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Moore's Law

Moore’s Law

Slide source: UCB CS 194 Fall’2010

• In 1965, Intel co-founder Gordon Moore predicted (from just 3 data points!) that semiconductor 
density would double every 18 months.
– He was right! Over the last 50 years, transistor densities have increased as he predicted.

“Cramming more components onto integrated circuits”, G.E. Moore, Electronics, 38(8), April 1965



CPU Frequency (GHz) over time (years)

3Source: James Reinders (from the book “structured parallel programming”)

What happened to 
performance around 2004?



Dennard Scaling
• Process technology (translates to Transistors per chip) and power per mm2

Image from “A New Golden Age for Computer Architecture”, John Hennessy and David Patterson, CACM, 2019

Dennard scaling: Assume voltage drops as 
transistors shrink: power/mm2 is flat.  

~2005: threshold voltage limits 
voltage drops.  Plus static power 

effects began to dominate.  
Dennard scaling ends

Process technology nodes defined by the smallest feature on a chip (i.e. gate length in nm).  
After 22 nm, it’s become a marketing term that doesn’t map to a specific feature’s length.



Consider power in a chip … 
C = capacitance  … it measures the ability of a circuit to store 
energy:

C = q/V à    q = CV

Work is pushing something (charge or q) across a “distance” … 
in electrostatic terms  pushing q from 0 to V:

V * q = W.     

But for a circuit    q = CV   so 
    

 W = CV2     

power is work over time … or how many times per second we 
oscillate the circuit 

      Power = W* F   à      Power = CV2f
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f * time



... Reduce power by adding cores

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., "Optimizing power using transformations," IEEE 
Transactions on Computer-Aided Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995 Source:  Vishwani Agrawal
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Manycore processors: three hardware options

GPU
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For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector



Before we continue …

Let’s discuss the idea of parallelism and the 
terminology we use when working with it.



Painting a fence
• You must paint a fence. It has 25 planks.  



Painting a fence:  Doing it as a serial process
• You must paint a fence. It has 25 planks. You are going to do this one plank at a time (a serial process)

• How long should it take?
Ideal case

It takes Tp minutes to paint a plank.  Therefore it takes 25*Tp minutes to paint the entire fence.   



• You must paint a fence. It has 25 planks.
• You have five brushes, one can of paint, and four friends. How long should the job take with the 

five of you working in parallel?

Painting a fence:  Getting help to finish the job in less time



• You must paint a fence. It has 25 planks.

• You have five brushes, one can of paint, and four friends. How long should the job take?

Painting a fence:  Getting help to finish the job in less time

Ideal case
It takes 25*Tp minutes to paint the fence on your own (“in serial”). With N = 5 people each taking an 
equal chunk of the fence, then each person paints 25/N planks.  If they do it all at the same time (that 
is, “in parallel”), the fence will be done in (25*Tp )/N = 5*Tp minutes

Speedup: How many times faster does your job complete when N people work in parallel?  Ideally, Speedup = N.   



• You must paint a fence. It has 25 planks.

• You have five brushes, one can of paint, and four friends. How long should the job take?

Painting a fence:  Sometimes, Reality Sucks

Reality
Not everyone works equally hard.   More importantly with only one can of paint (a 
shared resource) people waste time waiting for their turn to dip their brush in the 
paint.  These and other issues mean that you almost never achieve the ideal case.



• This sequence of definitions explains the term “parallelism”
- Agent: A person, process, thread, or other “unit of execution” that can work on a task.
- Problem Decomposition: Break the problem into a collection of distinct tasks that are mostly (if not completely) independent.
- Serial:  When a single agent carries out a problem’s tasks one after the other.
- Parallel: When the tasks execute and make forward progress at the same time. 
- Parallelism: the features of problem and its solution that support parallel execution.

• Assume you have multiple agents to carry out a set of tasks.  You are not done until the last agent is done. It never 
goes as well as you hope.   

- Making the set of tasks (the work) for each agent balanced so they all finish at the same time is hard (load balancing).
- Agents share resources (such as paint) and often waste time waiting for their turn for the shared resource (contention).
- Coordinating the work of the multiple agents is extra work you wouldn’t have if you did the job in serial.  This is called parallel overhead.
- Recasting the problem into a collection of distinct and largely independent subproblems (tasks) can be difficult 
- There is almost always a small fraction of the work that cannot be done in parallel (serial fraction).
- The serial fraction limits the number of agents that can productively help you complete the job

Summary: the concept of parallelism



Lets consider parallelism across the 
major classes of parallel system



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster
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Heterogeneous node

SIMD/Vector



The operating system running on a CPU
• The Operating System (OS) is software the manages 

the computer hardware.

