
1

https://agenda.infn.it/event/45177

Preventing and discovering software defects

F. Giacomini

INFN-CNAF

ESC25 — Bertinoro, 29 September – 9 October 2025

https://agenda.infn.it/event/45177


2

<<

The aim should be to shift left the discovery of defects



2

<<

The aim should be to shift left the discovery of defects



3

During design and development

• Get familiar with the C++ Core Guidelines
• Design a class around its class invariant

◦ A class invariant is a relation among the data members of a
class that defines the valid values for the objects of that class

• Design a function around a contract
◦ A contract is given by pre-conditions (constraints on the

function arguments) and post-conditions (guarantees about
the results)

• Waiting for proper support for contracts by the language,
maybe in C++26, be generous with asserts

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://wg21.link/P2900


4

The compiler is your friend

• Enable as many warnings as reasonable and keep your
compilation warning-free

• For gcc, for example:
-Wall -Wextra -Wpedantic -Wconversion
-Wsign-conversion -Wshadow -Wimplicit-fallthrough
-Wextra-semi -Wold-style-cast

• But there are many many others



5

The compiler is your friend (cont.)

• Enable the assertions in the C++ standard library, to
terminate the program in case of logical bugs

• For gcc, compile with -D_GLIBCXX_ASSERTIONS
• Keep these assertions also in production builds, the overhead

should be negligible (but measure it)
• See -fhardened, but also Standard library hardening in

C++26

https://gcc.gnu.org/onlinedocs/gcc-14.2.0/gcc/Instrumentation-Options.html#index-fhardened
https://wg21.link/p3471


6

The compiler is your friend (cont.)

• Profit from the sanitizers (address, undefined, thread, . . . )
• For example add -fsanitize=address,undefined, possibly

combined with -D_GLIBCXX_SANITIZE_VECTOR
-D_GLIBCXX_SANITIZE_STD_ALLOCATOR, to your debug
builds

• Do not enable the sanitizers in production builds, due to their
overhead



7

Unit testing

• Basic unit testing comes pretty easily with libraries like
doctest, Catch, gtest, . . .

TEST_CASE("Testing the factorial function"){
CHECK(factorial(5) == 120);
CHECK(factorial(0) == 1);
CHECK(factorial(1) == 1);
· · ·

}

• Be aware that testing can reveal the presence of bugs, not
prove their absence

• Write tests with the purpose of breaking the code, not to
confirm that it’s correct

• Remember to enable the sanitizers
• You can even (ab)use static_asserts and run your tests

directly at compile time

https://github.com/doctest/doctest
https://github.com/catchorg/Catch2
https://github.com/google/googletest


8

Before talking about debugging...

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as pos-
sible, you are, by definition, not smart enough to debug it.

– Brian Kernighan



9

Using a debugger

• A debugger allows to execute a program step by step, printing
variables, setting breakpoints and watchpoints, examining
memory (incuding core dumps after a crash)

• Many exist. Let’s consider gdb

$ gdb –version
GNU gdb (AlmaLinux) 14.2-4.1.el9_6
· · ·

• For the basic commands see https://cht.sh/gdb
• When debugging, compile with -g -Og

-fno-omit-frame-pointer
◦ Recommended also when using sanitizers

https://cht.sh/gdb

