Parallelism beyond
the node:

Introduction to MPI
Programming

DANIELE CESINI - INFN-CNAF
FELICE PANTALEO - CERN

A lot of material from Tim Mattson’s
“Hands-on” Introduction to MPI” at ESC15

Reference Material

MPI Standard: https://www.mpi-forum.org/docs/

Open-mpi.org: https://www.open-mpi.org/software/ompi/v5.0/
" https://www.open-mpi.org/fag/

MPICH.org: https://www.mpich.org/

MPI Tutorial: https:/mpitutorial.com/

"Message Passing Interface (MPI). Author: Blaise Barney, Lawrence Livermore National
" https://hpc-tutorials.linl.gov/mpi/

=Tutorial and exercises @ Argonne National Laboratory:
https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/contents.html

= \WWW.qoogle.com

INTRO TO MPI - ESC25@BERTINORO Oct 2025 17

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.open-mpi.org/software/ompi/v5.0/
https://www.open-mpi.org/software/ompi/v5.0/
https://www.open-mpi.org/software/ompi/v5.0/
https://www.open-mpi.org/software/ompi/v5.0/
https://www.open-mpi.org/faq/
https://www.open-mpi.org/faq/
https://www.open-mpi.org/faq/
https://www.open-mpi.org/faq/
https://www.open-mpi.org/faq/
https://www.mpich.org/
https://mpitutorial.com/
https://hpc-tutorials.llnl.gov/mpi/
https://hpc-tutorials.llnl.gov/mpi/
https://hpc-tutorials.llnl.gov/mpi/
https://hpc-tutorials.llnl.gov/mpi/
https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/contents.html
https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/contents.html
http://www.google.com/

Multithread vs Multiprocess

*Multithreading and multiprocessing are two ways to
achieve multitasking | Shared|

| s | B |
"A process has its own memory men %L o Timem
cod+— Trode+— (¢od
i

=A thread shares the memory with the parent process
and other threads within the process. é
(.

*pid is process identifier; tid is thread identifier

= (*)But as it happens, the kernel doesn't make a real
distinction between them: threads are just like processes 2 processess
but they share some things (memory, fds...) with other
instances of the same group

el

| protess, 2 threads

pulti — processing multi - th reaA\mj

(*)https://stackoverflow.com/questions/4517301/difference-between-pid-and-tid

*Inter-process communication is slower due to isolated
memory

INTRO TO MPI - ESC25@BERTINORO Oct 2025 18

Shared Memory Systems

“Shared memory is memory that may be
simultaneously accessed by multiple programs with
an intent to provide communication among them
or avoid redundant copies

=Shared memory is an efficient means of passing
data between programs

“Shared memory systems may use uniform memory
access (UMA):. all the processors share the
physical memory uniformly

“Non-uniform memory access (NUMA): memory
access time depends on the memory location
relative to a processor

INTRO TO MPI - ESC25@BERTINORO

CPU

CPU

CPU

/L

System Bus or | Crossbar Switch

A

Memory

Oct 2025

NUMA Architecture Programming

m A programmer can set an allocation policy for its
program using a component of NUMA APl called
libhnuma.

m a3 user space shared library that can be linked to
applications

m provides explicit control of allocation policies to user
programs.

m The NUMA execution environment for a process
can also be set up by using the numactl tool

m Numactl can be used to control process mapping
to cpuset and restrict memory allocation to specific
nodes without altering the program’s source code

INTRO TO MPI - ESC25@BERTINORO

Controller

http://halobates.de/numaapi3.pdf

Oct 2025 20

Distributed Memory Systems

NETWORK HUB

"Distributed memory refers to a e ¢ o

multiprocessor computer system in which
each processor has its own private memory

=Computational tasks can only operate on
local data

=if remote data is required, the computational

task must communicate with one or more g g Q
remote processors @ 8 8

*In contrast, a shared memory multiprocessor

offers a single memory space used by all
Processors

INTRO TO MPI - ESC25@BERTINORO Oct 2025 21

Shared vs Distributed Memory Systems

Memory Memory Memory Shared Memory

B B = = B - e § =
Caches Caches Caches

CPUs CPUs CPUs
E_1 = —— E_1_3

1/0)

P

Caches Caches Cachés

CPUs CPUs CPUs

Network

INTRO TO MPI - ESC25@BERTINORO Oct 2025 22

Clusters

[a cluster is a] parallel computer system comprising an integrated collection of independent nodes, each

of which is a system in its own right, capable of independent operation and derived from products
developed and marketed for other stand-alone purposes

© Dongarra et al. : "High-performance computing: clusters, constellations, MPPs, and future directions”,
Computing in Science & Engineering (Volume:7 , Issue: 2)

(SR ARCHITECTURESTop500.0rg 202 3 stats

100% [SIMD

o Constellations
MPP
0% Clusters
3
\ 5 ¢\ Y) _ / SMP
RS R\ A\ W - 3 Single
\'\ 2 % \: af — Proc.
b i § 4 v » - - ~ ¢ l,,». W
. o . i W3 "%l 95 "9 9T "GE 90 D0 01 D2 03 D4 05 'Ds 'OT 08 06 10 "11 "12 "13 "14 "15 "1e 17 18 "19 20 "21 22
(*) Picture from: http://enwikipedia.org/wiki/Computer_cluster

INTRO TO MPI - ESC25@BERTINORO

Oct 2025 23

System Topology

Machine (128GB)

Knowing where you

L3 (35M8)

are is important!!

L2 (256KB)

= Always try to

L1ld (32KkB) Lld (32KB) L1d (32kB) Lld (32KB) L1ld (32KB) Lld (32KB) Lld (32KB) L1ld (32KB) L1ld (32KB) Lld (32KB) Lld (32kB) L1ld (32KkB) L1ld (32KB)

understand the

L1li (32KB) Lli (32KB) L1i (32KB) L1li (32KB) Lli (32KB)

L1i (32KB)

details of the

L1i (32KB) (32xB) L1 (32KB) Lli (32KB) (32KB) L1li (32KB) Lli (32KB)

system you are

running on

L3 (35M8)

|stopo -no-graphics

L2 (256KB)

--no-io -.txt

£ (5SS £ (5SS £ (5SS

Lli (32KB)

L1li (32KB)

Lli (32KB) (32KB) L1li (32KB) Lli (32KB) (32KB) L1i (32KB) L1li (32KBE) L1i (32KB) L1i (32KB) L1i (32KB) L1li (32KB)

INTRO TO MPI - ESC25@BERTINORO

System Networking

Ethernet Switch/Router: 1 Gbit/s

Other nodes
I r’ in cluster

o—zl\

Other nodes

= J]in cluster
6 = hpc-200-06-06 ’

hpc-200-06-17

IB Switch
QDR: 40Gbit/s

OPA Switch
100Gbit/s hpc-200-06-40 hpc-200-06-18

—
-

Shared Storage SAN

INTRO TO MPI - ESC25@BERTINORO Oct 2025 25

Topologies can be complex... "

