use) a reputable library.

- Scalable Parallel Random Number Generators (SPRNG) (sprng.org) from Michael Mascagni (University of Florida
and NIST)

15

Lets explore Monte Carlo methods and pseudo random
number generators with a classic problem

MATHEMATICIANS FARE POORLY IN WAR.

Monte Carlo methods | (<weocveans
in Popular Culture NOTUING, 8UT IF T

ARROW STRIKES, T CAN
CALCULATE PV/

SMBC by Zack Weinersmith

... famous for the best high-level
explanation of Quantum Computing
EVER published:

https://www.smbc-comics.com/comic/the-talk-3

https://www.smbc-comics.com/comic/math-and-war

MATHEMATICIANS FARE POORLY IN WAR.

Monte Carlo methods | (<veoCvean-
in Popular Culture NOTUNG, 8UT I 1

ARROW STRIKES, T CAN
CALCULATE PV/

SMBC by Zack Weinersmith

... famous for the best high-level
explanation of Quantum Computing
EVER published:

We will
simplify
https://www.smbc-comics.com/comic/the-talk-3 things a bit

https://www.smbc-comics.com/comic/math-and-war

Monte Carlo Calculations

Using random numbers to solve problems

« Sample a problem domain to estimate areas, compute probabilities, find optimal values, etc.

« Example: Computing 1T with a digital dart board:

7
-

N=10 m=2.8
N=100 m=3.16
N=1000 Tt =3.148

e Throw darts at the circle/square.

e Chance of falling in circle is proportional to
ratio of areas:

A, =r2*m
A, = (2%r) * (2*r) =4 * r?
P=AJ/A,= /4

e Compute 1 by randomly choosing points; 1T is
four times the fraction that falls in the circle

19

Monte Carlo algorithms: estimating T

#include random.h
static long num__trials = 10000;
int main ()
{
longi; long Ncirc =0; double pi, x, y;
double r =1.0; // radius of circle. Side of squrare is 2*r
seed(-r, r); // The circle and square are centered at the origin
for(i=0;i<num__trials; i++)
{
x = drandom(); y = drandom();
if (x*x+y*y)<=r*r) Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);
printf("\n %d trials, pi is %f \n",num_ trials, pi);

20

Single thread results m Monte Carlo: LCG and MLCG

LCG: Linear Congruential Generator

MLCG: Multiplicative Linear Congruential Generator.

=
o
= -2 1
O
W
>
S
o
o
-
o 3]
S
ad
_4-'

_— LCG
— MLCG
— — — - Theoretical slope, -1/2
due to O(N%/2) rate of

convergence.

Apple M2 chip, gcc-13, MacOS 14.6.1

pw

1 |l 1 1 |

2 3 - - 6
Log (number of samples)

ranNext = (M cg*ranLast + A)%mod, g

ranNext = (My cg*ranLast)%mody

// LCG parameters
static long MULTIPLIER =2416;

static long ADDEND =37441;
static long PMOD =1771875;
static long SEED =7919;

// MLCG parameters

static long MULTIPLIER = 1583458089;
static long PMOD = 2147483647,
static long SEED =7325973;

21

... let’s go parallel

Monte Carlo Calculations

Using random numbers to solve problems

 Sample a problem domain to estimate areas, compute probabilities, find optimal values, etc.

* Example: Computing rt with a digital dart board:

7
-

N=10 m=2.8
N=100 m=3.16
N=1000 Tt =3.148

e Throw darts at the circle/square.

e Chance of falling in circle is proportional to
ratio of areas:

A, =r2*m
A, = (2%r) * (2*r) =4 * r?
P=AJ/A,= /4

e Compute 1 by randomly choosing points; 1T is
four times the fraction that falls in the circle

23

Parallel Programmers love Monte Carlo algorithms

#include “omp.h
static long num_trials = 10000;
int main ()
{
longi; long Ncirc =0; double pi, x, y;
double r =1.0; // radius of circle. Side of squrare is 2*r
seed(0,-r, r); // The circle and square are centered at the origin
#pragma omp parallel for private (x, y) reduction (+:Ncirc)
for(i=0;i<num_trials; i++)
{
X = random(); y = random();
if (x*x+y*y)<=r*r) Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);
printf("\n %d trials, pi is %f \n",num_ trials, pi);
}

Embarrassingly parallel: the
parallelism is so easy its
embarrassing.

Add two lines and you have a
parallel program.

24

r Monte Carlo with 8 threads: LCG and MLCG

MLCG: Multiplicative Linear Congruential Generator.

_0.5 -

—1.0 1

_1'5 o

_2'0 -

-2.5

Log (relative error)

_3_0 -

-3.5

-d.0 4

MLCG run 1

— MLCG run 2
- MLCG run 3

MLCG single thread

ranNext = (My cg*ranLast)%mody cc

Run the same program
the same way and get
different answers!