• It consists of a low-level kernel and a collection of 
services running  on top of the kernel to support the 
needs of system users.

• The kernel provides security guarantees and 
isolation between running programs (processes).

• Modern operating systems support multi-tasking.  This 
means that multiple processes are active at one time with a 
scheduler (part of the OS) quickly switching (a context 
switch) between processes.

• For the user, this creates the illusion that all of the processes 
are running at the same time (more on this later).

Program Text

Static Data

Shared Memory (a Heap)

Stack Stack

…
Stack

Shared Resources (e.g. i/o)

• A process is an instance of an executing program.

One or more threads 
running the same 

program text

Each thread has private 
memory (a stack)

Static Memory fixed at 
compile time

Shared Memory and 
shared resources are 

available to all threads

Process Process… ProcessProcess

Scheduler
Kernel

Memory

System Calls Services
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CPU parallelism:  Multicore CPUs
• A modern CPU optimized for performance will have multiple 

cores sharing a single memory hierarchy.

• The memory appears as a single address space.

• An instance of a program is a process.

• The process has a range of available memory addresses, 
system resources, and one or more threads.

• Parallelism is managed by the programmer as multiple 
threads mapped to the various cores.

• When every core is treated the same by the operating system 
(OS) and has an equal cost function to any location in 
memory, we call this a symmetric multiprocessor or SMP.

A four core CPU running a 
process with 8 threads 

mapped as 2 threads per core

Memory



A Harsh dose of reality: System memories are non-uniform
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A single dual processor node for the Cori  system at NERSC: 2 Intel® Xeon™ E5-2698 v3 CPUs at 2.3 GHz,  
2 16 GB  DIMMs per DDR memory controller,  16 cores per CPU.  2 CPUs connected by a high-speed interconnect (QPI) 

2 Hardware threads (HT) per core
Intel® AVX2 (256 bit Vector unit)
L1$ instruction and data: 32 KB
Unified L2$ 256 KB 

40 MB shared 
L3$

DDR: Double Data Rate memory 
controller

PCIe is the connection from the 
CPU to other devices in a node.

QPI: Quick Path Interconnect.  A 
coherent interconnect between 
CPUs.  Makes it easy to build 
multi-CPU nodes.

4 blocks of 8 core units connected by an on-chip-network 
with a DDR memory controller.

Each block  is a NUMA domain … memory access from a core 
to its “own” DDR is less expensive.

Backend

Numa Domain



Random Access Memory

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core N…

Given all this complexity in real hardware ….

All systems today are nonuniform memory architectures (NUMA)

It’s amazing our SMP model 
works at all ….
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For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.
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Vector (SIMD) Computing

23

Scalar computing
• One op produces one value

Vector computing .. Pack multiple values into vector registers
• One op produces multiple values 

Hardware architects love vector computing, since they permit space- and energy- efficient parallel implementations.

SIMD: Single Instruction Multiple Data … another name for vector coputing



Packing numbers into fixed width vector registers
Example:  128 bit SSE (from Intel) and Neon (from ARM)

24Image Source: Intel



The importance of using the vector units on your CPU

25

Writing code to fully utilize vector units can be difficult … most applications make poor use of the vector units.  

In one corporate sponsored study* of leading applications in engineering and scientific computing, of the 
instructions retired, on average only 4% were vector instructions.

* I do not have permission to share any details on this study … but the result speaks for itself

256 bit SIMD (SSE) 1024 bit SIMD (Xeon™ PHI)

How much of the available performance are you wasting if you ignore vectorization?

It depends on the width of the vector registers



Let’s consider a specific example to 
understand how vectorization works in 

software



Example Problem:  Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a 
sum of rectangles:

Where each rectangle has width Dx and 
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.0

2.0

1.0
X0.0
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Serial PI program

static long num_steps = 100000;
float step;
int main ()
{   int i;   float x, pi, sum = 0.0;

   step = 1.0/(float) num_steps;

   for (i=0;i< num_steps; i++){
    x = (i+0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
   }
   pi = step * sum;
}

Normally, I’d use double types throughout to minimize roundoff errors especially on the accumulation 
into sum.  But to maximize impact of vectorization for these exercise, we’ll use float types.    

