
An Introduction to multithreading in C++
Tim Mattson

Tim’s Backyard around sunset

Tim’s
House

Washington

Oregon

Threads and C++
• Threads built into the C++ language (since C++11)
– The inclusion of threads mandated the definition of a formal memory model in C++
– Memory Models in Rust, OpenMP, and OpenCL are based on the C++ memory model.

• Expose the threading interface with: #include <threads>

• Provides the full range of capabilities needed for low-level thread management

2

Thread Management*
• creation through constructors.
• Join: wait for a thread to finish
• Detach: thread runs independently from parent thread
• Swap: swap state of threads
• Asynchronous thread execution and futures

Synchronization mechanisms*
• Mutex and locks,
• condition variables,
• semaphores,
• Barriers
• Atomic variables and flags
• Memory order control

*The capabilities are the most essential commonly used subset. For a complete list, go to: https://en.cppreference.com/w/cpp/thread/thread.html

Concurrency vs. Parallelism
• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time

PE = Processing Element

The traditional definition in use since the 1970s

C++ changed the definition to include fair scheduling … which is specific to CPUs.

C++ threads: Hello World program (hello.cpp)

4

#include <thread>
 #include <iostream>

 int main() {

 auto f = [] (int i){
 std::cout << "Hello ";
 std::cout << "world from thread " << i << std::endl;
 };

 std::thread t0(f,0);

 t0.join();

 }

Constructor forks a thread running the
lambda function f with the argument i=0

Wait for thread t0 to complete.

Destructor for thread t0 invoked as the thread variable t0 goes out of scope.

% g++ hello.cpp
% ./a.out
Hello world from thread 0
%

C++ threads: Hello World program (hello.cpp)

5

#include <thread>
 #include <iostream>

 int main() {

 auto f = [] (int i){
 std::cout << "Hello ";
 std::cout << "world from thread " << i << std::endl;
 };

 std::thread t0(f,0);

 }

Constructor forks a thread running the
lambda function f with the argument i=0

Destructor for thread t0 invoked as the thread variable t0 goes out of scope.
If thread status vague due to the lack of a join or a detach, it throws an exception

% g++ hello.cpp
% ./a.out
Hello world from thread 0
libc++abi: terminating
zsh: abort ./a.out
%

What happens if you
forget to join or detach

thread t0 before its
destructor is called?

std::thread behavior violates the RAII principle

6

RAII: Resource Acquisition Is Initialization. Resources are tied to the lifecycle of an object* …
• The constructor acquires the resource and establishes all class invariants or throws an exception if that cannot be done.

• The destructor releases the resource and never throws exceptions.

* source: https://en.cppreference.com/w/cpp/language/raii.html

C++20 and jthreads (joining threads) to the rescue

• std::jthread is a wrapper class added in C++20 and included in <thread>.

• std::jthread works the same as the original threads from C++11 but …
– A std::jthread will join by default … no exception is thrown if the destructor is called as the thread

goes out of scope without prior invocation of join or detach.

– A capability to control how threads can be cancelled/stopped (which we will not discuss)

• Since std::jthread was added with C++20, you must tell the compiler to follow the
C++20 language specification … for example to compile the file hello.cpp

g++ -std=c++20 hello.cpp

7

C++ threads: Hello World program (hello.cpp)

8

#include <thread>
 #include <iostream>

 int main() {

 auto f = [] (int i){
 std::cout << "Hello ";
 std::cout << "world from thread " << i << std::endl;
 };

 std::jthread t0(f,0);

 }

Constructor forks a thread running the lambda
function f with the argument i=0.

Join invoked by default when function completes

Destructor for thread t0 invoked as the thread variable t0 goes out of scope.

% g++ -std=c++20 hello.cpp
% ./a.out
Hello world from thread 0
%

What happens if you
forget to join or detach

thread t0 before its
destructor is called?

Nothing bad happens if
you use std::jthread

C++ threads: the multithread Hello World program

9

#include <thread>
 #include <vector>
 #include <iostream>

 int main() {
 auto f = [] (int i){
 std::cout << "Hello world from thread ” << i << std::endl;
 };

 auto nthreads = std::thread::hardware_concurrency();
 std::cout << nthreads << " HW threads available "<< std::endl;

 std::vector<std::thread> threadVec;

 for (auto i = 0; i<nthreads; i++){
 threadVec.emplace_back(f,i) ;
 }

 for (auto& thrd : threadVec){
 thrd.join();
 }

}

Returns the number of concurrent
threads the implementation supports

A vector container of std::thread handles

Appends an object to the end of the container and
invokes the constructor using the provided arguments

Loop over threadVec container
invoking join on each thread

How do we write a
program that uses
multiple threads?