LEONARDO@C”\IECA Dragonfb/+ |B Network topologl Cell Configuration and Intra-cell Connectivity

Booster DCGP
Each Booster cell is composed of:

+ 6 x Atos BullSequana XH2000 racks, each containing:

o 3 x Level 2 (L2) switches
o 3 x Level 1 (L1) switches
Booster Ce"s o 30 compute nodes — each equipped with 4 GPUs, each connected via a dedicated 100 Gbps port

. Total per Booster cell: 18 L2 switches, 18 L1 switches, and 180 compute nodes.
Hybrid Cell

Booster + DCGP Connectivity Overview

DCG P Ce| ls Level 2 (L2) Switches:

« UP: 22 x 200 Gbps ports connecting to L2 switches in other cells
Service Cell + DOWN: 18 x 200 Gbps ports connecting to L1 switches within the cell
+ Oversubscription: 0.8:1

Level 1 (L1) Switches:

+« UP: 18 x 200 Gbps ports connected to all L2 switches in the cell
« DOWN: 40 x 100 Gbps ports connected to GPUs across 10 compute nodes
+ Oversubscription: 1.11:1

® https://docs.hpc.cineca.it/hpc/leonardo.html

INTRO TO MPI - ESC25@BERTINORO Oct 2025

System Networking

pc-201-11-40 ~1% ifconfig
ags=4163<UP, ERHAP“A%T RUNNING
inet 131.154.18
ether ac:1f:6b:41:d3:
RX packets 12650483
RX errors @ dr 0]

packets 17873813
TX errors @ dropped €

 MULTICAST=

00 txgueuelen 1000

overruns ® frame

overruns 0 carrier

ib@: ,MULTICAST=>
“~thﬁﬁk 255.255.255.
ss can incorrect
OO:02:FE:80:00:00:00:
X packets 163 3 (8.9 KiB)
RX errors @ dr overruns ©
X packets 1 bytes 60 (60.0 B)

TX errors @ dropped O overruns 0

flags=4163<UP, ERHAP“A%T RUNNING

inet 192.168
Infiniband hardware
infiniband 86

00o:

frame

flags=7-
iﬂet

<UP, LOOPBACK, RUNNING> mtu 655
127 1 netmask 255.0.0.0
........ txqueuelen 1000 (Lo \al Loopback)
RX packets 2722587 bytes 531228851 I;l:
RX errors @ dr ed @ overruns 0 |ah—
TX packets 2722587 y‘tE":u 531228851 (506.
TX errors © dropped © overruns 0 carrie

36

fﬂ&:-zﬂl-ll-4ﬁ ~]
d device 'hfil 0
default gid:
base lid:

sm lid:
state:

phys state:
rate:

link layer:

¢ ibstatus

port 1 status:
e80:0000:0000:0000:00
19
1

Gb/sec (4X EDR)
nfiniBand

netmask 255.255.255.€C
bytes 19185206222 (17.
bytes 11835855740 (11.
mtu
@ bro

Please r¢
00:

carrier

mtu

@U?ﬁ

8 olE')

0]

0 GiB)

® collisions

65520

adcast 192
d BUGS sectio
00:00:00:00:

255

n in ifco
00:00:00:00

nfig(8).

00: txqueuelen 256 (InfiniBand)

]

0 collisions |

5 MiB)
U
5 MiB)
® collisions ©

¢ ibstatus
ort 1 status:
QOEG : 00006 :

—

1|1|,hv|3:-zﬁﬁ-ﬁﬁ-
1iband device 'qib0
default gid:
base lid:
sm Llid:
state:
phys state:
rate:
link layer:

]

[ces
Infir

I-. l._.l

:ﬁJ. OO0 :0011:7504
Oxd

Ox1

4: ACTIVE

5: LinkUp

40 Gb/sec

InfiniBand

(4X QDR)

The Message Passing Programming Model

"Program consists of a collection of

named processes

= Number of processes almost always
fixed at program startup time

" | ocal address space per node
= NO physically shared memory.

" L ogically shared data is partitioned over
local processes

=Communication happens by explicit “Message can be passed over a network
send/receive statements infrastructure or via the main memory,
“shared” memory

INTRO TO MPI - ESC25@BERTINORO Oct 2025 28

Performance and Efficiency Loss?

"The latency of the DRAM can be measured in
tens of nanoseconds

=Sending a byte to a networked computer can
take 2-3 orders of magnitude longer than DRAM,
depending on the interconnect technology

"In using Message Passing, try hard to minimize
communication

"In any case, the interconnection technology
greatly affects the program performances

" Fthernet 1Gbs latency O(10.000ns)

= |nfiniband HDR latency O(200ns)

= DDR4-3600 latency O(60ns)

= DDR5-5600 latency O(10ns)

INTRO TO MPI - ESC25@BERTINORO

Latency Numbers every programmer should know

Latency Comparison Numbers (~2012)

L1 cache reference 8.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns —
Compress 1K bytes with Zippy 3,600 ns 3
Send 1K bytes over 1 Gbps network 10,000 ns 18
Read 4K randomly from SSD* 150,000 ns 150
Read 1 MB sequentially from memory 250,000 ns 250
Round trip within same datacenter 500,000 ns 508
Read 1 MB sequentially from SSD* 1,000,000 ns 1,008
Disk seek 10,000,008 ns 10,000
Read 1 MB sequentially from disk 20,000,000 ns 20,000
Send packet CA->Netherlands->CA 150,000,600 ns 150,000

us

us

us

us

us

us

us

us

us

14x L1 cache

20x L2 cache, 200x L1 cache

T

~1GB/sec SSD

1 ms
10 ms
20 ms

158 ms

~1GB/sec SSD, 4X memory
20x datacenter roundtrip
80x memory, 28X SSD

Oct 2025 29

Communication performances in MPI Applications

® 1: /gpfs/gpfs/gpfs_maestro_home_new/hpc/cesinihpc/Cardiac_demo/build/heart_demo.single_8core_2host.stf

View Charts Navigate Advanced Layout

*

- 2.720 155 - 2,760 240 : 0.040 085 (11l k] M ° All_Processes 7 major Function Groups ¢ Y

as
B w

=13

6 [

[MPI
Bl Application

-~

8 processes

2 hosts

MPI send/receive
over ethernet

4

2,75887 s Application 3

INTRO TO MPI - ESC25@BERTINORO

Oct 2025 30

Communication performances in MPI Applications

wihpcjcesinihpe/Cardiac_demo/build/heart_demo.single_8core_1lhost.stf /S [=]

View Charts N
2 A |uu o 2.720 000 - 2,760 000 : 0.040 000 W 2. All processes [Major Function Groups @ Y | & S| | P