Literals as double (no-vec), 0.012 secs
Literals as Float (no-vec),    0.0042 secs

By default, literals (such as 0.5) 
are double precision.   So, all 

arithmetic involving such literals is 
done in double precision which 

reduces how many values can be 
packed into vector registers).

To avoid this problem, you must 
indicate the literal is a float by 
adding and ’f’ at the end of the 

number (e.g. 0.5f).
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Explicit vectorization of our Pi Program: Step 1 ... Unroll the loop

float pi_unroll(int  num_steps)
{
    float step, x0, x1, x2, x3, pi, sum = 0.0;

    step = 1.0f/(float) num_steps;

    for (int i=1;i<= num_steps; i=i+4){      //unroll by 4, assume num_steps%4 = 0
       x0 = (i-0.5f)*step;
       x1 = (i+0.5f)*step;
       x2 = (i+1.5f)*step;
       x3 = (i+2.5f)*step;
       sum += 4.0f*(1.0f/(1.0f+x0*x0) + 1.0f/(1.0f+x1*x1)  + 1.0f/(1.0f+x2*x2)  + 1.0f/(1.0f+x3*x3));
    }

      pi = step * sum;
      return pi;
}

• We need one interation to fit in the vector unit

• What is the width of your vector unit?  
• We’ll use SSE which is 128 bits wide.
• A float in C is 32 bits wide … 4 floats fits in 128 bits

So, unroll the loop by four
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Explicit SSE* vectorization of our Pi Program: Step 2 ... Add SSE intrinsics

#include <immintrin.h>
float pi_sse(int  num_steps) 
 {
   float scalar_one =1.0, scalar_zero = 0.0,  ival, scalar_four =4.0, step, pi, vsum[4];

step = 1.0/(float) num_steps;

__m128 ramp   = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
   __m128 one     = _mm_load1_ps(&scalar_one);
   __m128 four    = _mm_load1_ps(&scalar_four);

__m128 vstep  = _mm_load1_ps(&step);
__m128 sum    = _mm_load1_ps(&scalar_zero);
__m128 xvec; __m128 denom;  __m128 eye;

  for (int i=0;i< num_steps; i=i+4){   
ival       = (float)i;                              
eye = _mm_load1_ps(&ival);
xvec = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep);
denom = _mm_add_ps(_mm_mul_ps(xvec,xvec),one);
sum = _mm_add_ps(_mm_div_ps(four,denom),sum);

}
_mm_store_ps(&vsum[0],sum);
pi = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]);

return pi;
}

The vast majority of 
programmers never 

write explicitly 
vectorized code.

It is important to 
understand explicit 
vectorization so you 
appreciate what the 

compiler does to 
vectorize code for you

Load
needed constants 

into vector 
registers

Vector ops on 
four floats at a 

time ... i.e., 
packed single 
(_ps) values.

ßCopy a packed single value in a vector(sum) register into a float array (vsum)

*SSE is the 128-bit wide vector instruction set for x86

ß Unroll the loop by 4 and assume (num_steps % 4=0)

ß Function prototypes for C functions that map to SSE assembly code
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PI program Results:
Times in Seconds (50 runs, min time reported)

4194304 steps

– Intel Core i7, 2.2 Ghz, 8 GM 1600 MHz DDR3, Apple MacBook Air OS X 10.10.5.
– Intel(R) C Intel(R) 64 Compiler XE for applications running on Intel(R) 64, Version 15.0.3.187 Build 20150408

Base case:
float –no-vec

autovec:
float

Explicit SSE:
float

Float, autovec,     0.0023 secs
Float, SSE,           0.0016 secs
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SIMD Lanes
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It can help you reason about more complex algorithms or performance issues if you think about execution 
of instruction on a vector unit in terms of a number of SIMD lanes.
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How do people actually use 
vectorization in practice?



Compiler vectorization
• Explicit Vectorization: Vector instructions built around vector registers.
– It is challenging and to programmers unfamiliar with assembly code, it’s a foreign style of programming
– The code is not portable … for example, moving to Arm CPUs broke all my x86 vector code

34

Most programmers settle for the vectorization the compiler can generate automatically. 

