
Floating Point Arithmetic is not Real

Tim Mattson

Acknowledgements: I borrowed some content from lectures on floating point arithmetic by Ianna Osborne and Wahid Redjeb.
git clone https://github.com/tgmattso/Princeton2025.git

Should we trust computer arithmetic?
Sleipner Oil Rig Collapse (8/23/91). Loss: $700 million.

See http://www.ima.umn.edu/~arnold/disasters/sleipner.html

Linear elastic model using NASTRAN underestimated shear
stresses by 47% resulted in concrete walls that were too thin.

$1.6 Billion in
2024 dollars

NASTRAN is the world’s
most widely used finite

element code … in heavy
use since 1968

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding
– Algebraic Properties of Floating Point Arithmetic

• Responding to “issues” in floating point arithmetic
– Changing the math
– Numerical Analysis
– Alternatives to IEEE 754

• Wrap-up/Conclusion

3
git clone https://github.com/tgmattso/CompSciForPhys.git

Numbers for Humans

4

Real Numbers: viewed as points on a line … pairs of real numbers can be arbitrarily close

Numbers for Humans

5

For the arithmetic operators, real numbers define a closed set … for well defined operations and any input
real numbers, the arithmetic operation returns a real number.

A few key properties of Real Arithmetic:
• Commutative over addition and multiplication: (a+b) = (b+a) a*b = b*a

• Associative: (a+b)+c = a+(b+c) (a*b)*c = a*(b*c)

• Multiplication distributes over addition: c * (a+b) = c*a + c*b

Arithmetic over Real Numbers

Numbers for Humans

6

We are used to thinking of different kinds of numbers
contained within the set of real numbers

• Integers: equally spaced numbers without a fractional part

• Rational numbers: Ratios of integers

• Whole numbers: Positive integers and zero

• Natural numbers: Positive integers and not zero

• Irrational numbers: numbers that cannot be represented
as a ratio of integers

Based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023

People use many different kinds of numbers

The numbers on a computer are just another set of numbers
embedded in the set of real numbers

Numbers for Humans

7

: Example

𝐺 ≈ 0.00000000006674
𝑚!

𝑘𝑔 ∗ 	𝑠"

0.00000000006674

Scientific Notation

Based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023

The exponent tells us how far
to “float” the decimal point.

G ≈ 6.674 × 10-11 m3⋅kg-1⋅s-2
significand

radix

exponent

Numbers for Humans

8

How do we represent Real Numbers?

𝐺 ≈ 6 . 10# + 6 . 10$% + 7 . 10$" + 4 . 10$! .	10$%%

𝑥 = (−1)&'()6
'*#

+

𝑑'𝒃$'𝒃,-.

𝑠𝑖𝑔𝑛 ∈ 0,1 , 𝑏 ≥ 2,	 𝑑!∈ 0,… , 𝑏 − 1 , 	 𝑑"> 0	𝑤ℎ𝑒𝑛	𝑥 ≠ 0, 	𝐛, 𝑖, exp ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

We can generalize the above to any real number as …

Based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023

G ≈ 6.674 × 10-11 m3⋅kg-1⋅s-2
significand

radix

exponent

… where 𝒃 is the radix

Numbers for Humans

9

How do we represent Real Numbers?

𝐺 ≈ (6 . 10# + 6 . 10$% + 7 . 10$" + 4 . 10$!) . 10$%%

𝑥 = (−1)&'()6
'*#

+

𝑑'𝒃$'𝒃,-.

𝑠𝑖𝑔𝑛 ∈ 0,1 , 𝑏 ≥ 2,	 𝑑!∈ 0,… , 𝑏 − 1 , 	 𝑑"> 0	𝑤ℎ𝑒𝑛	𝑥 ≠ 0, 	𝐛, 𝑖, exp ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

We can generalize the above to any real number as …

What about numbers
for computers?

Based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023

Human’s deal nicely with∞.
Computers do not.

Humans like a radix = 10.
Which radix is best for a computer?

G ≈ 6.674 × 10-11 m3⋅kg-1⋅s-2
significand

radix

exponent

Numbers for Computers

10

𝑥 = (−1)&'()6
'*#

0

𝑑'𝑏$'𝑏,-.

𝑠𝑖𝑔𝑛 ∈ 0,1 , 𝑏 ≥ 2,	 𝑑!∈ 0,… , 𝑏 − 1 , 	 𝑑"> 0	𝑤ℎ𝑒𝑛	𝑥 ≠ 0, 	b, 𝑖, exp ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

Computers work with a restricted subset of real numbers…
Finite precision … restricted to N

digits.

N is tied to the length of a “word” in a
computer’s architecture. This is

typically the width of the registers in a
microprocessor’s register file.

Which radix (b) is best for a computer?

Binary has di ∈ {0,1}. Naturally maps onto representation as transistors used to implement computer logic.

Decimal has di ∈ {0, …, 9}. Requires four bits per digit … which wastes space (since four bits can encode {0,…,15}).

Exercise: Playing with “numbers for computers”

• You are a software engineer working on a device that tracks objects in time and space.

• The device increments time in “clock ticks” of 0.01 seconds.

• Write a program that tracks time by accumulating N clock-ticks. N is typically large … around
100 thousand. Output from the function is elapsed seconds expressed as a float.
– Assume you are working with an embedded processor that does not support the type double.
– This is part of an interrupt driven, real time system, hence track “time” not “number of ticks” since this time may be

needed at any moment.
– Do the computations in single precision (float) to make things “more interesting”

• What does your program generate for large N (500000)?

11

Accumulating clock ticks (0.01): Solution
#include <stdio.h>
#define time_step 0.01f

float CountTime(int Count)
{
 float sum = 0.0f;

 for (int i=0; i<Count;i++)
 sum += time_step;

 return sum;
}
int main()
{
 int Count = 500000;
 float time_val;

 time_val = CountTime(Count);
 printf(" sum = %f or %f\n",time_val,time_step*Count);
} 12

% gcc -O0 hundreth.c
% ./a.out
sum = 4982.411132. or 5000.000000

%

Why did summing 0.01 fail?

13

There are 10 kinds
of people in the

world.

I saw this slogan on
a T-shirt years ago

Those who
understand binary

and those who
don’t.

Converting a decimal number (0.01) to fixed point binary

14

1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
512

1
1024

1
2048

1
2𝑁

1
4096

1
8192

1
16384

1
32768

1
65536

1
131072

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1
256

N

• Continuing to 32 bits we get 0.00000010100011110101110000101000… but it’s still not done.

• The denominator of the number 1/100 includes a relative prime (5) to the radix of binary numbers (2).
Hence, there is no way to exactly represent 1/100 in binary!

0.01!" ≈ 0.0000001#

0.01!" ≈ 0.000000101#

0.01!" ≈ 0.0000001010001#

The fraction !
#!

 nearest but less than or equal to !
!""

 is !
!#$

 (N=7)

0.01 is equal to !
!""

.

The remainder !
!""

− !
!#$

= %
&#""

≈ !
'(%

. 	The	fraction !
#!

 nearest but

less than or equal to this remainder is !
(!#

 (N=9)

The remainder %
&#""

− !
(!#

= &
!#$""

≈ !
'#))

. 	The	fraction !
#!

 nearest

but less than or equal to this remainder is !
$!*)

 (N=13)

Real numbers on a computer are represented as finite precision numbers

• Conclusion: Not all decimal numbers have an exact representation as binary numbers.
– You can have computations where the answer does NOT have an exact binary representation … in other words,

fixed precision arithmetic is NOT a closed set.

float c, b = 1000.2f;
c = b - 1000.0;
printf (" %f”, c);

Output: 0.200012

• The best we can hope for is that the computer does the computation “exactly” then rounds to the
nearest binary number.

Real numbers on a computer are represented as finite precision numbers

• Conclusion: Many decimal numbers do not have an exact representation as binary numbers.
– You can have computations where the answer does NOT have an exact binary representation … in other words,

fixed precision arithmetic is NOT a closed set.

float c, b = 1000.2f;
c = b - 1000.0;
printf (" %f”, c);

Output: 0.200012

• The best we can hope for is that the computer does the computation “exactly” then rounds to the
nearest binary number.