- 8 processes
] MPI|
Bl Application 1 h) St

MPI send/receive via
shared memory

9205 27285 2,736 5 2144 5 2,752 5
2,724 5 2732 s 2.740 s 2.748 s

2.756s

Oct 2025 31

INTRO TO MPI - ESC25@BERTINORO

ommunication performances in MPI Applications

Frocess O { MF Send
Process 1 T . Tuser . WPl send
Process 2 - 1 NP Send
Process 3 TLTTANNT T S—]I PP 11l || f— ___\lP{_Send
Process 4

Process £

Process € J1 1 ANN L L [R

Process 7 T and

Process & W send

Process 9 Y11 a0 usar Juser 0000000000 WPiSend
MP! Send
Mt'l-ﬂm\d
NP Send
P Send

Pl Sand
. WPI Eand

ViPL Viait
LMEL WAL

Several slow

5 Messages.
MPI Problem?

A ! O-fmw
\er
pal;
WP Avoy :

TECHNISCHE
UNIVERSITAT Z l H
D R ES D EN Canter for Infarmation Services &

High Performance Computing

MPI

= MPI is a standard : http://www.mpi-forum.org/

" Defines API for C, C++, Fortran/7, Fortran90 e f_ofL) o ,f_'ﬂg o
= Library with diverse functionalities: [0O+ od — Lod

= Communication primitives (blocking, non-blocking) = .

= Parallel 1/0 / / /

= RMA

= Neighborhood collectives

=\When you run an MPI program, multiple processes =t} L7) N .,

all running the same program are launched working 3 processes
on their own block of data

Oct 2025 33

INTRO TO MPI - ESC25@BERTINORO

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/

SPMD - Single Program Multiple Data @

“Every process runs the same program.

= ..on P processing elements where P can be arbitrarily large

“Each process has a unique identifier and runs the version of the
program with that particular identifier
" the rank - an ID ranging from O to (P-1)

"Each process access its own private data

=You usually run one process per socket/core depending on the

parallelization strategy
" And on the system topology

Oct 2025 34

SPMD - Single Program Multiple Data @

Process 1 Process 2
f pid == 1. f pid == 1.
a =9 a =9
Send (a,2) Send (a,2)
Flse Flse
Recv(b,1) Recv(b,1)
D++ b+ +

INTRO TO MPI - ESC25@BERTINORO Oct 2025 35

MPI Implementations

= MPICH

= The initial implementation of the MPI 1.x standard, from Argonne National Laboratory (ANL) and Mississippi
State University.

= ANL has continued developing MPICH for over a decade, and now offers MPICH-3.2, implementing the MPI-
3.1 standard

“IBM also was an early implementor, and most early 90s supercomputer companies either
commercialized MPICH, or built their own implementation.

“LAM/MPI from Ohio Supercomputer Center
= another early open implementation.,

=Open MPI (not to be confused with OpenMP) was formed by the merging FT-MPI, LA-MPI,
LAM/MPI, and PACX-MPI, and is found in many TOP-500 supercomputers.

= We will use OpenMPI for our exercises!!

“Many other efforts are derivatives of MPICH, LAM, and other works, including, but not limited to,
commercial implementations from HP, Intel, Microsoft, and NEC.

INTRO TO MPI - ESC25@BERTINORO Oct 2025 36

MPI HelloWorld

https://github.com/infn-esc/esc25/blob/main/hands-on/mpi/MPI_Hello.cpp

#include <iostream>
#include <mpi.h>

int main(intargc,char**argv)({
int rank, world_size;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD,&world_size);

char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;

MPI_Get_processor_name(processor_name, &name_len);

std:cout << "Hello world from processor " << processor_name << "rank " << rank << " of "
<< world_size << std:endl;

MPI_Finalize();
return O;

INTRO TO MPI - ESC25@BERTINORO Oct 2025 37

MPI Initand MPI Finalize

#include <iostream>
#include <mpi.h>

int main(int argc,char**argv)(Called before any other MPI functions
int rank, world_size, - Initializes the library
@l_lmt(&a@c‘&ar@ — - Argc and argv are the command line args passed to main
MPI_Comm_rank(MPI_COMM_WORLD,&rank): - - Open MPI accepts the C/C++ argc and argv
MPI_Comm_size(MPI_COMM_WORLD,&world_size): arguments to main, but neither modifies, interprets,
char processor_name[MPI_MAX_PROCESSOR_NAME]; nor distributes them

int name_len;

MPI_Get_processor_name(processor_name, &name_len);

std:cout << "Hello world from processor " << processor_name << "rank " << rank << " of "

<< world_size << std:endl;
C_MPI_Finalize(); > msssssssmmm) Called to close any MPI program
return U, - Frees memory allocated by MPI

)

- Must be invoked by all Ranks

INTRO TO MPI - ESC25@BERTINORO Oct 2025 38

How many processes?

Communicators consist of two parts, a context and a
process group. The communicator lets us control how
groups of messages interact.

#include <iostream>
#include <mpi.h>

int main(int argc, char** argv){
int rank, world_size;

MPI_Init(&argc, &argv); . . ;
A MPI mm mm, int¥*
MPI_Comm_rank(MPI_COMM_WORLD,& rank): int MPI_Comm size (MPI_Comm comm, int

PT_Comm_size(MPI_COMM_WORLD,&size): ‘ size)
— — - MPI_Comm, an opaque data type called a

char processor_name[MPI_MAX_PROCESSOR_NAME], communicator. Default context:
int name_len, MPI_COMM_WORLD (all processes)
MPI_Get_processor_name(processor_name, &name_len);

- MPI Comm size returns the number of

<< "rank " << rank << " of " << world_size << std:endl; Processes in the process group associated with
the communicator

std:cout << "Hello world from processor " << processor_name

MPI_Finalize();
return O;

INTRO TO MPI - ESC25@BERTINORO

Oct 2025 39

Who am I? (which 1s my rank?)

Note that other than init() and finalize(), every MPI function
has a communicator which defines the context and group of
processes that the MPI functions impact

#include <iostream>
#include <mpi.h>

int main(int argc, char** argv){
int rank, world_size;] .
int MPI Comm rank (MPI_Comm comm, int¥*

MPI_Init(&argc, &argy): rank)

<_MPI_Comm_rank(MPI_COMM_WORLD,&rank); > ‘ - MPI_Comm, an opaque data type called a
MPI_Comm_Size(MPT_COMM_WORLD, &slize): communicator. Default context:

char processor_name[MPI_MAX_PROCESSOR_NAME]: MPI_COMM_WORLD (all processes)
0t name len: - MPI_Comm rank returns an integer ranging from
MPI_Get_processor_name(processor_name, &name_len); 0to “(num of pI’OCS)-']”

std:cout << "Hello world from processor " << processor_name

<< "rank " << rank << " of " << world_size << std:endl:

MPI_Finalize();
return O;

)

INTRO TO MPI - ESC25@BERTINORO Oct 2025 40

Communicators and Groups - 1

“Internally, MPI has to keep up with (among other things) two major MPI_COMM_WORLD
arts of a communicator
p o ©

" the context (or ID) that differentiates one communicator from another
" prevents an operation on one communicator from matching with a similar operation on another (0] O @
communicator C 6] [4]

= the group of processes contained by the communicator @

=Communicators provides a separate communication space

©
oo group1 group2 <
o @

"It's not unusual to do everything using MPI_COMM_WORLD, but for
more complex use cases, it might be helpful to have more
communicators.