• Compiler Vectorization: Organizes code into blocks, packs variables 
into vector registers, and uses vector instructions for the operations.
– Typically loop oriented … unrolling loops to create blocks of instructions (though 

sometimes can create blocks from non-loop code using SLP ... Superword level 
parallelization)

– Vector registers are packed with single data types so compiler must deduce which 
type to use

– Dependency analysis for values packed into vector registers must assume worst 
case scenarios … therefore missing many opportunities for vector parallelism.

// Basic block SLP example
void foo ()
{
  unsigned int *pin = &in[0];
  unsigned int *pout = &out[0];

  *pout++ = *pin++;
  *pout++ = *pin++;
  *pout++ = *pin++;
  *pout++ = *pin++;
}



Enabling Compiler Vectorization
• Compiler vectorization is enabled with the flag –ftree-vectorize

% gcc –ftree-vectorize pi.c

• Compiler optimization levels O2 and O3 imply vectorization
– O2 optimization will optimize code, but it will be conservative in the optimizations to assure the 

code is correct and does not greatly expand the size of the executable.
–  O3 optimization is aggressive and will take chances with order of instructions and will potentiall 

greatly increase the size of the executable.

% gcc –O3 pi.c

• Other compiler flags to consider (for gnu compilers)
-Ofast relax arithmetic rules and freely reorder operations to maximize performance
-finfo-opt-vec generate information on loops that were or were-not vectorized (doesn’t work on Arm)

35Vectorization with O2 was added to gcc with gcc version 12



Helping the compiler vectorize
• When in doubt, the compiler will do the safe thing and not vectorize your code

• Knowing how explicit vectorization works, it’s clear the compiler needs:
– Countable innermost loops

– Avoid aliasing problems

– Types must be consistent

36

// Uncountable loop:
while (*p != NULL)  *q++ = *p++;

// Countable loop: .. But maybe aliasing?
while (--n > 0 L)  *q++ = *p++;

float x, step, sum;
for (i=0;i< num_steps; i++){
    x = (i+0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
}

The literals 0.5, 4.0 and 1.0 are double by 
default.  So, vectorization over double 
types even though varialbes are float

// Tell compiler to ignore potential aliasing
#pragma GCC ivdep
while (--n > 0 L)  *q++ = *p++;



Optimizing vector code
• Occupancy
– You need enough vectorizable work to keep all the SIMD lanes fully occupied

• Converged execution flow
– Conditional logic prevents vectorization or causes subset of SIMD lanes to pause/no-op

• Memory coalescence
– Stride one memory access across lanes is best

– Fixed strides may work (depending the quality of the vectorizer)

– Irregular meory access patterns break vectorization.       
37

for(i=0; i<N;i++) a[i]=b[i]+c[i];

for(i=0; i<N;i++) a[i]=b[i+2]+c[i+3];

for(i=0; i<N;i++) a[i]+=b[c[i]];

for(i=0; i<N;i++) if(c[i]!=0.0) a[i]=b[i]/c[i];

short a[3], b[3], c[3];
for(i=0; i<3;i++) a[i]=b[i]/c[i];



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU
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The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < N) c[i] = a[i] + b[i];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // Use thread blocks with 256 threads each
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

40

Assume a GPU with 
unified shared memory 

… allocate on host, 
visible on device too

int main() {
   int N = . . . ;
   float *a, *b, *c;
   
   a* =(float *) malloc(N * sizeof(float));

   // ... allocate other arrays (b and c)
   // and fill with data

   for (int i=0;i<N; i++)
      c[i] = a[i] + b[i]; 

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA



How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

41

// Compute sum of order-N matrices: C = A + B
void __global__
matAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < N && j<N) c[i][j] == a[i][j] + b[i][j];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // define threadBlocks and the Grid
      dim3 dimBlock(4,4); 
   dim3 dimGrid(4,4);

  // Launch kernel on Grid 
    matAdd <<< digGrid,dimBlock>>> (a, b, c, N);
}

1. Turn kernel code into a scalar 
work-item 2. Map work-items onto an 

N dim index space. 
4. Run on hardware 

designed around the 
same SIMT 

execution model

3. Map data structures 
onto the same index 

spaceThis is CUDA code
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A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD 
processor

A Quantitative Approach to Computer Architecture by 
Hennessey and Patterson … the classic text book we 
all use to learn computer architecture



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector



If you care about power, the world is heterogeneous?