Who cares?
Does this really matter?

Patriot Missile system
Patriot missile incident (2/25/91) . Failed to stop a scud missile from hitting a barracks,

killing 28 Americans.

See http://www.fas.org/spp/starwars/gao/im92026.htm

Patriot missile system: how it works

18

Missile

Search Action: entire
beam processed to get
position and velocity

Verification: range
around trajectory
defines a ”range gate”

Tracking
Only objects in the “range gate”
are tracked … to make sure
other flying objects are not
accidentally targeted.

Range gate area

Incoming object detected as an enemy missile due to properties of the trajectory. Velocity and position from Radar fixes trajectory

24 bit clock counter defines time. Range calculations defined by real arithmetic, so convert to floating point numbers.

Patriot Radar
System

Patriot missile system: Disaster Strikes

19

Incoming object detected as an enemy missile due to properties of the trajectory. Velocity and position from Radar fixes trajectory

Accumulating clock-ticks (int) by the float representation of 0.01 led to an error of 0.3433 seconds after 100 hours of operation
which, when you are trying to hit a missile moving at Mach 5, corresponds to an error of 687 meters

Missile

Search Action: entire
beam processed to get
position and velocity

Verification: range
around trajectory
defines a ”range gate”

Tracking
Only objects in the “range gate”
are tracked … to make sure
other flying objects are not
accidentally targeted.

Erroneous Range
gate location

Patriot Radar
System

Missile outside range gate
28

soldiers
killed

Exercise: Playing with “numbers for computers”

• You are a software engineer working on a device that tracks objects in time and space.

• The device increments time in “clock ticks” of 0.01 seconds. Propose (and test) a value for the
clock tick that makes the program work.

• Write a program that tracks time by accumulating N clock-ticks. N is typically large … around
100 thousand. Output from the function is elapsed seconds expressed as a float.
– Assume you are working with an embedded processor that does not support the type double.
– This is part of an interrupt driven, real time system, hence track “time” not “number of ticks” since this time may be

needed at any moment.

• What does your program generate for large N?

20

Exercise: Playing with “numbers for computers”

• You are a software engineer working on a device that tracks objects in time and space.

• The device increments time in “clock ticks” of 0.01 seconds. Propose (and test) a value for the
clock tick that makes the program work.

• Write a program that tracks time by accumulating N clock-ticks. N is typically large … around
100 thousand. Output from the function is elapsed seconds expressed as a float.
– Assume you are working with an embedded processor that does not support the type double.
– This is part of an interrupt driven, real time system, hence track “time” not “number of ticks” since this time may be

needed at any moment.

• What does your program generate for large N?

21

> ./a.out
dt = 0.0078125000000000000. // dt=1.0/128.0 … one over a power of two
sum = 39062.5000000000000000000, dt*Count=39062.5000000000000000000

Floating Point Numbers are not Real: Lessons Learned

22

Real Numbers Floating Point numbers

Any number can be represented … real numbers are
a closed set

Not all numbers can be represented … operations
can produce numbers that cannot be represented …
that is, floating point numbers are NOT a closed set

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding
– Algebraic Properties of Floating Point Arithmetic

• Responding to “issues” in floating point arithmetic
– Changing the math
– Numerical Analysis
– Alternatives to IEEE 754

• Wrap-up/Conclusion

23git clone https://github.com/tgmattso/CompSciForPhys.git

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

The
concept of

floating
point

numbers is
very old

(1750 BC)

The era of
floating point

chaos

IEEE-754
floating point is
born … thanks
to a team led

by William
Kahan

Intel produces
the first chip to
support IEEE-
754 in 1980
(the 8087

coprocessor)

IEEE-754
floating point
continues to

evolve … next
version

expected in
2029

Summarizing the key points …

First CPU with
an integrated
IEEE-754 unit

Floating Point Number systems

26

𝑥 = (−1)&'()6
'*#

.

𝑑'𝑏$'𝑏, = ±𝑑#.𝑑%…𝑑.$%×𝑏,

Computers work with finite precision, floating point numbers …

𝑏 ≥ 2

𝑝 ≥ 1

𝑒𝑚𝑎𝑥

𝑒𝑚𝑖𝑛

The radix … usually 2 or 10 (but occasionally 8 or 16)

The precision … the number of digits in the significand

The largest exponent

The smallest exponent (generally 1 – emax)

These four numbers define a unique set of floating point numbers … written as F(b, p, emin, emax)

𝑠𝑖𝑔𝑛 ∈ 0,1
𝑑! ∈ 0,… , 𝑏 − 1

𝑒#!$ ≤ 𝑒 ≤ 𝑒#%&

Floating Point Number systems: Normalized numbers

27

𝑥 = (−1)&'()6
'*#

.

𝑑'𝑏$'𝑏, = ±𝑑#1.𝑑%…𝑑.$%×𝑏,

Consider representations of the decimal number 0.1

F*(b, p, emin, emax)

𝑠𝑖𝑔𝑛 ∈ 0,1
𝑑! ∈ 0,… , 𝑏 − 1

𝑒#!$ ≤ 𝑒 ≤ 𝑒#%&

1.0×10'(, 	 0.1×10", 	 0.01×10(

• These are all the same number, just represented differently depending on the choice of exponent.
• That ambiguity is confusing, so we require that d0 ≠ 0 so numbers between bmin and bmax have a single

unique representation.
• We call these normalized floating point numbers

𝑑" ≠ 0

• do not have normalized representations. 𝑥 = 0	 𝑎𝑛𝑑	𝑥 < 𝑏0!"#

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023 28F*(Radix, Precision, emin, emax)

Equivalent
decimal values
for all patterns
of normaliezed

binary digits
and exponents

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding
– Algebraic Properties of Floating Point Arithmetic

• Responding to “issues” in floating point arithmetic
– Changing the math
– Numerical Analysis
– Alternatives to IEEE 754

• Wrap-up/Conclusion

31git clone https://github.com/tgmattso/CompSciForPhys.git

Source: Wahid Redjeb, ESC’22 32

IEEE 754 Floating Point Numbers

Source: Wahid Redjeb, ESC’22 33

IEEE 754 Floating Point Numbers

For normalized, binary floating
point numbers, the lead bit is

“always” one so there is no reason
to store it. The bit is “hidden”

Exceptions
• Certain situations outside “normal” behavior are defined as Exceptions. Two cases:

1. Silent: An exception occurs, a status flag is set, a result is returned and the computation proceeds. This is the typical case.

2. Signaled: The exception occurs, a signal is raised, and an optional trap function is invoked. Trapping can be set through
compiler switches but can seriously slow down code. This is very rarely done … except by professionals writing low-level
math libraries.

34

• The Exceptions defined by IEEE 754 include the following
– Underflow: The result is too small to be represented as a normalized float. Produces a signed zero or a denormalized float.

– Overflow: The result is too large to be represented by a normalized float. Produces a signed infinity.

– Divide-by-zero: A float is divided by zero. The appropriate infinity is returned.

– Invalid: The operation or its result is ill-defined (such as 0.0/0.0). A NaN is returned.

– Inexact: The result of the floating point operation is not exact and must be rounded. The rounded result is returned

Special values

35

• The IEEE 754 standard defines a number of special values

The special value exponent fraction
1. 𝑓×20 𝑒123 ≤ 𝑒 ≤ 𝑒145 Any pattern of 1’s and 0’s

0. 𝑓×20!"# All 0’s (𝑒123 − 1) 𝑓 ≠ 0

±0 All 0’s (𝑒123 − 1) 𝑓 = 0

±∞ All 1’s (𝑒145 + 1) 𝑓 = 0

NaN All 1’s (𝑒145 + 1) 𝑓 ≠ 0

Regular normalized floating point numbers.

Denormalized Numbers … too small to
represent as a normalized number.

0 and ∞ have signs to work with limits

Not a Number (undefined math such as 0/0).