= MPI_Comm_split is the simplest way to create a new communicator

C
C
C

=A Group is a little simpler, since it is just the set of all processes in the

communicator. ©
= MPI offers function to manage Groups: Union or Intersection communications
" Groups can be used to create Communicators C

INTRO TO MPI - ESC25@BERTINORO

c
e

Oct 2025 41

Communicators and Groups - 2

// Get the rank and size in the original communicator
int world_rank, world_size;

MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

int color = world_rank / 4; // Determine color based on row

// Split the communicator based on the color and use the
// original rank for ordering
MPI_Comm row_comm;

MPI_Comm_split(MPI_COMM_WORLD, color, world_rank,
&row_comm);

int row_rank, row_size;
MPI_Comm_rank(row_comm, &row_rank);
MPI_Comm_size(row_comm, &row_size);

printf("WORLD RANK/SIZE: %d/%d \t ROW RANK/SIZE:
%d/%d\n",

world_rank, world_size, row_rank, row_size):

MPI_Comm_free(&row_comm);

INTRO TO MPI - ESC25@BERTINORO

Split a Large Communicator into a Smaller ones

©000) |

CROZORE |

@@@/ k

© https:/mpitutorial.com/tutorials/introduction-to-groups-
and-communicators/

Oct 2025 42

https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/
https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/
https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/
https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/
https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/
https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/
https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/
https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/
https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/
https://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/

How do I runit?

Compile it:
= mpic++ -0 MPI_Hello.out MPI_Hello.cpp OpenMPI 4.3 is installed on our systems
Run it: Remember to “export” the righh PATH and

" mpirun -hostfile machinefile.txt -np <np> LD_LIBRARY_PATH in -bashrc

MP|_Hello.out

" the command is implementation dependent
[dcesini@ hpc-200-06-181S cat machinefile.txt
hpc-200-06-18 slots=2
hpc-200-06-17 slots=2 |
hpc-200-06-02 slots=2

mpirun -H hpc-200-06-18:2,hpc-200-06-17:2,hpc-200-06-
> 06:2 -np 6 MPI_Hello.out

INTRO TO MPI - ESC25@BERTINORO Oct 2025

A couple of notes

= The executable must be present in all the hosts used, in the same path

" You are lucky in the school nodes - shared home directories!!

= OpenMPI in our cluster uses ssh to connect to the remote hosts

= ssh should work passwordless
" e HostBasedAuthentication yes in sshd_config

" je. Exchange and authorize keys - see the esc25 Env setup page

" (Create an identity kev pair and add the public part to the authorized_keys file in .ssh

[cesinihpc@hpc-200-06-17 .ssh]S cat id_rsa.pub >> authorized_keys

* During login the OpenMPI environment should be loaded
= Typically via the .basrc file

INTRO TO MPI - ESC25@BERTINORO Oct 2025 44

Point-to-Point Communication

INTRO TO MPI - ESC25@BERTINORO Oct 2025 45

Messages @

"In general, in order to be able to communicate using messages you need

to fill-in a header and a payload

=Send/Receive Functions
" Can be Blocking and Non blocking

"Send and Receive calls/messages must match, otherwise deadlocks can
occur

INTRO TO MPI - ESC25@BERTINORO Oct 2025 46

Messages — Send and Receive

int MPI_Send (const void* buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

int MPI_Recv (void* buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
MPI_Status* status)

"Int MPI_Send performs a blocking send of the specified data (“count” copies of type “datatype)
stored in “buf”) to the specified destination (rank “dest” within communicator “comm”), with
message ID “tag”

= int MPI_Recv (void* buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
MPI_Status* status)

"“blocking” means the functions return as soon as the buffer, “buf”, can be safely used.

INTRO TO MPI - ESC25@BERTINORO Oct 2025 47

MPI_Send, MPI Isend, MPI SSend

= MPI_Send (Standard Send)

Type: Blocking send

Behavior: The function returns only after the message data has been
safely stored away — either in the receiver's buffer or in an internal
system buffer,

Use case: Good for general-purpose communication when you want to
ensure the message has been sent before proceeding.

Blocking? Yes — the sender waits until it is safe to reuse the send
buffer.

= MPI_ISend (Immediate Send)

Type: Non-blocking send

Behavior: Initiates the send operation and returns immediately, allowing
the program to continue executing. You must later call MPI_Wait or
MPI_Test to ensure the send has completed.

Use case: Useful for overlapping communication with computation,
improving performance in parallel applications.

Blocking? No — but you must manage completion manually.

INTRO TO MPI - ESC25@BERTINORO

MPI_SSend Yes Yes

= MPI_SSend (Synchronous Send)

Type: Blocking synchronous send

Behavior: The send operation only completes when the receiver has
started receiving the message. This ensures synchronization between
sender and receiver.

Use case: Useful when you want to ensure that the receiver is ready
before sending data, which can help avoid buffer overflows or race
conditions.

Blocking? Yes — waits until the receiver has initiated a matching
receive.

Blocking S_ynchronlzatlon Buffering

MPI_Send Yes
buffer send

MPI_ISend No No

May use internal General-purpose

May use internal Overlap
buffer communication
and computation

No buffering; Ensures receiver

waits for receiver is ready

Oct 2025

MPI Message Bufter

“In a perfect world, every send operation would be
perfectly synchronized with its matching receive. This is
rare[y the case. process A process B

application SEND - . application RECV
=The MPI implementation must be able to deal with E network E

storing data when the two tasks are out of sync,

system buffer system buffer
=Consider the following two cases: - .I

= A send operation occurs 5 seconds before the receive is
ready - where is the message while the receive is pending?

" Multiple sends arrive at the same receiving task which can .
only accept one send at a time - what happens to the library
messages that are "backing up"?

*Opaque to the programmer and managed entirely by the MPI

"A finite resource that can be easy to exhaust
*"The MPI implementation (not the MPI standard) decides

what happens to data in these types of cases. =Often mysterious and not well documented

“Typically, a system buffer area is reserved to hold data "Able to exist on the sending side, the receiving side, or both

In transit =Something that may improve program performance because

it allows send - receive operations to be asynchronous

INTRO TO MPI - ESC25@BERTINORO Oct 2025 49

Blocking vs Non-Blocking

=Blocking:
= A blocking send routine will only "return" after it is safe to modify the application buffer (your sent data) for
reuse,

= Safe means that modifications will not affect the data intended for the receive task.

= Safe does not imply that the data was actually received - it may very well be sitting in a system buffer

“Non-Blocking
= Non-blocking send and receive routines behave similarly - they will return almost immediately.