That is not acceptable!

Issue: The MLCG
generator is not
threadsafe

—

Apple M2 chip, gcc-13, MacOS 14.6.1

—

L T U Ll

3 - 5 6
Log (number of samples)

// MLCG parameters

static long MULTIPLIER = 1583458089;
static long PMOD =2147483647;
static long SEED =7325973;

25

Data Sharing and OpenMP: Threadprivate

* Makes global data private to a thread
- Fortran: COMMON blocks

- C: File scope and static variables, static class members

 Different from making them PRIVATE

- with PRIVATE global variables are masked.
- THREADPRIVATE preserves global scope within each thread

* Threadprivate variables can be initialized using COPYIN or at time of definition
(using language-defined initialization capabilities)

26

A Threadprivate Example (C)

Use threadprivate to create a counter for each thread.

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()

{

counter++;
return (counter);

}

27

MLCG code: threadsafe version

static long MULTIPLIER = 1366;

static long PMOD = 714025;

long random_last = 0;

#pragma omp threadprivate(random_last)
double random ()

{

long random_next;

random_last carries state between
random number computations,

To make the generator threadsafe,
make random_|ast threadprivate so
each thread has its own copy.

random_next = (MULTIPLIER * random_last)% PMOD;

random_last = random_next;

return ((double)random_next/(double)PMOD);
}

28

it Monte Carlo with 8 threads: Threadsafe RNG library

MLCG: Multiplicative Linear Congruential Generator.

0.0 T

_0.5 -

—1.0 T

_1.5 -

_2.0 -

_2.5 -

Log (relative error)

_3.0 -

—3.5 7

_4.0 -

MLCG results from 4 identical
runs with a threadsafe library

MLCG single thread

ranNext = (My cg*ranLast)%mody cc

The library is threadsafe
... we get the same results
from one run to the next,
but the results are awful.

Why?

Apple M2 chip, gcc-13, MacOS 14.6.1

Log (number of samples)

// MLCG parameters

static long MULTIPLIER = 1583458089;
static long PMOD =2147483647;
static long SEED =7325973;

29

Pseudo Random Sequences

« Random number Generators (RNGs) define a sequence of pseudo-random numbers of length equal to
the period of the RNG

For LCG RNGs, if you pick the addend and multiplier
correctly, the period equals the mod, ., parameter

e In a typical problem, you grab a subsequence of the RNG period

|

Seed determines starting point

e |F each thread has the same seed, you just sample the same points over and over from each thread.

Thread O

Thread 1

Thread 2

LCG: Linear Congruential Generator ranNext = (M g *ranlLast + A)%mod

30

r Monte Carlo with 8 threads: Different seed per thread

MLCG: Multiplicative Linear Congruential Generator. ranNext = (My cg*ranLast)%mody cc
Seed(): Called inside parallel region by each thread to set ranLast = SEED * (thread_ID + 1)

Apple M2 chip, gcc-13, MacOS 14.6.1

Log (number of samples)

-0.5 - N
\\
1.0 MLCG threadsafe plus each
\ thread has its own seed
\
1 \ Results are much better,

—_— \ = = = MLCG single thread but are erratic and
= degrade for larger cases
v —2.0 1
S Why?
=
o
[-2.9
o
o
all -3.0 4

-3.5 1

// MLCG parameters
—4.0 - static long MULTIPLIER = 1583458089;
static long PMOD =2147483647;
T T T T static long SEED = 7325973;

Pseudo Random Sequences

« Random number Generators (RNGs) define a sequence of pseudo-random numbers of length equal to
the period of the RNG

For LCG RNGs, if you pick the addend and multiplier
correctly, the period equals the mod, ., parameter

e In a typical problem, you grab a subsequence of the RNG period

7

Seed determines starting point

e Grab arbitrary seeds and you may generate overlapping sequences

Thread 0
Thread 1

e Overlapping sequences = over-sampling some points and bad statistics ... lower quality or even wrong answers!

LCG: Linear Congruential Generator ranNext = (M g *ranlLast + A)%mod

Parallel random number generators

* Multiple threads cooperate to generate and use random numbers.

e Solutions:
- Pick a seed and hope for the best (a common approach)
- Give each thread a separate, independent generator
- Have one thread generate all the pseudo-random numbers.

- Leapfrog ... deal out sequence values “round robin” as if dealing a deck of cards.
- Block method ... pick your seed so each threads gets a distinct contiguous block.

e Other than “replicate and hope”, these are difficult to implement. Be smart

... use a math library that does it right.