• Typically, we do not test for these cases in code, but they do show up from time to time (especially NaN) so its
good to be aware of them.

More about NaNs (Not a Number)

36

• Here are the cases where a NaN can be produced.

• There are two kinds of NaNs:
– A quiet NaN … A NaN condition is identified but no further information is provided. The fraction bits are all zero other

than the first one.
– A signaling NaN … Additional implementation dependent information is encoded into the fraction bits.

Operation NaN produced by …
+ ∞+ (−∞)
× 0×∞
/ 0/0, 	∞/∞

𝑅𝐸𝑀 𝑥	𝑅𝐸𝑀	0, 	∞𝑅𝐸𝑀	𝑦
	 𝑥	 𝑤ℎ𝑒𝑛	 𝑥 < 0

Source: What every computer computer scientist should know about floating point arithmetic, David Goldberg, Computing Surveys, 1991 https://dl.acm.org/doi/pdf/10.1145/103162.103163

37

Writing IEEE 754 numbers in binary

IEEE name Precision N bits Exponent w Fraction p emin emax
Binary 64 double 64 11 53 -1022 1023

1 00101000100000000

sign fraction, p-1, 52 bitsexponent, w, 11 bits

• The number 42.0 written in binary

Keeping track of all 64 locations and
writing all those zeros is painful

38

Writing IEEE 754 numbers in binary/hexadecimal

IEEE name Precision N bits Exponent w Fraction p emin emax
Binary 64 double 64 11 53 -1022 1023

1 00101000100000000

sign fraction, p-1, 52 bitsexponent, w, 11 bits

0x 0000000000005404

• The number 42.0 written in binary with the equivalent hexadecimal (base 16) form beneath.

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Decimal,
hexadecimal, and

binary

• It is dramatically easier to write things down in hexadecimal than binary.

• The following are notable examples of key “numbers” in hexadecimal.

-42 0xC045000000000000

Largest normal 0x7FEFFFFFFFFFFFF

Smallest normal 0x0010000000000000

Largest subnormal 0x000FFFFFFFFFFFF

Smallest subnormal 0X0000000000000001

+ zero 0x0000000000000000

-zero 0x8000000000000000

+infinity 0x7FF0000000000000

-infinity 0x8FF0000000000000

NaN 0X7FF-anything but all-zero

NaN: not a number A normal is a number that can be written in a normalized floating point format A subnormal is too small to be written as a normalized number
… the exponent would need to be less than emin.

Exercise: The machine epsilon
• When you compute the relative error between a result using real arithmetic, A𝑥, and the analogous

result using floating point arithmetic, 𝑥, we define the error in two different ways:
– Absolute error: "𝑥 − 𝑥

– Relative error: +,-,+,

• The relative error is normalized, so the smallest relative error is the distance between 1.0 and the
next largest floating point number. This goes by a number of names but it is traditionally called the
machine epsilon or 𝜀.

• Exercise … Write a program that computes 𝜀. Then compare your result to the
theoretical value.

39

Finding the machine epsilon

• The machine epsilon is the last number
added to one that yields a sum that is greater
than one.

• Note: our while loop ends when we can’t see
the difference between 1.0 and (1.0+eps),
Hence, it goes one step too far and we have
to adjust for that extra step.

40

#include <stdio.h>
#define TYPE float
int main(). {
 TYPE one = (TYPE)1.0;
 TYPE eps = (TYPE)1.0;
 long iters = 0;
 while((one+(TYPE)eps)>one){
 eps = eps/(TYPE)2.0;
 iters++;
 }

 iters--;eps*2.0; //adjust for one step too far
 printf(”epsilon is 2 to the -%ld or %g\n",
 sizeof(TYPE),iters,eps);

}

• The machine epsilon is the gap between 1.0 and the closest number larger than one.

• For an IEEE 754 32 bit floating point number (F*(2,24,-126,127)). The number closest but larger than 1.0 is:

F*(Radix, Precision, emin, emax)

𝜀 = 1.00…1 2" − 1.00…0 2" = 0.00…1 2" = 26 76! = 26#&

epsilon is 2 to the -23 or 1.19209e-07

Theoretical Result

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding
– Algebraic Properties of Floating Point Arithmetic

• Responding to “issues” in floating point arithmetic
– Changing the math
– Numerical Analysis
– Alternatives to IEEE 754

• Wrap-up/Conclusion

41git clone https://github.com/tgmattso/CompSciForPhys.git

Addition with floating point numbers
• Lets keep things simple … we will use F*(10, 3, -2, 2)

• Find the sum … 1.23 x 101 + 3.11 x 10-1
– Align smaller number to the exponent of the larger number

0.0311 x 101
– Add the two aligned numbers …..

42F*(Radix, Precision, emin, emax)

1 . 2 3
0 . 0 3 1 1
1 . 2 6 1 1

– Round to nearest (the default rounding in IEEE 754).

1 . 2 6

Adding numbers with greatly different magnitudes causes loss of precision
(you lose the low order bits from the exact result).

x 101

x 101

x 101

x 101

+

Exercise: summing numbers

• Compute the finite sum:

43

𝑠𝑢𝑚 = 	F
!)(

*
1.0
𝑖

• This is a simple loop. Run it forward (i=1,N) and
backwards (i=N,1) for large N (10000000). Try both
double and float

• Are the results different? Why?

Exercise: summing numbers

• Compute the finite sum:

44

𝑠𝑢𝑚 = 	F
!)(

*
1.0
𝑖

• This is a simple loop. Run it forward (i=1,N) and
backwards (i=N,1) for large N (10000000). Try both
double and float

• Are the results different? Why?

#include<stdio.h>
int main(){

 float sum=0.0;
 long N = 10000000;

 for(int i= 1;i<N;i++){
 sum += 1.0/(float)i;
 }
 printf(" sum forward = %14.8f\n",sum);

 sum = 0.0;
 for(int i= N-1;i>=1;i--){
 sum += 1.0/(float)i;
 }
 printf(" sum backward = %14.8f\n",sum);
}

float or double

Exercise: summing numbers

• Compute the finite sum:

45

𝑠𝑢𝑚 = 	F
!)(

*
1.0
𝑖

• This is a simple loop. Run it forward (i=1,N) and
backwards (i=N,1) for large N (10000000). Try both
double and float

• Are the results different? Why?

– In the forward direction, the terms in the sum get smaller as you
progress. This leads to loss of precision as the smaller terms lates in
the summation are added to the much larger accumulated partials sum.

#include<stdio.h>
int main(){

 float sum=0.0;
 long N = 10000000;

 for(int i= 1;i<N;i++){
 sum += 1.0/(float)i;
 }
 printf(" sum forward = %14.8f\n",sum);

 sum = 0.0;
 for(int i= N-1;i>=1;i--){
 sum += 1.0/(float)i;
 }
 printf(" sum backward = %14.8f\n",sum);
}

double float
forward 16.695311265857270655 15.40368271
backward 16.695311265859963612 16.68603134

float or double

– In the backwards direction, the terms in the sum start small
and grow … so reduced loss of precision adding small
numbers to much larger numbers.

– Using double precision greatly reduces this problem.

Floating Point Numbers are not Real: Lessons Learned

46

Real Numbers Floating Point numbers

Any number can be represented … real numbers are
a closed set

Not all numbers can be represented … operations
can produce numbers that cannot be represented …
that is, floating point numbers are NOT a closed set

With arbitrary precision, there is no loss of accuracy
when adding real numbers

Adding numbers of different sizes can cause loss of
low order bits.

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding
– Algebraic Properties of Floating Point Arithmetic

• Responding to “issues” in floating point arithmetic
– Changing the math
– Numerical Analysis
– Alternatives to IEEE 754

• Wrap-up/Conclusion

47git clone https://github.com/tgmattso/CompSciForPhys.git

What can go wrong with subtraction? Cancelation

• Consider two numbers …

48

3.141592653589793 16 digits of pi

3.141592653585682 12 digits of pi

Their difference (in real arithmetic) à 0.000000000004111 = 4.111 x 10-12

Storage of numbers and difference with float à

Storage of numbers and difference with double à

0.000000e+00

4.110933815582030e-12

Complete loss of
accuracy

Partial loss of
accuracy

• The machine epsilon for a double is 2.22045e-16. The above error is large compared to epsilon.