= They do not wait for any communication events to complete, such as message copying from user memory to
system buffer space or the actual arrival of message

= Non-blocking operations simply "request" the MPI library to perform the operation when it is able. The user
cannot predict when that will happen.

" |t is unsafe to modify the application buffer (your variable space) until you know for a fact the requested
non-blocking operation was actually performed by the library. There are "wait" routines used to do this.

= Non-blocking communications are primarily used to overlap computation with communication and exploit
possible performance gains

INTRO TO MPI - ESC25@BERTINORO Oct 2025 50

Order

“MPI guarantees that messages will not overtake each other.

"|f 3 sender sends two messages (Message 1 and Message 2) in succession to the same
destination, and both match the same receive, the receive operation will receive Message 1
before Message 2.

"|f a receiver posts two receives (Receive 1 and Receive 2), in succession, and both are looking
for the same message, Receive 1 will receive the message before Receive 2.

INTRO TO MPI - ESC25@BERTINORO Oct 2025 51

Fairness

“MPI does not guarantee fairness - it's up to
the programmer to prevent "operation
starvation”.

"Example: task O sends a message to task 2.
However, task 1 sends a competing message
that matches task 2's receive. Only one of the
sends will complete

The scenario requires that the receive used the wildcard
MPI_ANY_SOURCE as its source argument.

INTRO TO MPI - ESC25@BERTINORO Oct 2025 52

Non-blocking Send and Receive

int MPI_ISend (const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

int MPI_IRecv (void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
MPI_Request *request)

= int MPI_Isend begins a non-blocking send of the variable buf to destination dest.
“Int MPI_lrecv begins a non-blocking receive

=Since non-blocking operations may return before the requested system buffer space is obtained, the
system issues a unique "request number".

= The programmer uses this system assigned "handle" later (in a WAIT type routine) to determine completion of the
non-blocking operation

» MPI_Wait(request, status)
= MPI_Test(request, flag, status)

“"Anywhere you use MP|_Send or MPI_Recv, you can use the pair of MPI_Isend/MPI_Wait or
MPI|_lrecv/MPI_Wait

INTRO TO MPI - ESC25@BERTINORO Oct 2025 53

Send and Receive exercise — the PingPong

https://github.com/infn-esc/esc25/blob/main/hands-on/mpi/PingPong.cpp

'/ rank @ sends to rank 1 and waits to receive a return message
if (rank == @) {

h

dest = 1;
source = 1;
MPT_ Ssend(&outmsg, 1, MPT CHAR, dest, tag, MPI COMM WORLD);

std::cout << "Rank @ successfully sent a message to Rank 1:

<< outmsg << std::endl;

MPT Recv(&inmsg, 1, MPI CHAR, source, tag, MPI COMM WORLD, &Stat);

std::cout << "Rank @ successfully received a message from Rank 1: << inmsg << std::endl;

/ rank 1 waits for rank ©® message then returns a messag

else if (rank == 1) {

std::cout << "Rank 1 is waiting for a message from Rank ©" << std::endl;
source = @,

dest = @;

MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM WORLD, &Stat);

std::cout << "Rank 1 successfully received a message from Rank @: << inmsg << std::endl;

MPI_Ssend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM WORLD);

std::cout << "Rank 1 successfully sent a message to Rank 0:

<< outmsg << std::endl;

INTRO TO MPI - ESC25@BERTINORO

Oct 2025

54

Change the Network interface

“Following the so-called "Law of Least Astonishment"’, Open MPI assumes that if you have both an [P
network and at least one high-speed network (such InfiniBand), you will likely only want to use the
high-speed network(s) for MPI message passing

= AT least up to version3
= This changed in version4

= OpenMPI may still use TCP for setup and teardown information — so you'll see traffic across your IP network
during startup and shutdown of your MPI job. This is normal and does not affect the MPI message passing
channels.

“mpirun --mca btl_openib_allow_ib 1 -np 2 --hostfile machinefile.txt BandWidth.out

[cesinihpc@hpc-200-06-17 esc25]S cat machinefile.txt
hpc-200-06-17 slots=1
hpc-200-06-18 slots=1

INTRO TO MPI - ESC25@BERTINORO Oct 2025 55

Effect of changing the network interface

mpirun --mca btl_openib_allow_ib 1 -np 2 --hostfile machinefile.txt BandWidth.out

[cesinihpc@hpc-200-06-17 mpi]$ mpirun --mca btl_openib_allow_ib 1 -np 2 --hostfile machinefile.txt Bandwidth.out
Arrays created and initialized
Arrays created and initialized
Rank 1 is waiting for a message from Rank 0O
Rank 0 Received 20000000 INTs from rank 1 with tag 1
10 Iterations took 0.493944 seconds
8e+08 Bytes sent in 0.493044 _saconds

@bandwidth = 1.61962e+09 B/s = 12.9569 Gbhit/s

RankKIReceived-20000000 TNTs frem—r ek 0 with tag 1

mpirun --mca btl tcp,selfvader --mca pml ob1 --mca btl_tcp_if_include enp6s0 --hostfile machinefile.txt
np 2 BandWi dth.out

--hostfile machinefile.txt -np 2 BandWidth.out

[cesinihpc@hpc-200-06-17 mpi]$ mpirun --mca btl tcp,self,vader --mca pml obl --mca btl_tcp_if_include ethl
Arrays created and initialized
Arrays created and initialized
Rank 1 is waiting for a message from Rank 0
Rank 1 Received 40000000 INTs from rank 0 with tag 1
Rank 0 Received 40000000 INTs from rank 1 with tag 1
20 Iterations took 51.8564 seconds
3.2e+09 Bytes—sert—tmr 518564 sECUNUS
Handwidth = 6.17089e+07 B/s = 0.493671 Ghit/s

. - . i
Now try using the SH (shared memory) MCA..any improvement?

INTRO TO MPI - ESC25@BERTINORO Oct 2025 56

Non Blocking PingPong

https://github.com/infn-esc/esc25/blob/main/hands-on/mpi/NoBloc_PingPong.cpp

if(ﬁy_raﬁk == 0)

{
int value_sent = 9999;
MPI_Request request;
MPI_Isend(&value_sent, 1, MPI_INT, 1, ©, MPI_COMM_WORLD, &request);
std::cout << "MPI process " << my_rank << " I launched the non-blocking send." << std::endl;
MPI_Wait(&request, MPI_STATUS_IGNORE);
std::cout << "MPI process " << my_rank << " The wait completed, so I sent value " << value_sent << std::endl;
}
else
{
int value_received = 0;
MPI_Request request;
MPI_Irecv(&value_received, 1, MPI_INT, ©, MPI_ANY_TAG, MPI_COMM_WORLD, &request);
std::cout << "MPI process " << my_rank << " I launched the non-blocking receive." << std::endl;
MPI_Wait(&request, MPI_STATUS_IGNORE);
std::cout << "MPI process " << my_rank << " The wait completed, so I received value " << value_received << std::endl;
}

MPI_Finalize();

INTRO TO MPI - ESC25@BERTINORO Oct 2025 57

Collective Communication

INTRO TO MPI - ESC25@BERTINORO Oct 2025 58

SCope @

“A message can be sent to/received from a group of processes

=Collective communication routines must involve all processes within
the scope of a communicator

|t is the programmer's responsibility to ensure that all processes
within @ communicator participate in any collective operations,

“Use collective communication when possible

" They are implemented more efficiently than the sum of their point-to-point
equivalent calls

INTRO TO MPI - ESC25@BERTINORO Oct 2025 59

Types of Collective Operations

=Synchronization - processes wait until all members of
the group have reached the synchronization point.