If done right, can
generate the same
sequence regardless
of the number of
threads ...

Important for
validation and
debugging, but not
needed for high
quality results.

The state of the art is the Scalable Parallel Random Number Generators
Library (SPRNG): http://www.sprng.org/ from Michael Mascagni’s group at
Florida State University.

33

http://www.sprng.org/

The leapfrog method for parallel random number generators

e A specific pseudo-random number generator defines a sequence of pseudo-random numbers

€ >

e A seed picks a starting point for a contiguous sub-sequence of the pseudo-random sequence.

) S E—

e Leapfrog method: P threads pick adjacent starting points. Use a skip factor so each thread’s next number
leaps ahead by P places ... i.e., the same subsequence as with one thread but distributed across P threads.

Starting point
for P=3 threads For the MLCG generator:

N\
wing

Subsequent numbers
Skip P=3 places

rany.;= (M*rany)%mod rany.,,= (M*rany,,)%mod rany,s= (M*rany,,)%mod
Thread 0

From the rules for modular arithmetic, we know that:
rany,;= (M*(M*(M*rany)%mod)%mod)%mod = ((M*M)%mod)*M)%mod)*rany)%mod

Thread 1
Thread 2

So MLCG has a skip factor for P=3 equal to:

Skip; = ((M*M)%mod)*M)%mod > rany,; = (Skips*ran,)%mod

34

Leap Frog (skipping) Method (for MLCG)

* MLCG supports skipping for multiplier (MULT), modulus (PMOD) and seed (input_seed)

* The following code is called inside the parallel region where the parallel RNG will be used. It sets the seed for each thread
and computes the skip factor ... which is just the multiplier applied (Nthreads-1) times using modular arithmetic

int id = omp_get_thread_num();
int nthreads = omp_get_num_threads();

#pragma omp single One thread computes offsets and a strided multiplier (mult_n)

{

pseed[0] = input_seed;
skip_n = MULT;
for (i = 1; i < nthreads; ++i) {

pseed[i] = (|\/|U|_T * pseed[i-1]) % PMQOD; | Compute the offset into the random sequence where the thread ID=i will start

skip_n = (skip_n * MULT) % PMOD; Update the skip factor. By the end of the loop, it will skip by nthreads positions
} when skip_n is used inside an MLCG generator instead of MULT

}

random_last = (unsigned long long) pseed][id]; | Each thread stores offset starting point into its threadprivate “random_last” value

The MLCG random number generator uses skip_n instead of MULT so on each call, it skips ahead nthreads places.

MLCG: Multiplicative Linear Congruential Generator MLCG: ranNext = (MULT*ranLast)%PMOD RNG: Random Number Generator 35

The leapfrog method for parallel random number generators

e A specific pseudo-random number generator defines a sequence of pseudo-random numbers

€ >

e A seed picks a starting point for a contiguous sub-sequence of the pseudo-random sequence.

) S E—

e Leapfrog method: P threads pick adjacent starting points. Use a skip factor so each thread’s next number
leaps ahead by P places ... i.e., the same subsequence as with one thread but distributed across P threads.

Starting point
for P=3 threads

Thread 0

Thread 1
Thread 2

D e

Subsequent numbers
Skip P=3 places

36

LeapFrog: Same sequence with many threads.

* We can use the leapfrog method to generate the same answer for any number of threads.

* These results are for Leapfrog with the MLCG generator (r,.,, = (Mult*r.)%Mod)

Samples One thread 2 threads 4 threads
1000000 3.139852 3.139852 3.139852
5000000 3.140930 3.140930 3.140930

10000000 3.140884 3.140884 3.140884

50000000 3.141199 3.141199 3.141199

100000000 3.141348 3.141348 3.141348

e Used two streams of pseudo-random
numbers ... one for x and one fory. This
was needed to make (x,y) pairs
consistent as the number of threads
changed.

* Streaml1 MCLG:
- Mult: 1583458089
- Mod: 2147483647
- Seed: 2147483647

* Stream 2 MCLG:
- Mult: 295397169;
- Mod: 1073741789
- Seed: 7727

37

Linear Congruential generators are
fine, but there are many other ways
to generate pseudo-random
numbers

Commonly used RNGs

 Combine multiple LCGs
* Long sequence length (with a good choice of relatively-prime multipliers)
» Small state, great for skipping values (leapfrog)
* Relatively slow(!)
* No real theoretical grounding
* Example: Wichmann-Hill (1982) combined 3 LCGs, expanded to 4 LCGs as tests became more stringent

* Lagged Fibonacci Generator (LFG)

* S,=(Sn;OP S,«)% m. where OP is a binary operation. eg addition, subtraction, multiplication, or exclusive-
or (often with added sprinkles)

e Choice of binary operation defines a family of generators

e Quality and sequence length determined by the lag k (0<j<k), large values can give very long sequences but
require more memory for the generator state