Subtracting two number of similar magnitude cancels high order bits.

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Exercise: Implement a Series summation to find ex

• A Taylor/Maclaurin series expansion for ex

49

𝑒5 = 1 + 𝑥 +
𝑥#

2! +
𝑥&

3! +	… = Z
38"

9
𝑥3

𝑛!

1. Compare to the exp(x) function in math.h for a range of x values greater than zero.
– How do your results compare to the exp(x) library function?

2. Compute ex for x<0. Consider small negative to large negative values.
– Do you continue to match the exp(x) library function?

Exercise: Implement a Series summation to find ex

• A Taylor/Maclaurin series expansion for ex

50

𝑒5 = 1 + 𝑥 +
𝑥#

2! +
𝑥&

3! +	… = Z
38"

9
𝑥3

𝑛!

• The computation of xn and n! are expensive but worse … they lead to large numbers that could
overflow the storage format.

• A better approach is to use the relation:

𝑥3

𝑛! =
𝑥
𝑛 •

𝑥36!

𝑛 − 1 !

• Terminating the sum … obviously you don’t want to go to infinity. How do you terminate the sum?
A good approach is to end the sum when new terms do not significantly change the sum. Or think
about what you did when computing the machine epsilon.

Compare computation of ex
directly and as e-x = 1/ ex.

Hints

Solution: Implement a Series summation to find ex
• A Taylor/Maclaurin series expansion for ex

51

𝑒5 = 1 + 𝑥 +
𝑥#

2! +
𝑥&

3! +	… = Z
38"

9
𝑥3

𝑛!

• The computation of xn and n! are expensive
but worse … they lead to large numbers
that could overflow the storage format.

• A better approach is to use the relation:

𝑥3

𝑛!
=
𝑥
𝑛
•

𝑥36!

𝑛 − 1 !

• Terminating the sum … obviously
you don’t want to go to infinity.
How do you terminate the sum?
A good approach is to end the
sum when new terms do not
significantly change the sum.

• For x< 0, compare computation
of ex directly and as ex = 1/ ex.

#define TYPE float
TYPE MyExp (TYPE x) {
 long counter = 0;
 TYPE delta = (TYPE)1.0;
 TYPE e_tothe_x = (TYPE)1.0;
 while((1.0 + delta) != 1.0) {
 counter++;
 delta *= x/counter;
 e_tothe_x +=delta;
 }
 return e_tothe_x;
}

x exp(x) math.h MyExp(x)

5 148.413 148.413

10 22026.5 22026.5

15 3.26902e+06 3.26902e+06

20 4.85165e+08 4.85165e+08

x exp(x) math.h MyExp(x) 1/MyExp(|x|)

-5 6.73795e-03 6.73714e-03 6.73795e-03

-10 4.53999e-05 -5.23423e-05 4.53999e-05

-15 3.05902e-07 -2.23869e-02 3.05902e-07

-20 2.06115e-09 -1.79703 2.06115e-09

When x>0 in series, no cancelation and MyExp matches exp from the standard
math library (math.h)

When x<0 in series, MyExp does not match exp from math.h due to cancelation.
Results become nonsensical for x= -10 and beyond.

Floating Point Numbers are not Real: Lessons Learned

52

Real Numbers Floating Point numbers

Any number can be represented … real numbers are
a closed set

Not all numbers can be represented … operations
can produce numbers that cannot be represented …
that is, floating point numbers are NOT a closed set

With arbitrary precision, there is no loss of accuracy
when adding real numbers

Adding numbers of different sizes can cause loss of
low order bits.

With arbitrary precision, there is no loss of accuracy
when subtracting real numbers

Subtracting two numbers of similar size cancels
higher order bits

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding
– Algebraic Properties of Floating Point Arithmetic

• Responding to “issues” in floating point arithmetic
– Changing the math
– Numerical Analysis
– Alternatives to IEEE 754

• Wrap-up/Conclusion

53

IEEE 754 arithmetic and rounding
• The IEEE 754 standard requires that the result of basic arithmetic ops (+, -, *, /, FMA) be equal to the result from

“infinitely precise arithmetic” rounded to the storage format (e.g., float or double).

• Consider the following problem … subtract two IEEE 754 32 bit numbers (F*(2,24,-126,127)):

54FMA: Fused Multiple Add … d = a*b+c Content based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023

• We normalize them to the same exponent and carry out the operation exactly

1.00000000000000000000000 2

0.11111111111111111111111101111111111111111111110 2

(1.00000000000000000000001)2

0.00000000000000000000000010000000000000000000001 2

\ 2"
\ 26#(

1.00000000000000000000000	 2 \ 2"

\ 2"

-

-

\ 2"

• Then normalize the result

=

1.1111111111111111111111101111111111111111111111 2 \ 26!

• Then round to nearest to fit into the destination format

1.11111111111111111111111 2 \ 26!

F*(Radix, Precision, emin, emax)

IEEE 754 arithmetic and rounding
• The IEEE 754 standard requires that the result of basic arithmetic ops (+, -, *, /, FMA) be equal to the result from

“infinitely precise arithmetic” rounded to the storage format (e.g., float or double).

• Consider the following problem … subtract two IEEE 754 32 bit numbers (F*(2,24,-126,127)):

55

• We normalize them to the same exponent and carry out the operation exactly

1.00000000000000000000000 2

0.11111111111111111111111101111111111111111111110 2

(1.00000000000000000000001)2

0.00000000000000000000000010000000000000000000001 2

\ 2"
\ 26#(

1.00000000000000000000000	 2 \ 2"

\ 2"

-

-

\ 2"

• Then normalize the result

=

1.1111111111111111111111101111111111111111111111 2 \ 26!

• Then round to nearest to fit into the destination format

1.11111111111111111111111 2 \ 26!

The exact result
doubled the

number of bits in
the fraction. Do

we really need all
those bits?

FMA: Fused Multiple Add … d = a*b+c Content based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023F*(Radix, Precision, emin, emax)

IEEE 754 arithmetic and rounding

• Turns out you only need three extra bits … the Guard bit, the Rounding bit, and the Sticky Bit (GRS)

56

0.11111111111111111111111101 2

0.00000000000000000000000011 2

1.00000000000000000000000000 2 \ 2"
\ 2"-

\ 2"

Next 2 bits in the answer:
the guard and rounding bits

The Sticky bit: the logical or of all the other bits
(i.e., if any bit is “1” then the sticky bit is “1”

1.1111111111111111111111101 2 \ 26!
1.11111111111111111111111 2 \ 26!

Normalize
Round to nearest

• The Guard, Rounding, and Sticky bits are sufficient to support all the IEEE 754 rounding modes to yield the
same result you’d get from an exact computation followed by rounding into the target format.

• Correctly rounded results are required for the basic arithmetic operations (including FMA) but also square root,
remainder, and conversion between Integer and Floating point numbers … but not for conversion between
decimal and binary floating point.