= Data Movement

" Broadcast

= Scatter/gather

= All-to-All

=Collective Computation (reductions)

" one member of the group collects data from the other
members and performs an operation on that data
= Min
= Max
* Add
= multiply

INTRO TO MPI - ESC25@BERTINORO Oct 2025 60

MPI_Barrier Ty

Process 0
Process 1 z Fal | HP

Pldcassd T Barrier 61 IP ; I user M NoSendRecvReplace
Process 3 2 user

*MPI|_Barrier(MPI_Comm Comm) i

Process B
Process 7
Process 8

“Blocks until all processes have S
_ ' Process 11
reached this routine Frocess 15

Process 14

= Blocks the caller until all group Bees &8

members have called it S

I Application
HPI

Process 0
Process 1
Process 2
Process 3
Process 4
Process §
Process 6
Process 7
Process 8
Process 9
Process 10
Process 11
Process 12
Process 13
Process 14
Process 15
Process 16
Process 17 i

-~

M fpplication
M e
B NoSendRecvReplace

Daniel Guerrero Martinez & Sergio Rodriguez Lurnley

An MPI Barrier call before a communication phase ensures a synchronized start of the
communication calls (top). When removing the barrier there is an un-synchronized start (bottom)

INTRO TO MPI - ESC25@BERTINORO Oct 2025

Broadcast

"int MPI_Bcast_c(void *buffer, MPI_Count count,
MPI_Datatype datatype, int root, MPI_Comm
comm)

" broadcasts a message from the process with rank root to
all processes of the group, itself included.

" |t is called by all members of the group using the same
arguments for comm and root. broadcast

= On return, the content of root’s buffer is copied to all

other processes.
MPI_BCAST (buffer, count, datatype, root, comm)

INOUT buffer starting address of buffer (choice)

IN count number of entries in buffer (non-negative integer)
IN datatype datatype of buffer (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

INTRO TO MPI - ESC25@BERTINORO Oct 2025 62

Gather

=int MPl_Gather(const void *sendbuf, int
sendcount, MPI_Datatype sendtype, void
*recvbuf, int recvcount, MPI_Datatype

recvtype, int root, MPI_Comm comm)

" each process (root process included) sends the
contents of its send buffer to the root process.

" The root process receives the messages and
stores them in rank order

" The receive buffer is ignored for all non-root
processes

= Note that the recvcount argument at the root
indicates the number of items it receives from
each process, not the total number of items it
receives

INTRO TO MPI - ESC25@BERTINORO

gather

MPI_GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN
IN

sendbuf

sendcount

sendtype

recvbuf

recvcount

recvtype

root

comm

starting address of send buffer (choice)

number of elements in send buffer (non-negative
integer)

datatype of send buffer elements (handle)

address of receive buffer (choice, significant only at
root)

number of elements for any single receive

(non-negative integer, significant only at root)

datatype of recv buffer elements (handle, significant
only at root)

rank of receiving process (integer)

communicator (handle)

Oct 2025 63

Scatter

=int MPI_Scatter(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

" the root sends a message with
MPI_Send(sendbuf,sendcountn, sendtype,.). This message
is split into n equal segments, the i-th segment is sent
to the i-th process in the group, and each process
receives this message as above,

= The send buffer is ignored for all non-root processes

INTRO TO MPI - ESC25@BERTINORO

IN

sendbuf

sendcount

sendtype

recvbuf

recvcount

recvtype
root

comm

scatter
MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

address of send buffer (choice, significant only at
root)

number of elements sent to each process
(non-negative integer, significant only at root)

datatype of send buffer elements (handle, significant
only at root)

address of receive buffer (choice)

number of elements in receive buffer (non-negative
integer)

datatype of receive buffer elements (handle)
rank of sending process (integer)

communicator (handle)

Oct 2025 64

Reduce

=int MPI_Reduce(const void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype, MPI_Op op, int
root, MPI_Comm comm)

= combines the elements provided in the input buffer of
each process in the group, using the operation op,
and returns the combined value in the output buffer

IN sendbuf

= The input buffer is defined by the arguments sendbuf,
ouT recvbuf

count and datatype; the output buffer is defined by

the arguments recvbuf, count and datatype; N count
IN datatype
IN op
IN root
IN comm

INTRO TO MPI - ESC25@BERTINORO

reduction
of the process with rank root. MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

address of send buffer (choice)

address of receive buffer (choice, significant only at
root)

number of elements in send buffer (non-negative
integer)

datatype of elements of send buffer (handle)
reduce operation (handle)
rank of root process (integer)

communicator (handle)

Oct 2025 65

Reduce Operations

*"MPI_MAX - Returns the maximum element

“MPI_MIN - Returns the minimum element

“MPI_SUM - Sums the elements.

=MPI_PROD - Multiplies all elements.

“MPI_LAND - Performs a logical and across the elements

"MPI_LOR - Performs a logical or across the elements

“MPI_BAND - Performs a bitwise and across the bits of the elements

"MPI_BOR - Performs a bitwise or across the bits of the elements

*MPI_MAXLOC - Returns the maximum value and the rank of the process that owns it

*"MPI_MINLOC - Returns the minimum value and the rank of the process that owns it

INTRO TO MPI - ESC25@BERTINORO

Oct 2025

66

Other Collective Opertaions

s*MPI_ALLGATHER can be thought of as
MPI_GATHER, but where all processes receive
the result, instead of just the root

*MPI_ALLTOALL is an extension of
MPI_ALLGATHER to the case where each
process sends distinct data to each of the
receivers. The j-th block sent from process i is
received by process j and is placed in the i-th
block of recvbuf,

INTRO TO MPI - ESC25@BERTINORO

MPIl_Allgather

Q= O

Y '#-"' "

© O

W

Y

-

4

Alltoall
—>»>

fo
Q

Oct 2025

67

4.0/(1+x2)

F(x)

The MPI_P1

https://github.com/infn-esc/esc25/blob/main/hands-on/mpi/MPI_Pi.cpp

1 N
TN
~ 4.0
\ I o) WX=T — Z F(x)AX = T
0 i=0

4.0 =

double start_x = (myid * 1.0 / num_procs);

\\ for (long long int 1=0; 1 < steps_per_proc
\ auto x = start_x + (i + 0.5)*step;
2.0 sum = sum + 4.0/(1.0 +x*x);

1
J
mypi = step * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, ©, MPI_COMM_WORLD) ;
if (myid == 0) {
std::cout << "result: << std::setprecision(15) << pi << std::endl;

1
J

10 MPI_Finalize();
0.0 - return 0O;
X

INTRO TO MPI - ESC25@BERTINORO Oct 2025

The trivial MPI N_ Body

=Each process handles a subset of bodies

"At each time step, forces are computed and
positions/velocities are updated.