Specialized 
processors doing 

operations suited to 
their architecture 
are more efficient 

than general 
purpose processors. 
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Hence, future systems will be increasingly heterogeneous … GPUs, CPUs, 
FPGAs, and a wide range of accelerators
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Offload vs. Heterogeneous computing
• Offload:  The CPU moves work to an accelerator and waits for the answer.   

• Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

Where are Tasks running? 

On a CPU

On an Accelerator

Ru
n 

Ti
m

e

CPU only

Offload

Heterogeneous 
Computing



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster
Cloud

Heterogeneous node

SIMD/Vector

Distributed Memory Systems



Programming Model for distributed memory systems
• Programs execute as a collection of processes.
– Number of processes usually fixed at program startup time
– Local address space per node -- NO physically shared memory.
– Logically shared data is partitioned over local processes.

• Processes communicate by messages … explicit send/receive pairs
– Synchronization is implicit by communication events.
– MPI (Message Passing Interface) is the most commonly used API

Pn-1P1P0

buff

i: 2

A collection of n 
MPI processes 

(P0 to Pn-1) 
running on n 

nodes

buff

i: 3

buff

i: 1

send P1

Network

receive Pn-1



Throughput oriented computing
• A common pattern occurs when you need to run a large collection of problems that are truly independent
– Map/Reduce:  Run many independent programs (map) and combine results once when they are all done (reduce).  Hadoop and Spark 

are optimized for this type of job

– Parameter studies: Optimize a set of parameters by sampling a set of parameters and collecting overall statistics when done. Example: 
Finding a set of small molecules (ligands) that dock with a protein.  It’s geometry dependent so many ligand orientations must be tested.

–  Data Parallel jobs where each data point is a large compute intensive operation without any dependencies to manage.
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Cloud

• These problems are ideally suited to running in the cloud. 



Clusters vs the Cloud for parallel programmers

HPC Cluster Cloud

Distributed object store (in 
memory) backed by a 

persistent storage system

Processes Microservices

Event driven tasks, 
FaaS, and Actors

SPMD

Distributed memory,  local 
memory owned by 

individual processes

Platform*

Memory

Execution 
Agent

Typical
Execution 

Pattern

Beyond embarrassingly parallel, throughput-oriented computing, the cloud is different from 
cluster computing (unless you pay to define a dedicated cluster in the cloud)



Parallel Systems are great, but they are not 
much use without parallel software



Parallel Software
• Vectorization is defined around a narrow range of data parallel operations.  That 

narrow scope and the limited complexity in how data is laid out allows automatic 
vectorization to work.

• Automatic parallelization beyond vectors, however, has never adequately worked. 
Why:
– Decomposing a problem into tasks that can run in parallel effectively is not directly apparent in 

the code for cases beyond vectors extracted from basic loops
– Decomposing data to manage memory movement across multiple processing elements 

requires reasoning across the full range of functions in a program.
– Typcally, the algorithm that is best for a serial program is different from the algorithm that is 

berst for parallel execution.

• Hence, software for parallel systems requires parallel programmers using 
programming models that explicitly support parallelism.
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Consider the state of programming models from the early 
days of parallel computing.

ABCPL
ACE 
ACT++ 
Active messages 
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba 
ARTS
Athapascan-0b
Aurora
Automap
bb_threads 
Blaze
BSP
BlockComm 
C*. 
"C* in C 
C** 
CarlOS
Cashmere

C4
CC++ 
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran 
Converse
Code
COOL 
CORRELATE 
CPS 
CRL
CSP
Cthreads 
CUMULVS
DAGGER
DAPPLE 
Data Parallel C 
DC++ 
DCE++ 
DDD
DICE.
DIPC 

DOLIB
DOME 
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel 
Eilean 
Emerald 
EPL 
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE 
Fork
Fortran-M
FX
GA 
GAMMA 
Glenda
GLU
GUARD

P4-Linda
Glenda 
POSYBL
Objective-
Linda
LiPS
Locust
Lparx
Lucid
Maisie 
Manifold 
Mentat
Legion
Meta Chaos 
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin

Nano-Threads
NESL
NetClasses++ 
Nexus
Nimrod
NOW
Objective 
Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE 
Panda 
Papers 
AFAPI.
 Para++
Paradigm 
Parafrase2 
Paralation 

QPC++ 
PVM
PSI
PSDM
Quake
Quark
Quick 
Threads
Sage++
SCANDAL
 SAM
pC++ 
SCHEDULE
SciTL 
POET 
SDDA.
SHMEM 
SIMPLE
Sina 
SISAL.
distributed 
smalltalk 
SMI.
SONiC
Split-C.
SR

Third party names are the property of their owners.