FMA: Fused Multiple Add … d = a*b+c Content based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023F*(Radix, Precision, emin, emax)

IEEE 754 Rounding Modes

57Source: Numerical behavior of NVIDIA tensor cores, M. Fasi, N. J. Higham, M. Mikaitis, and S. Pransesh, PeerJ Comp. Sci. 7:e330, Feb 10, 2021, DOI: 10.7717/peerj-cs.330/fig-1

Consider a real number x that falls between its two nearest floating point numbers (x1 and x2). At the midpoint
between x1 and x2 is the real number xm. We have four cases to consider when thinking about rounding.

https://doi.org/10.7717/peerj-cs.330/fig-1
https://doi.org/10.7717/peerj-cs.330/fig-1
https://doi.org/10.7717/peerj-cs.330/fig-1
https://doi.org/10.7717/peerj-cs.330/fig-1
https://doi.org/10.7717/peerj-cs.330/fig-1

IEEE 754 Rounding Modes

58Source: Numerical behavior of NVIDIA tensor cores, M. Fasi, N. J. Higham, M. Mikaitis, and S. Pransesh, PeerJ Comp. Sci. 7:e330, Feb 10, 2021, DOI: 10.7717/peerj-cs.330/fig-1

RN: Round to Nearest. RD: Round Downward RZ: Round towards zero RU: Round upward

Consider a real number x that falls between its two nearest floating point numbers (x1 and x2). At the midpoint between x1
and x2 is the real number xm. The horizontal dotted line shows the floating point numbers selected for the different rounding
modes (RN, RD, RZ, RU) for position of x vs xm and which side of zero x is on.

https://doi.org/10.7717/peerj-cs.330/fig-1
https://doi.org/10.7717/peerj-cs.330/fig-1
https://doi.org/10.7717/peerj-cs.330/fig-1
https://doi.org/10.7717/peerj-cs.330/fig-1
https://doi.org/10.7717/peerj-cs.330/fig-1

You must be careful how you manage rounding…
Vancouver stock exchange index undervalued by 50%

(Nov. 25, 1983)

See http://ta.twi.tudelft.nl/usersvuik/wi211/disasters.html

Index managed on an IBM/370. 3000 trades a day and for each trade, the
index was truncated to the machine’s REAL*4 format, loosing 0.5 ULP per
transaction. After 22 months, the index had lost half its value.

ULP: Unit in the last place

Working with IEEE 754 rounding modes

#include <fenv.h>
 //#pragma STDC FENV_ACCESS ON

 // store the original rounding mode
 const int originalRounding = fegetround();

 // establish the desired rounding mode
 fesetround(FE_TOWARDZERO);

 // do whatever you need to do ...
 // ... and restore the original mode afterwards
 fesetround(originalRounding);

61

#include <cfenv>
 // #pragma STDC FENV_ACCESS ON

 // store the original rounding mode
 const int originalRounding = std::fegetround();

 // establish the desired rounding mode
 std::fesetround(FE_TOWARDZERO);

 // do whatever you need to do ...
 // ... and restore the original mode afterwards
 std::fesetround(originalRounding);

C C++

The 4 rounding modes in IEEE 754

Default
rounding
mode

Two versions of round to nearest…
• Nearest, on a tie, round to even
• Nearest, on a tie, away from zero

Three directed roundings

Clang and GCC compilers
do not recognize the STDC
pragma (even though they
are technically required to).

Fortunately, rounding
mode control seems to
work without it.

If not, try the compiler flag
–frounding-math

Exercise: IEEE 754 rounding modes

#include <fenv.h>
 //#pragma STDC FENV_ACCESS ON

 // store the original rounding mode
 const int originalRounding = fegetround();

 // establish the desired rounding mode
 fesetround(FE_TOWARDZERO);

 // do whatever you need to do ...
 // ... and restore the original mode afterwards
 fesetround(originalRounding);

62

#include <cfenv>
 // #pragma STDC FENV_ACCESS ON

 // store the original rounding mode
 const int originalRounding = std::fegetround();

 // establish the desired rounding mode
 std::fesetround(FE_TOWARDZERO);

 // do whatever you need to do ...
 // ... and restore the original mode afterwards
 std::fesetround(originalRounding);

C C++

The 4 rounding modes in IEEE 754

Clang and GCC compilers
do not recognize the STDC
pragma (even though they
are technically required to).

Fortunately, rounding
mode control seems to
work without it.

If not, try the compiler flag
–frounding-math

• Explore how different rounding modes change the answers of
programs you have on your system.

• What does it tell you if answers change as rounding modes change?

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding
– Algebraic Properties of Floating Point Arithmetic

• Responding to “issues” in floating point arithmetic
– Changing the math
– Numerical Analysis
– Alternatives to IEEE 754

• Wrap-up/Conclusion

63git clone https://github.com/tgmattso/CompSciForPhys.git

Properties of Floating point arithmetic

• IEEE 754 defines the concept of an correctly rounded results of operation.

– An correctly rounded result is equivalent to a computation carried out to infinite precision rounded to fit in the
designated storage format (e.g., float or double).

• The standard requires a set of operations that must be correctly rounded
– Add, subtract, multiply, divide, remainder
– Square root, fused multiply-add, minimum, maximum
– Comparisons and total ordering
– Conversions between formats

• Correctly rounding results are recommended (but not required) for:
– Exponentials
– Logarithms
– Reciprocal square root
– Trigonometric functions

64

Floating point arithmetic is not associative or distributive
• IEEE 754 guarantees that a single arithmetic operation produces a correctly rounded result …

but that guarantee does not apply to multiple operations in sequence.

• Floating point numbers are:
– Commutative: A * B = B * A
– NOT Associative: A * (C * B) ≠ (A * C) * B
– NOT Distributive: A*(B+C) ≠ A*B + A*C

65

a = 11111113; b= -11111113; c = 7.51111111f; a = 20000; b= -6; c = 6.0000003;

(a*b + a*c) = 0.007812
 a*(b + c) = 0.009537

Correct answer: 0.006000

(a + b) + c = 7.511111
 a + (b + c) = 8.000000

Correct answer: 7.511111

a = 1.e20; b= -1.e20; c=1.0
(a+b) + c = 1.0
a+(b+c) = 0.0

Correct answer: 1.0

• Python promotes floating point number to double, but even with the extra precision, you can run into trouble

a = 1.e20f; b= -1.e20f; c=1.0f
(a + b) + c = 1.000000
a + (b + c) = 1.000000

... But C using
float gets this

case right

Python 13.11.7 and Gnu gcc version 14.2.0

Py
th

on

• All these computations where done in a C program using type float

Exercise: Summation with floating point arithmetic
• We have provided a programs that create a sequence of random numbers greater than zero. They are

written in C (summation.c) and C++ (summationCpp.cc) so you can do this exercise in either language.

• In the functions in the file UtilityFunctions.c, we generate a sequence of floating-point numbers (all greater
than zero).
– Don’t look at how we create that sequence … treat the sequence generator as a black box (in other

words, just work on the sequence, don’t use knowledge of how it was generated).

• Add code to smmation.c or summationCpp.cc to sum the sequence of numbers. You can compare your
result to the estimate of the correct result provided by the sequence generator.
– Only use float types (it’s cheating to use double … at least to start with).

• Compile your program as:
g++ summationCpp.cc UtilityFunctions.c
gcc summationCpp.c UtilityFunctions.c

• Using what you know about floating point arithmetic, is there anything you can think of doing to improve the
quality of your sum?

66

Summation program

67

#include "UtilityFunctions.h" // FillSequence() comes from this module

#define N 100000 //length of sequence of numbers to work with
int main ()
{

 float seq[N]; //Sequence to sum
 float True_sum; //The best estimate of the actual sum
 float sum = 0.0f;

 FillSequence(N, seq, &True_sum); // Fill seq with N values > 0

 for(int i=0; i<N; i++)sum += seq[i];

 printf(" Sum = %f, Estimated sum = %f\n",sum,True_sum);

} > gcc summation.c UtilityFunctions.c
> ./a.out
> Sum = 2502476.500000, Estimated sum = 2502458.750000

This result is kind
of awful

Summation program

68

#include <omp.h>
#include "UtilityFunctions.h" // FillSequence() comes from this module

#define N 100000 //length of sequence of numbers to work with
int main ()
{

 float seq[N]; //Sequence to sum
 float True_sum; //The best estimate of the actual sum
 float sum = 0.0f;

 FillSequence(N, seq, &True_sum); // Fill seq with N values > 0

 #pragma omp parallel for reduction(+:sum)
 for(int i=0; i<N; i++)sum += seq[i];

 printf(" Sum = %f, Estimated sum = %f\n",sum,True_sum);

}

Let’s do the sum in parallel and see
how the answer varies with the number

of threads

1 2502476.5
2 2502457.0
4 2502459.25
8 2502459.0

True value = 2502458.75

Values with 1 to 8 threads

Sequence Generation
• I created a particularly awful sequence to sum

69

void FillSequence(int N, float *seq, float *True_sum)
{

 float shift_up = 100.0f;
 float shift_down = 0.000001f;
 double up_sum = 0.0d, down_sum = 0.0d;

 for(int i=0;i<N; i++){
 if(i%2==0){
 seq[i] = (float) frandom() * shift_up;
 up_sum += (double) seq[i];
 }
 else {
 seq[i] = (float) frandom() * shift_down;
 down_sum += (double) seq[i];
 }
 }
 *True_sum = (float)(up_sum + down_sum);

}

Alternating big and small
numbers to maximize

opportunities for loss of
precision when summing

the numbers.