*MPI is used to share body data across processes.

"Disclaimers
" The code uses explicit Euler integration, which is simple but not
stable for systems with strong forces or long time steps.
" |t can lead to energy drift and unrealistic trajectories over time.
= Force Singularities:
* The gravitational force becomes infinite as distance — O.

* The code adds a small softening term (+1e-9) to avoid division by zero, but this
is a crude fix.

= Time Step Sensitivity:

= A fixed time step (dt = 0.01) may be too large or too small depending on the
system.

= Adaptive time stepping is often better

INTRO TO MPI - ESC25@BERTINORO

Gmims Gmima

—_ - = =

F 2 (r2 1 ¢2)
Where:

gis the softening length.
It prevents the force from
becoming infinite as r =» 0

Oct 2025 69

The trivial MPI N_ Body

"Each process handles a subset of bodies

"At each time step, forces are computed and
positions/velocities are updated.

*MPI is used to share body data across processes.

Each process maintains a local copy of

- the entire integration domain which is
updated at each integration step by all

the other processes via MPI_Allgather

— — — — — — —

8 processors

Oct 2025 70

INTRO TO MPI - ESC25@BERTINORO

The trivial MPI N_ Body simulation

Fach process handles a subset of bodies

At each time step, forces are computed and
positions/velocities are updated.

MPI is used to share body data across processes.

MPI Allgather(tart], local N ly), MPI BYTE,
i cal (Body PI_BYTE,

] et e el el e e

8 BLOCKS
8 processors

Oct 2025

INTRO TO MPI - ESC25@BERTINORO

Process affinity

INTRO TO MPI - ESC25@BERTINORO Oct 2025 72

Run-time Tuning: Process Affinity

=Open MPI supports processor affinity on a variety of systems through process binding
= Fach MPI process is "bound" to a specific subset of processing resources (cores, sockets, L* cache, hwthread etc.).

" The operating system will constrain that process to run on only that subset

=Affinity can improve performance by inhibiting excessive process movement
= for example, away from "hot" caches or NUMA memory.

*Judicious bindings can improve performance
= by reducing resource contention (by spreading processes apart from one another)

" improving interprocess communications (by placing processes close to one another).
=Binding can also improve performance reproducibility by eliminating variable process placement.
=Unfortunately, binding can also degrade performance by inhibiting the OS capability to balance loads.

"Depending on how processing units on your node are numbered, the binding pattern may be good, bad, or
even disastrous
= |f you want to control affinity you have to know what you are doing

INTRO TO MPI - ESC25@BERTINORO Oct 2025 73

Mapping, Ranking, and Binding: Oh My!

*Open MPI employs a three-phase procedure for assigning process locations and ranks:

" Mapping

" Assigns a default location to each process
" Ranking

= Assigns an MPI_COMM_WORLD rank value to each process
2 R

Blﬂdlﬂg Often a good choice is to let MPI decide for you.
But if you want to master the MPI mapping, the
mpirun manual is a good starting point, i.e.:
https://www.open-
" --map-by <foo> mpi.org/doc/v4.1/man1/mpirun.1l.php
" Map to the specified object, defaults to socket.

= Constrains each process to run on specific processors

*To control process mapping in the command line:

" <foo> can be: slot, hwthread, core, L1cache, L2cache, L3cache, socket, numa, board, node, sequential, distance,
and ppr.

INTRO TO MPI - ESC25@BERTINORO Oct 2025 74

Run-time Tuning - Binding

= In Open-MP| - mpirun automatically binds processes as of the
start of the v1.8 series

" Two binding patterns are used in the absence of any further directives:

" Bind to core: when the number of processes is <= 2

" Bind to socket: when the number of processes is > 2

= To control process binding in the command line:
" --bind-to <foo>:

" Bind processes to the specified object, defaults to core.

= Supported options include slot, hwthread, core, |1cache, [2cache, |3cache, socket, numa, board, and
none,

" -report-bindings, --report-bindings: Report any bindings for launched
processes.

INTRO TO MPI - ESC25@BERTINORO Oct 2025 75

Fine binding: The rankfile

=-rf, --rankfile <rankfile>
" Provide a rankfile file for fine control of the process allocation

" rank <N>=<hostname> slot=<slot list>

For example:

S cat myrankfile
rank O=aa slot=1:0-2 Rank O runs on node aa, bound to logical socket 1, cores 0-2.

rank 1=bb slot=0:0.1 Rank 1 runs on node bb, bound to logical socket O, cores O and 1.

rank 2—cc slot=1-2 Rank 2 runs on node cc, bound to logical cores 1 and 2.

Oct 2025 76

INTRO TO MPI - ESC25@BERTINORO

Bind-to core example

[cesinihpc@hpc-200-06-17 mpil]$ time mpirun --mca btl_openib_allow_ib 1 --map-by core --bind-to core --report-bindings -np 16 MPI_Pi.o
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank O bound to socket O[core O[hwt 0-1]]: [BB/../../../../.. /.. /..M. /.. /.. /.. /.. ../..[..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 1 bound to socket @[core 1[hwt 0-111: [../BB/../../../../../..0[../../../../..[../../..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 2 bound to socket O[core 2[hwt 0-1]]1: [../../BB/../../../7../..1[../../../../../..[../..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 3 bound to socket O[core 3[hwt 0-1]]: [..f../../BBK../../..f..][../../..f..f..f../../..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 4 bound to socket @[core 4[hwt 0-111: [../../../../BB/../../.. 0 ../../../../..[../../..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 5 bound to socket O[core 5[hwt 0-1]11: [../../../../../BB/../..1[../../../../../..[../..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 6 bound to socket @[core 6[hwt 0-1]]1: [../../../../../../BB/..1[../../../../../../../..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 7 bound to socket @[core 7[hwt 0-111: [../../../../../../../BBl[../../../../..[../../..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 8 bound to socket 1l[core 8[hwt 0-1]11: [../../../../../../../..1[BB/../../../../..[../..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 9 bound to socket 1[core 9[hwt 0-1]1: [../../../../../../../..1[../BB/../../..[../../..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 10 bound to socket 1l[core lo[hwt o-111: [../../../../.. /.. .. /.. 1../../BB/../../..[..[..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 11 bound to socket 1[core 11l[hwt ©-111: [../../../../../../../..1[../../../BB/../../../..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 12 bound to socket 1l[core 12[hwt O-1]]): [../../../.. /.. /.. /.. /.. 1[../../../../BB/../../..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 13 bound to socket 1l[core 13[hwt ©-1]1: [../../../../../../../.. 1 [../../../../../BB/../..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 14 bound to socket 1[core 14[hwt 0-111: [../../../../../../../.. 1 [../../../../../../BB/..]
[hpc-200-06-17.cr.cnaf.infn.1t:04770] MCW rank 15 bound to socket 1[core 15[hwt ©-1]]): [../../../.. /.. /.. /.. /.. 1[../../../../../../../BB]