* Proper initialization is particularly important

Random Numbers and Their Use in HEP aka - Use and abuse of random number generators. David Lange (Princeton University)

Commonly used RNGs

* Mersenne Twister (Matsumoto & Nishimura, 1997) is a Lagged Fibonacci Generator with exclusive-or as
the binary operation

* Often recommended as a good tradeoff between speed and quality

» Default generator for ROOT global gRandom

* Can have very long sequence lengths

e LeapFrog is possible but slow and not widely implemented

* Independent sub-sequence algorithm not formally proved (or widely implemented)

* Weak theoretical basis - fails some of the more stringent tests of the current TestUO1 suite

 RANLUX (Marsaglia & Zaman 1991) An additive LFG with an additional “carry” term. Has interesting
mathematical properties:

e Equivalent to LCG with a very large multiplier
* Fails some basic RNG tests, but has a large period (248).
* High quality but can be relatively slow (up to ~50X slower than Mersenne Twister)

Lischer (1994): with some additional constraints, dynamical system with Kolmogorov-Anosov mixing ... with
guarantees of ergodicity, coverage, asymptotic independence

Has been the standard generator for HEP ...“Full” detector simulations, Lattice QCD...

LFG: Lagged Fibonacci Generator

HEP: High Energy Physics Random Numbers and Their Use in HEP aka - Use and abuse of random number generators. David Lange (Princeton University)

Commonly used RNG libraries

e C++ libraries
rand() - Avoid except for testing

boost
CLHEP - HEP standard package for RNGs

STL numerics library (includes LCG, mersenne twister, ranlux) -
https://en.cppreference.com/w/cpp/numeric/random

* Python libraries
* random
* numpy.random

* Writing codes that require random numbers? Choose carefully and be sure to understand how to properly
seed generators (and how to get either reproducible or distinct results when rerunning your application)

Random Numbers and Their Use in HEP aka - Use and abuse of random number generators. David Lange (Princeton University)

https://en.cppreference.com/w/cpp/numeric/random

Commonly used RNGs

 MIXMAX generator: G. Savvidy & N. Ter-Arutyunyan-Savvidy (1991):
* Based on a dynamical system of equations

Naive implementation hopelessly slow. K. Savvidy (2014) found tricks and optimizations that yield fast performance
When stored state is large (=240 64-bit words):

* Speed competitive with Mersenne Twister for a single iteration

* Efficient skipping ... to support leap-frog methods for parallel random number generators

* The period is HUGE (>10%832) ... supports independent sub-sequences for parallel generators on large clusters

* Slow initialization
Part of the ROOT package from CERN since September 2015
Displacing RANLUX as the HEP standard for high quality random numbers:
The current version of MIXMAX is thread save and passes the UO1 tests

On the Monte Carlo simulation of physical systems, G. Savvidy & N. Ter-Arutyunyan-Savvidy , J.Comput.Phys. 97, 566 (1991), http://dx.doi.org/10.1016/0021-9991(91)90015-D

The MIXMAX Random Number Generator, K. G. Savvidy, April 2014, https://arxiv.org/pdf/1403.5355

http://dx.doi.org/10.1016/0021-9991(91)90015-D
http://dx.doi.org/10.1016/0021-9991(91)90015-D
http://dx.doi.org/10.1016/0021-9991(91)90015-D
http://dx.doi.org/10.1016/0021-9991(91)90015-D
http://dx.doi.org/10.1016/0021-9991(91)90015-D

Let’s wrap this up ... random
numbers are supposed to be a
boring technology you just use

without thinking about it.

Conclusion

* You now know how to use (and abuse) pseudo-random numbers.

* Itis shockingly easy to use them incorrectly ... | lack detailed survey-data but based on anecdotal
evidence, | suspect a large number of published papers using Monte Carlo methods are broken due to
abuse of pseudo-random numbers.

* Important rules to follow:
- Be careful with default, built-in random number generators.
- Know the method your generator is using and confirm that the parameters give you the period you need.
- Use a quality (tested/validated) generator. They are fun to write, but it’s a job best left to professionals.

- Don’t be stupid about using generators in parallel. There are parallel generators “out there” (such as SPRNG).
Use them. http://www.sprng.org/

Be careful. There is some extremely bad advice “out there”. For example, from https:/luscher.web.cern.ch/luscher/ranlux/ ...

The ranlux generator 1s widely used in Monte Carlo simulation programs. Such simulations are often performed on parallel
computers, where each MPI process runs a private copy of the generator (with different seeds).

https://luscher.web.cern.ch/luscher/ranlux/