Notice how I estimate the “true” value by
summing big numbers and little numbers

separately before combining them.

Summation program

70

#include "UtilityFunctions.h" // FillSequence() comes from this module

#define N 100000 //length of sequence of numbers to work with
int main ()
{

 float seq[N]; //Sequence to sum
 float True_sum; //The best estimate of the actual sum
 float sum = 0.0f;

 FillSequence(N, seq, &True_sum); // Fill seq with N values > 0

 qsort(seq, N, sizeof(int), compare); // Sort from smallest to largest
 for(int i=0; i<N; i++)sum += seq[i];

 printf(" Sum = %f, Estimated sum = %f\n",sum,True_sum);

} > gcc summation.c UtilityFunctions.c
> ./a.out
> Sum = 2502455.500000, Estimated sum = 2502458.750000

From 2502476.5
to 2502455.5
That’s a big
improvement

The sorted sequence
decreases loss of

precision since
magnitudes of

numbers are closer
together in a sorted

sequence

Sort from small to
large before
summing the

sequence

Floating Point Numbers are not Real: Lessons Learned

71

Real Numbers Floating Point numbers

Any number can be represented … real numbers are
a closed set

Not all numbers can be represented … operations
can produce numbers that cannot be represented …
that is, floating point numbers are NOT a closed set

With arbitrary precision, there is no loss of accuracy
when adding real numbers

Adding numbers of different sizes can cause loss of
low order bits.

With arbitrary precision, there is no loss of accuracy
when subtracting real numbers

Subtracting two numbers of similar size cancels
higher order bits

Basic arithmetic operations over Real numbers are
commutative, distributive and associative.

Basic operations over floating point numbers are
commutative, but NOT associative or distributive.

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding
– Algebraic Properties of Floating Point Arithmetic

• Responding to “issues” in floating point arithmetic
– Changing the math
– Numerical Analysis
– Alternatives to IEEE 754

• Wrap-up/Conclusion

72git clone https://github.com/tgmattso/CompSciForPhys.git

Changing the math to make things better…
Example: Solution to the quadratic equation.

• Consider a quadratic equation.

73

𝑎𝑥" + 𝑏𝑥 + 𝑐 = 0

• Using real arithmetic the solution is.

𝑥 =
−𝑏 ± 𝑏" − 4𝑎𝑐

2𝑎

Two sources of cancelation

A numerically superior way to solve the quadratic equation.

• In general, there are two solutions:

74

𝑎𝑥. + 𝑏𝑥 + 𝑐 = 0

• Recall that

𝑥$ =
−𝑏 − 𝑏" − 4𝑎𝑐

2𝑎
𝑥] =

−𝑏 + 𝑏" − 4𝑎𝑐
2𝑎

𝛼 − 𝛽 𝛼 + 𝛽 = 𝛼# − 𝛽# so we can rearrange the product 𝑥$𝑥]

𝑥$𝑥] =
$`$ `!$abc`!

"b ∗ $`] `!$abc
"b = `

!$ `!$abc
ab! = abc

ab! =
c
b

• Hence, compute 𝑥$ directly and use 𝑥$𝑥] =
c
b to get the other solution

The above only addresses part of the problem. To see just how complicated solutions to the quadratic equation can get, see F. Goualard,
The Ins and Outs of Solving Quadratic Equations with floating-point arithmetic, https://cnrs.hal.science/hal-04116310/document

Exercise: Refactoring functions to improve floating point behavior

• Evaluate the following function for large x
(x = 10k for k = 5,6,7,8 …)

76

𝑓 𝑥 =
1

𝑥# + 1 − 𝑥

• Can you refactor the function to make it numerically more stable?

Exercise: Refactoring functions to improve floating point behavior

• Evaluate the following function for large x
(x = 10k for k = 5,6,7,8 …)

77

𝑓 𝑥 =
1

𝑥# + 1 − 𝑥

• For large x, 𝑥! + 1 ≈ 𝑥 so we expect problems with cancelation in the denominator.
• We can refactor the expression to remove the cancelation.

𝑓 𝑥 =
1

𝑥# + 1 − 𝑥
=

𝑥# + 1 + 𝑥
(𝑥# + 1 − 𝑥)(𝑥5 + 1 + 𝑥)

=
𝑥# + 𝑥

𝑥# + 1 − 𝑥# = 𝑥# + 1 + 𝑥

x 1
𝑥# + 1 − 𝑥

𝑥# + 1 + 𝑥

105 200000.223331 200000.000005
106 1999984.771129 2000000.000001
107 19884107.851852 20000000.000000
108 inf 200000000.000000

Solutions degrades
until divide by zero

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding
– Algebraic Properties of Floating Point Arithmetic

• Responding to “issues” in floating point arithmetic
– Changing the math
– Numerical Analysis
– Alternatives to IEEE 754

• Wrap-up/Conclusion

78git clone https://github.com/tgmattso/CompSciForPhys.git

Numerical Analysis
• The details of how we do arithmetic on computers and the branch of mathematics that studies the

consequences of computer arithmetic (numerical analysis) is fundamentally boring.
– Even professionals who work on computer arithmetic (other than W. Kahan*) admit (maybe only in private) that it’s boring.

• It’s fine to take floating point arithmetic for granted … until something breaks.

• The scary part of this … is that you don’t know something is wrong with your program until disaster
strikes!!!!

79*Professor William Kahan of UC Berkeley is the father of modern floating point arithmetic (IEEE-754)

Computer Science has changed over my lifetime. Numerical Analysis seems
to have turned into a sliver under the fingernails of computer scientists

Prof. W. Kahan, Desperately needed Remedies … Oct. 14, 2011

You don’t need to be paranoid, but be skeptical of ANYTHING you compute on a computer.

Error Analysis: error in input à error in output
• View a program as taking input, x, and evaluating a function, f(x), to compute output, y. The

numerical analyst is interested in the following evaluation:

80

𝑓 𝑥 + ∆𝑥 = 𝑦 + ∆𝑦

• Note: ∆x includes all sources of error including roundoff errors, loss of precision, cancelation or
even errors in collected data.

• Numerical analysts summarize the stability of a problem in terms of a ratio … the ratio of the error
in the generated result to the error in the input. This is normalized to the range of values in y and
x leading to what is called the condition number, C:

𝐶 =
∆#
#
∆$
$

 = -
d .

∆d
∆- = -\f

%(-)
f(-)

• For a small condition number, C:
• Small ∆x à small ∆y
• We call this a well conditioned problem

• For a large condition number, C:
• Small ∆x à large ∆y
• We call this a ill conditioned problem

This is NOT a lecture on numerical analysis ….

• Numerical analysis is a
complex topic well beyond the
scope of this lecture.

• The goal here is to make you
aware of it and the general
concept of well-conditioned vs
ill-condition problems … not
how to derive and work with
condition numbers.

81

… So rather than a long diversion into the details of numerical analysis, lets focus on a single problem numerical
analysts work on … how can we use the properties of floating-point arithmetic to improve summation?