Integrating Pi with numsteps = 40000000000. Step = 2.5e-11.
Numsteps per process = 2500000000.

result: 3.14159265358959

real Oml6.133s
4dmb6.876s
Om4.320s

INTRO TO MPI - ESC25@BERTINORO Oct 2025 77

A disastrous binding example

[cesinihpc@hpc-200-06-17 mpil$ time mpirun --mca btl_openib_allow_ib 1 --map-by hwth|ead --bind-to hwthread report-bindings -np 16 MPI_Pi.o
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank © bound to socket O[core O[hwt 0]]: [B./. /../../../../..][../../../../../../../ .1
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank 1 bound to socket O[core O[hwt 1]]: [.B/. /../../../../..][../..f..f../../../../..]
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank 2 bound to socket O[core 1[hwt 0]]: [../B / N AP Y S SR SR | R A S A AR SR A
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank 3 bound to socket O[core 1[hwt 1]]1: [../.B/../../../../../..0[../../.. /.. /.. /.. [..[..]
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank 4 bound to socket O[core 2[hwt O]]: [../../B./../../../.. /.. .. /.. /.. /.. /.. /.. [..[..]
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank 5 bound to socket O[core 2[hwt 1]1]1: [../../.B/../../../../.. 1 [../.. /.. /.. /... ... [..]
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank & bound to socket O[core 3[hwt O©]]: [../../../B./../../../..0[../../.. /.. /... f..[..]
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank 7 bound to socket O[core 3[hwt 1]11: [../../../.B/../../../.. 0 [../.. /.. /.. /.. /..[../..]
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank 8 bound to socket O[core 4[hwt O]]: [../../../../B./../../.. 0 [../../.. /.. /.. .. [..[..]
[hpc-200-06-17.cr.cnaf.infn.1it:05178] MCW rank 9 bound to socket O[core 4[hwt 1]11: [../../../../.B/../../..0[../.. /.. /.. /.. /..[../..]
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank 10 bound to socket O[core 5[hwt 0]]: [../. /oSS /B]
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank 11 bound to socket O[core 5[hwt 11]1: [../../../../../.B/../..0../../../../..[..[../..]
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank 12 bound to socket O[core 6[hwt O1]: [../../../../../../B./..M[../../../../../../../..]
[hpc-200-06-17.cr.cnaf.infn.i1t:05178] MCW rank 13 bound to socket @[core 6[hwt 1]11: [../../../../../../.B/..M[../../.. /.. /.. /.. ../ ..]
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank 14 bound to socket O[core 7[hwt @]1]: [../../../../../../../B.)[../../../../../..[../..]
[hpc-200-06-17.cr.cnaf.infn.1t:05178] MCW rank 15 bound to socket O[core 7[hwt 111: [../../../../../../../.BY../../../../../../../..]

Integrating Pi with numsteps = 40000000000. Step = 2.5e-11.
Numsteps per process = 2500000000.

result: 3.14159265358959

real OGm31.250s
user 8mll.443s
SYys Om2.772s

INTRO TO MPI - ESC25@BERTINORO Oct 2025 78

Run-time tuning: Memory Affinity

*Open MPI supports general and specific memory affinity,
=it generally tries to allocate all memory local to the processor that asked for it

“\When shared memory is used for communication, Open MPI uses memory affinity to make
certain pages local to specific processes in order to minimize memory network/bus traffic,

INTRO TO MPI - ESC25@BERTINORO Oct 2025 79

	Slide 16: Parallelism beyond the node: Introduction to MPI Programming
	Slide 17: Reference Material
	Slide 18: Multithread vs Multiprocess
	Slide 19: Shared Memory Systems
	Slide 20: NUMA Architecture Programming
	Slide 21: Distributed Memory Systems
	Slide 22: Shared vs Distributed Memory Systems
	Slide 23: Clusters
	Slide 24: System Topology
	Slide 25: System Networking
	Slide 26: Topologies can be complex…
	Slide 27: System Networking
	Slide 28: The Message Passing Programming Model
	Slide 29: Performance and Efficiency Loss?
	Slide 30: Communication performances in MPI Applications
	Slide 31: Communication performances in MPI Applications
	Slide 32: Communication performances in MPI Applications
	Slide 33: MPI
	Slide 34: SPMD – Single Program Multiple Data
	Slide 35: SPMD – Single Program Multiple Data
	Slide 36: MPI Implementations
	Slide 37: MPI HelloWorld
	Slide 38: MPI_Init and MPI_Finalize
	Slide 39: How many processes?
	Slide 40: Who am I? (which is my rank?)
	Slide 41: Communicators and Groups - 1
	Slide 42: Communicators and Groups - 2
	Slide 43: How do I run it?
	Slide 44: A couple of notes
	Slide 45: Point-to-Point Communication
	Slide 46: Messages
	Slide 47: Messages – Send and Receive
	Slide 48: MPI_Send, MPI_Isend, MPI_SSend
	Slide 49: MPI Message Buffer
	Slide 50: Blocking vs Non-Blocking
	Slide 51: Order
	Slide 52: Fairness
	Slide 53: Non-blocking Send and Receive
	Slide 54: Send and Receive exercise – the PingPong
	Slide 55: Change the Network interface
	Slide 56: Effect of changing the network interface
	Slide 57: Non Blocking PingPong
	Slide 58: Collective Communication
	Slide 59: Scope
	Slide 60: Types of Collective Operations
	Slide 61: MPI_Barrier
	Slide 62: Broadcast
	Slide 63: Gather
	Slide 64: Scatter
	Slide 65: Reduce
	Slide 66: Reduce Operations
	Slide 67: Other Collective Opertaions
	Slide 68: The MPI_Pi
	Slide 69: The trivial MPI N_Body
	Slide 70: The trivial MPI N_Body
	Slide 71: The trivial MPI N_Body simulation
	Slide 72: Process affinity
	Slide 73: Run-time Tuning: Process Affinity
	Slide 74: Mapping, Ranking, and Binding: Oh My!
	Slide 75: Run-time Tuning - Binding
	Slide 76: Fine binding: The rankfile
	Slide 77: Bind-to core example
	Slide 78: A disastrous binding example
	Slide 79: Run-time tuning: Memory Affinity