C++ threads: the multithread Hello World program

10

#include <thread>
 #include <vector>
 #include <iostream>

 int main() {
 auto f = [] (int i){
 std::cout << "Hello world from thread ” << i << std::endl;
 };

 auto nthreads = std::thread::hardware_concurrency();
 std::cout << nthreads << " HW threads available "<< std::endl;

 std::vector<std::jthread> threadVec;

 for (auto i = 0; i<nthreads; i++){
 threadVec.emplace_back(f,i) ;
 }

}

Returns the number of concurrent
threads the implementation supports

A vector container of std::thread handles

Appends an object to the end of the container and
invokes the constructor using the provided arguments

Or with jthreads …

An explicit join is not needed

Synchronization: when you need to order events in concurrent programs
• Creating threads that run concurrently is easy.

• Writing a program that is correct regardless of how the instructions from those
threads are allowed to interleave … can be brutally difficult.

• Synchronization (ordering events between threads) is the key to safe execution of
multiple threads. There are many ways to synchronize threads.

11

• semaphores,
• Barriers

*The capabilities are the most essential commonly used subset. For a complete list, go to: https://en.cppreference.com/w/cpp/thread/thread.html

• Atomic variables and flags
• Memory order control

• Mutexes and locks,
• condition variables,

• We will cover only one case … a mutex exposed through a scoped lock
– mutex: Supports mutual exclusion. A thread holds a lock on a mutex object and all other threads

trying to access the object will wait until it has been released.
– scoped_lock: wraps a mutex for RAII style management … constructor acquires the mutex which

is released when the scoped_lock object goes out of scope.

Synchronization: when you need to order events in concurrent programs
• Creating threads that run concurrently is easy.

• Writing a program that is correct regardless of how the instructions from those
threads are allowed to interleave … can be brutally difficult.

• Synchronization (ordering events between threads) is the key to safe execution of
multiple threads. There are many ways to synchronize threads.

12

• semaphores,
• Barriers

*The capabilities are the most essential commonly used subset. For a complete list, go to: https://en.cppreference.com/w/cpp/thread/thread.html

• Atomic variables and flags
• Memory order control

• Mutexes and locks,
• condition variables,

• We will cover only one case … a mutex exposed through a scoped lock
– mutex: Supports mutual exclusion. A thread holds a lock on a mutex object and all other threads

trying to access the object will wait until it has been released.
– scoped_lock: wraps a mutex for RAII style management … constructor acquires the mutex which

is released when the scoped_lock object goes out of scope.

OpenMP only includes a subset of
these synchronization mechanisms

Scoped Locks with Mutex for mutual exclusion

13

#include <thread>
 #include <vector>
 #include <mutex>
 #include <iostream>

 std::mutex critical;
 int count = 0.0;
 int big_calc(); // function not shown

 int main() {
 std::vector<std::jthread> threadVec;
 auto f = [] (){
 int test = big_calc();
 {
 std::scoped_lock myLock(critical);
 if (test>0) count++;
 }
 };
 auto nthreads = std::thread::hardware_concurrency();
 for (auto i = 0; i<nthreads; i++){
 threadVec.emplace_back(f);

 }
 std::cout << count << " postive cases." << std::endl;

 }

Create a mutex object in a scope that makes it
visible to all threads that need to use the mutex

Create a scoped_lock object passing a mutex to
it’s constructor. Lock resources released when
the scoped_lock object goes our of scope.

14

Exercise: Parallel Pi program with C++ threads
F(

x)
 =

 4
.0

/(1
+x

2)

4.0

2.0

1.0
X0.0

static long num_steps = 100000;
double step;
int main ()
{ double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (int i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

Create a parallel version of the pi program using C++ threads.

How does the performance of the program based on C++
threads compare to the OpenMP program?

Conclusion

• C++11 std::threads provides the full set of capabilities needed for multithreaded
programming … including the low level primitives for advanced synchronization,
building runtimes for multithreading, and concurrent data structures.

• This contrasts with OpenMP which only supports the subset of synchronization
operations that applications programmers require.

• C++20 addressed a key flaw in std::threads that violated RAII and didn’t let threads
stop their own (and each other’s) execution
– std::jthreads
– std::jthreads calls join in its destructor if join or detach was not invoked before.
– Stop tokens to control ways to stop thread execution: get_stop_source, get_stop_token, request_stop.

15RAII: Resource Acquisition Is Initialization. Resources are tied to the lifecycle of an object