Compensated summation
(i.e., Kahan Summation)

82

Input: a sequence of N values, x[i] i=1,N

 cor = 0.0
 sum = 0.0

 for i = 1 to N:

 xcor = x[i] - cor

 tmpSum = sum + xcor

 cor = (tmpSum-sum) - xcor

 sum = tmpSum
 }

Output: sum

sum

xcorhi

-
tmpSum

sum

+

tmpSum

xcorlowxcorhi

xcorhi

xcorlowxcorhi-
xcorlow-

X[i]

- cor

xcor xcorlowxcorhi=

cor=

Apply a correction to
x[i] to account for

bits lost in the
previous loop

iteration

Sum grows to be a
“big” number. Add a
small number (xcor)
and you loose low
order bits (xcorlow)

Recover high order
bits from xcor

Recover the lost low
order bits from xcor

to apply as a
correction when

computing the next
term in the sum

• Summation is notorious for errors from loss of precision
when two numbers of widely different magnitudes are
added. Kahan Summation corrects for this error.

Summation program

85

#include "UtilityFunctions.h" // FillSequence() comes from this module

#define N 100000 //length of sequence of numbers to work with
int main ()
{

 float seq[N]; //Sequence to sum
 float True_sum; //The best estimate of the actual sum
 float sum = 0.0f;

 FillSequence(N, seq, &True_sum); // Fill seq with N values > 0

 KahanSummation(N,seq,sum);

 printf(" Kahan Sum = %f, Estimated sum = %f\n",sum,True_sum);

} > gcc summation.c UtilityFunctions.c
> ./a.out
> Kahan sum = 2502458.750000, Estimated sum = 2502458.750000

Our original sum value
was 2502476.50 which

was an awful result

The Kahan Sum and the
estimated correct sum

match
2502458.75

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding
– Algebraic Properties of Floating Point Arithmetic

• Responding to “issues” in floating point arithmetic
– Changing the math
– Numerical Analysis
– Alternatives to IEEE 754

• Wrap-up/Conclusion

86git clone https://github.com/tgmattso/CompSciForPhys.git

Floating point arithmetic …just use : use lots of bits and hope for the best …

Is 64 bits enough? Is it too much? We’re guessing.

70

80

1970 1980 1990 2000

Bits

Year

CDC 60

2010

20

30

40

50

60

1940 1950 1960

Zuse 22

Univac, IBM 36

Cray 64 most vendors 64

x86 80 (stack only)

Source: John Gustafson from long long ago when he was at Intel

Quad Precision

• There are pathological cases where you lose all the precision in an answer, but
the more common case is that you lose only half the digits.

• Hence, for 32 or 64 bit input data, quad precision (113 significant bits) is
probably adequate to make most computations safe (Kahan 2011).

88

• IEEE 754TM defines a range of formats including quad (128)

binary32 binary64 binary128
P, digits 24 53 113
emax +127 +1023 +16383

Wider floating-point formats turn compute bound
problems into memory bound problems

Energy implications of floating point
numbers: 32 bit vs. 64 bit numbers

Operation Approximate
energy consumed

today
64-bit multiply-add 64 pJ
Read/store register data 6 pJ
Read 64 bits from DRAM 4200 pJ
Read 32 bits from DRAM 2100 pJ

Source: S. Borkar, Intel. Data is for 32 nm technology ca. 2010

Simply using single precision in DRAM instead of double saves as much energy as 30 on-chip floating-point operations.

energy savings: replace 64 bit flops with 32 bit flops

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

%
 Energy saved replacing 64-bit

w
ith 32-bit flops

H
PL

M
onte

C
arlo

B
lack-

Scholes

C
PU

06-
C

actus

A crash
code

E3D
segsalt

N
A

M
D

-
stm

v

G
A

M
ESS

-si15h16

Source: Intel … based on a workload data set provided by Hugh Caffey (2010)

How do you decide where you can safely reduce precision?

Assume: energy scales linearly with #of bits, 64 bit FLOP
@ 200 pJ, 64 bit move DRAM to CPU @12000 pJ.

Maybe we don’t want Quad after all?
• If Performance/Watt is the goal, using Quad everywhere to

avoid careful numerical analysis is probably a bad idea.

92

How many bits do we really need?

93

J.Y.F. Tong, D. Nagle, and R. Rutenbar, “Reducing Power by Optimizing the Necessary Precision Range of Floating Point
Arithmetic,” in IEEE Transactions on VLSI systems, Vol. 8, No.3, pp 273-286, June 2000. [2] M. Stevenson, J. Babb,

They varied the
number of bits used

to see when the
accuracy degraded

Sphinx: speech recognition
ALVIN: Neural net trainer from SPECfp92
PCASYS: NIST finger print recognition
Bench22: image processing
Fast DCT: direct, 2D DCT

… or give up on floating point
numbers and use a safe arithmetic

system instead.

Interval Arithmetic

95

Interval Numbers
• Interval number: the range of possible values within a closed set

!"#$%&' !!!"!!! ≤≤∈=≡!

1/3 ≈ 0.333333

𝑟𝑎𝑑𝑖𝑢𝑠04:;< ≈ 6371 km 𝑟𝑎𝑑𝑖𝑢𝑠04:;< ∈ 6353, 6384 	 𝑘𝑚

• Representing real numbers:
– A single floating point number – An interval that bounds the real number

• Representing physical quantities:
– An single value (e.g. an average) – The range of possible values

1/3 ∈ [0.33333, 0.33334]

Interval Arithmetic
Let x = [a, b] and y = [c, d] be two interval numbers

2. Subtraction x - y = [a, b] - [c, d] = [a - d, b - c]

3. Multiplication xy = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)]

4. Reciprocal 1 / y = [1/d, 1/c]

5. Division x/y = 𝑦	 ∈ 0

𝑦 ∉ 0

[−∞,∞]

𝑥 \ 1/𝑦

1. Addition x + y = [a, b] + [c, d] = [a + c, b + d]

𝑐, 𝑑 ≠ 0	

𝑐, 𝑑 ≠ 0	

Properties of Interval Arithmetic
Let x, y and z be interval numbers
1. Commutative Law

x + y = y + x
xy = yx

3. Distributive Law does not always hold, but
x(y + z) Í xy + xz

2. Associative Law
x + (y + z) = (x + y) + z

x(yz) = (xy)z

Functions and Interval arithmetic
• Interval extension of a function

99

𝑓 𝑥 ⊇ {𝑓(𝑦)|𝑦 ∈ 𝑥 }

• Naively can just replace variables with intervals. But be
careful … you want an interval extension that produces
bounds that are as narrow as possible. For example …

𝑓 𝑥 = 𝑥 − 𝑥 𝑙𝑒𝑡	𝑥 = [1,2]

𝑓 𝑥 = 1 − 2, 2 − 1 = [−1,1]

• An interval extension with tighter bounds can be produced by
modifying the function so the variable x appears only once.

𝑓 𝑥 = 𝑥 − 𝑥 = 𝑥 1 − 1 = 0

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Rounding
– Addition
– Subtraction
– Algebraic Properties of Floating Point Arithmetic

• Responding to “issues” in floating point arithmetic
– Changing the math
– Numerical Analysis
– Alternatives to IEEE 754

• Wrap-up/Conclusion

100git clone https://github.com/tgmattso/CompSciForPhys.git

Floating Point Numbers are not Real: Lessons Learned

101

Real Numbers Floating Point numbers

Any number can be represented … real numbers are
a closed set

Not all numbers can be represented … operations
can produce numbers that cannot be represented …
that is, floating point numbers are NOT a closed set

With arbitrary precision, there is no loss of accuracy
when adding real numbers

Adding numbers of different sizes can cause loss of
low order bits.

With arbitrary precision, there is no loss of accuracy
when subtracting real numbers

Subtracting two numbers of similar size cancels
higher order bits

Basic arithmetic operations over Real numbers are
commutative, distributive and associative.

Basic operations over floating point numbers are
commutative, but NOT associative or distributive.

The Problem

• How often do we have “working” software that is “silently” producing inaccurate
results?
– We don’t know … nobody is keeping count.