HAsL.
Haskell 
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE 
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma 
KOAN/Fortran-S
LAM
Lilac 
Linda
JADA 
WWWinda
ISETL-Linda 
ParLin 
Eilean 

Parallel-C++ 
Parallaxis
ParC 
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP: 
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus 
POET.
Polaris 
POOMA
POOL-T
PRESTO
P-RIO 
Prospero
Proteus 

Sthreads 
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal 
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++ 
UNITY 
UC 
V 
ViC* 
Visifold V-
NUS 
VPE
Win32 
threads 
WinPar 
WWWinda 
 XENOOPS  
XPC
Zounds
ZPL

Parallel programming environments in the 90’s
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Parallel programming environments in the 90’s

This diversity made the life of a parallel application developer much more 
difficult.

Different communities and different system-vendors had different “favorite” 
preprogramming models. Developers had to waste vast ammounts of time 
porting applications to different systems.

Furthermore, engineering is a “zero-sum” game … that is time spent 
supporting multiple programming models means less time to make a small 
number of common models just work.



Sanity ruled by the end of the end of the 90’s
• In HPC, 2 programming environments dominate … covering the major classes of hardware.
– MPI:  distributed memory systems … though it works nicely on shared memory computers.

– OpenMP:  Shared memory systems …  

 

• Even if you don’t plan to spend much time programming with these systems … a well rounded HPC 
programmer should know what they are and how they work.



Sanity ruled by the end of the end of the 90’s
• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI:  distributed memory systems … though it works nicely on shared memory computers.

– OpenMP:  Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … :  GPU programming (use CUDA if you don’t mind 
locking yourself to a single vendor … it is a really nice programming model)

• Even if you don’t plan to spend much time programming with these systems … a well rounded HPC 
programmer should know what they are and how they work.

Then GPUs Came and 
things got a bit more messy



Sanity ruled by the end of the end of the 90’s
• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI:  distributed memory systems … though it works nicely on shared memory computers.

– OpenMP:  Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … :  GPU programming (use CUDA if you don’t mind 
locking yourself to a single vendor … it is a really nice programming model)

What’s different today is C++.  OpenMP and MPI work with C++, but they were not created with the structure, 
style, and capabilities of C++ in mind.

C++ contains threads as first class language elements, standard parallel containers and algorithms, a formal 
memory model, and a number of high-level programming models specifically designed around the language (e.g,, 

Kokos, Sycl and TBB)

Fortunately, the C++ language design community is working on support for parallelism and painstakingly working 
to pull the best ideas into the core language.  



Sanity ruled by the end of the end of the 90’s
• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI:  distributed memory systems … though it works nicely on shared memory computers.

– OpenMP:  Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … :  GPU programming (use CUDA if you don’t mind 
locking yourself to a single vendor … it is a really nice programming model)

What’s different today is C++.  OpenMP and MPI work with C++, but they were not created with the structure, 
programming philosophy, and capabilities of C++ in mind.

C++ contains threads as first class language elements, standard parallel containers and algorithms, a formal 
memory model, and a number of high-level programming models specifically designed around the language (e.g,, 

Kokos, Sycl and TBB)

Fortunately, the C++ language design community is working on this problem and painstakingly working to pull the 
best ideas into the core language.  Much work remains to be done, but the progress so far is very exiling. 
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Summary
• High performance computing depends on parallel computing.

• Scientific programmers need to be comfortable with the full range of parallel systems:
– CPUs with multiple cores sharing an address space … optimized for latency sensitive problems.
– Vector (or SIME) units integrated with the CPU.
– GPUs for compute intensive, high throughput problems.
– Distributed memory systems with heterogeneous nodes built from the above for extreme scale

• It’s a lot to learn, but fortunately, these systems can be fully addressed with a modest 
number of parallel programming models … we covered vectorization in this lecture 
and we’ll cover the others over the next two weeks.

58

… But for now, let’s forget parallel computing and more on to computer arithmetic.

It’s boring, but if you care about high quality answers to your scientific problems, you need to 
understand that Floating Point numbers are not real


