Preventing and discovering software defects

F. Giacomini

INFN-CNAF

ESC25 — Bertinoro, 29 September — 9 October 2025

https://agenda.infn.it/event/45177

https://agenda.infn.it/event/45177

Cost of Fixing
A

Requirements Design and Unit Functionality/System User

Gathering Development Testing Testing Acosptance Live

Point at which
Bug Discovered

Cost of Fixing

A
Requirements Design and Unit Functionality/System User e =
Gathering Development Testing Testing Accepfance
Point at which
Bug Discovered

The aim should be to shift left the discovery of defects

During design and development

® Get familiar with the C+-+ Core Guidelines
® Design a class around its class invariant
o A class invariant is a relation among the data members of a
class that defines the valid values for the objects of that class
® Design a function around a contract
o A contract is given by pre-conditions (constraints on the
function arguments) and post-conditions (guarantees about
the results)
[]

Waiting for proper support for contracts by the language,
maybe in C++26, be generous with asserts

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://wg21.link/P2900

The compiler is your friend

® Enable as many warnings as reasonable and keep your
compilation warning-free

® For gcc, for example:
-Wall -Wextra -Wpedantic -Wconversion
-Wsign-conversion -Wshadow -Wimplicit-fallthrough
-Wextra-semi -Wold-style-cast

® But there are many many others

The compiler is your friend (cont.)

Enable the assertions in the C++ standard library, to
terminate the program in case of logical bugs
® For gcc, compile with -D_GLIBCXX_ASSERTIONS

Keep these assertions also in production builds, the overhead
should be negligible (but measure it)

® See -fhardened, but also Standard library hardening in
C++26

https://gcc.gnu.org/onlinedocs/gcc-14.2.0/gcc/Instrumentation-Options.html#index-fhardened
https://wg21.link/p3471

The compiler is your friend (cont.)

® Profit from the sanitizers (address, undefined, thread, ...)

® For example add -fsanitize=address,undefined, possibly
combined with -D_GLIBCXX_SANITIZE_VECTOR
-D_GLIBCXX_SANITIZE_STD_ALLOCATOR, to your debug
builds

® Do not enable the sanitizers in production builds, due to their
overhead

Unit testing

® Basic unit testing comes pretty easily with libraries like
doctest, Catch, gtest, ...
TEST_CASE("Testing the factorial function"){
CHECK (factorial(5) == 120);

CHECK (factorial(0) == 1);
CHECK (factorial(1l) == 1);

® Be aware that testing can reveal the presence of bugs, not
prove their absence

e Write tests with the purpose of breaking the code, not to
confirm that it's correct

® Remember to enable the sanitizers

® You can even (ab)use static_asserts and run your tests
directly at compile time

https://github.com/doctest/doctest
https://github.com/catchorg/Catch2
https://github.com/google/googletest

Before talking about debugging...

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as pos-
sible, you are, by definition, not smart enough to debug it.

— Brian Kernighan

Using a debugger

® A debugger allows to execute a program step by step, printing
variables, setting breakpoints and watchpoints, examining
memory (incuding core dumps after a crash)

® Many exist. Let's consider gdb

$ gdb -version
GNU gdb (Almalinux) 14.2-4.1.el19_6

® For the basic commands see https://cht.sh/gdb

® When debugging, compile with -g -0g
-fno-omit-frame-pointer

o Recommended also when using sanitizers

https://cht.sh/gdb