• But we do know this is an issue for 2 reasons:
(see Kahan’s desperately needed Remedies…)

– Numerically Naïve (and unchallenged) formulas in text books (e.g. solving quadratic
equations).
– Errors found after years of use (Rank estimate in use since 1965 and in LINPACK, LAPACK, and MATLAB

(Zlatko Drmac and Zvonimir Bujanovic 2008, 2010). Errors in LAPACK’s _LARFP found in 2010.)

… and then every now and then, a disaster reminds us
that floating point arithmetic is not Real

Here is a famous example …
Sleipner Oil Rig Collapse (8/23/91). Loss: $700 million.

See http://www.ima.umn.edu/~arnold/disasters/sleipner.html

Inaccurate linear elastic model used with NASTRAN underestimated shear
stresses by 47% resulted in concrete walls that were too thin.

We can’t trust FLOPS … let’s give up and return to slide rules

104
(an elegant weapon for a more civilized age)

Public Domain, https://commons.wikimedia.org/w/index.php?curid=17480483

Image source: Presbrey advertising agency for International Business Machines, 1951

https://commons.wikimedia.org/w/index.php?curid=17480483

Sleipner Oil Rig Collapse: The slide-rule wins!!!

105

How should we respond?
• Programmers should conduct mathematically rigorous analysis of their floating point intensive

applications to validate their correctness.
• But this won’t happen … training of modern programmers all but ignores numerical analysis.

The following tricks* help and are better than nothing …
1. Repeat the computation with arithmetic of increasing precision, increasing it until a desired

number of digits in the results agree.
2. Repeat the computation in arithmetic of the same precision but rounded differently, say

Down then Up and perhaps Towards Zero, then compare results (this wont work with
libraries that require a particular rounding mode).

3. Repeat computation a few times in arithmetic of the same precision but with slightly
different input data, and see how widely results vary.

These are useful techniques, but they don’t go far enough. How can the
discerning skeptic confidently use FLOPs?

*Source: W. Kahan: How futile are mindless Assessments of Roundoff in floating-point computation?

Conclusion
• Floating point arithmetic usually works and you

can “almost always” be comfortable using it.

• We covered the most famous issues with floating
point arithmetic, but we largely skipped numerical
analysis. Floating point arithmetic is
mathematically rigorous. You can prove theorems
and develop formal error bounds.

• Unfortunately, almost nobody learns numerical
analysis these days … so be careful.
– Modify rounding modes as an easy way to see

if round-off errors are a problem.
– Recognize that unless you impose an order of

association, every order is equally valid. If
your answers change as the number of threads
changes, that is valuable information
suggesting in ill-conditioned problem.

– Anyone who suggests the need for bitwise
identical results from a parallel code should be
harshly criticized/punished.

107Kayaker: Pat Welle at Cascade head. Photo by T. Mattson.

My favorite picture of my wife

References

• What every computer computer scientist should know about floating point
arithmetic, David Goldberg, Computing Surveys, 1991.

– https://dl.acm.org/doi/pdf/10.1145/103162.103163

• W. Kahan: How futile are mindless Assessments of Roundoff in floating-point
computation?
– https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf

• History of IEEE-754: an interview with William Kahan
– https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html

108

git clone https://github.com/tgmattso/CompSciForPhys.git

https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html
https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html

But wait … before we leave this topic, What
about a future dominated by floating point

numbers optimized for AI applications.

Can we use them for HPC?

109

Reduced Precision Floating Point types

110

FP32

BF16

FP16

IEEE754

IEEE754

2481

Fr
ac

tio
n

Ex
po

ne
nt

Si
gn

1051

781

Balanced reduction between range and precision

Low precision but same range of values as FP32

For AI, range is more important than precision, so BF16 and TF32 are the best reduced precision AI options

TF32 1081Range of BF16, precision of FP16

Nvidia H100 support all these types plus FP8, FP64, and int8

Nvidia

BF16 was created at Google Brain for their TPU accelerator. It is now used in CPUs and GPUs across the industry FP16 defined in IEEE754-2008

An Nvidia H100 GPU

111https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

An Nvidia H100 GPU with 144 Streaming multiprocessors
(SM) and 576 4th generation tensor cores

Performance* for Nvidia H100 SXM
• FP16: 989 TFLOPS, FP32: 67 TFLOPS, FP64: 34 TFLOPS

*SGEMM-cube: Emulating FP32 GEMM on Ascend NPUs sing FP16 cube Units with
precision recovery, Weicheng Xue, et. Al. https://www.arxiv.org/pdf/2507.23387

Nvidia Tensor Cores and FMA operations

112

https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

• Nvidia H100 GPU tensor cores perform FMA operations where FMA stands for fused multiply add

• The add operation accumulates results across FMA operations and can use a higher precision, FP32 data type.

• Matrix blocks at the hardware level are 4x4.

FP32 Emulation with BF16
• We can represent an IEEE754 floating point number by multiple lower precision values.
• First, some definitions

(B16) casts an FP32 number into BF16
(F32) casts a BF16 number into FP32

• Let’s split an FP32 number, 𝛂, into three BF16 numbers*: b(0), b(1), and b(2)

113

*This discussion is based on an example from the paper “Leveraging the Bfloat 16 AI datatype for higher-precision computations by Greg
Henry, Ping Tak Peter Tang, and Alexander Heinecke, https://arxiv.org/abs/1904.06376, 2019,

b(0) = (B16) 𝛂
b(1) = (B16) ((F32) (𝛂 - (F32)b(0)))
b(2) = (B16) ((F32) (𝛂 - (F32)b(0) - (F32)b(1))

• The result is that 𝛂 = b(0) + b(1) + b(2)

• We can do this element wise to a matrix of FP32 values, A, to represent the matrix as a sum A(0) + A(1) + A(2)

You can also split the numbers by a shifting procedure … i.e. capture higher order bits, round, grab next
set of bits, shift exponent. Result: FP32 from 2 FP16 numbers with with loss of ~2 bits.

https://arxiv.org/abs/1904.06376

Multiplication of FP32 matrices using FP16 matrices

114Performance and Numerical Aspects of Decompositional Factorizations with FP64 Floating-Point Emulation in Int8, Piotr Luszczek, et. al., HPEC 2025

Round-off errors accumulate
at each matrix operation.

Correcting for these errors
can be complicated

115Performance and Numerical Aspects of Decompositional Factorizations with FP64 Floating-Point Emulation in Int8, Piotr Luszczek, et. al., HPEC 2025

Why we cannot afford to ignore tensor cores

*Announced but not released as of 9/2025

This slide is based on a talk from HPEC’25. I added the title and the red circles/boxes for emphasis

Matrix Multiplication results … promising but frustrating

• Clear performance results for H100 GPUs and FP16 are difficult to find for SGEMM.
– Future work … I will produce these numbers myself … Hopefully I time for ESC’26

• The most careful work for SGEMM uses the Ozaki scheme, but results are unclear for modern
GPUs based on what I can find in the literature.

• Nvidia claims that using TF32 on an H100 they can achieve SGEMM performance of one Petaflop
using their mixed precision library (but they do not explain how they do this … it must use FP16 as
well since FP16 on H100 has a peak performance of 1.6 PFLOPS while TF32 has a peak
performance of only 0.98 PFLOPS)

116

Nvidia H100 performance numbers: https://www.nvidia.com/en-us/data-center/h100/

DGEMM Using Tensor Cores, and Its Accurate and Reproducible Versions, Daichi Mukunoki, K. Ozaki, T. Ogita, and T. Imammura,
https://pmc.ncbi.nlm.nih.gov/articles/PMC7295351/, 2020

https://pmc.ncbi.nlm.nih.gov/articles/PMC7295351/

Other approaches for using mixed precision

• Use a solver in low precision to produce a preconditioner for a full precision
iterative method.

• Iterative solvers with error evaluation per iteration at full precision.

• Forget computation in reduced precision. Data movement dominates runtimes for
many problems. Use reduced precision for compressed storage using reduced
precision types.

• … and more. This is an active area of research and how it will impact HPC is
promising but there are many details to nail down. I am particularly interested in
how these AI accelerators can be used for Sparse Linear Algebra.

117

