An Introduction to multithreading in C++

Tim Mattson

Grayland
(107]
105 .
Tokeland
Raymond
Bay Center

(&

Ocean fark

o Washington
House
Long Beach Naselle
Rosb
llwaco
___________ A
Astoria
Oregon

Sunset Beach

Tim’s Backyard around sunset

Threads and C++

* Threads built into the C++ language (since C++11)

— The inclusion of threads mandated the definition of a formal memory model in C++
— Memory Models in Rust, OpenMP, and OpenCL are based on the C++ memory model.

« Expose the threading interface with:

#include <threads>

* Provides the full range of capabilities needed for low-level thread management

Thread Management*

creation through constructors.

Join: wait for a thread to finish

Detach: thread runs independently from parent thread
Swap: swap state of threads

Asynchronous thread execution and futures

Synchronization mechanisms*
* Mutex and locks,

« condition variables,

* semaphores,

« Barriers

» Atomic variables and flags
 Memory order control

*The capabilities are the most essential commonly used subset. For a complete list, go to: https://en.cppreference.com/w/cpp/thread/thread.html

COnCU rl’ency VS. Paral |9|ism The traditional definition in use since the 1970s

« Two important definitions: 7/

oncurrencvrA condition of a system in which multiple tasks are active and unordered. Ilf scheduled fairly,
ey can be described as logically making forward progress at the same time.

I C++ changed the definition to include fair scheduling ... which is specific to CPUs.

— Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the same time.

PE, —mm I I
PE; l— 1 1
PE,— IS L

Concurrent, non-parallel Execution

Concurrent, parallel Execution

Time

PE = Processing Element Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

C++ threads: Hello World program (hello.cpp)

#include <thread>
#include <iostream>

int main() { % g++ hello.cpp
% ./a.out
autof=[](inti)} Hello world from thread O
std::cout << "Hello "; %
std::cout << "world from thread " << i << std::endl;
%

. : Constructor forks a thread running the
std::thread t0(f,0); lambda function f with the argument i=0

t0.join(); | Wait for thread t0 to complete.

| Destructor for thread t0 invoked as the thread variable tO goes out of scope.

C++ threads: Hello World program (hello.cpp)

What happens if you

#include <thread> forget to join or detach

#include <iostream> thread t0 before its
destructor is called?

% g++ hello.cpp

% ./a.out

Hello world from thread O
libc++abi: terminating
zsh: abort ./a.out

%

int main() {

autof=[](inti)}
std::cout << "Hello ";
std::cout << "world from thread " << i << std::endl;

%

. : Constructor forks a thread running the
std::thread t0(f,0); lambda function f with the argument i=0

} | Destructor for thread t0 invoked as the thread variable t0 goes out of scope.
If thread status vague due to the lack of a join or a detach, it throws an exception

std::thread behavior violates the RAIl principle

RAIl: Resource Acquisition Is Initialization. Resources are tied to the lifecycle of an object* ...
» The constructor acquires the resource and establishes all class invariants or throws an exception if that cannot be done.

» The destructor releases the resource and never throws exceptions.

C++ threads: Hello World program (hello.cpp)

What happens if you

#include <thread> forget to join or detach

#include <iostream> thread tO before its
destructor is called?

% g++ hello.cpp

% ./a.out

Hello world from thread 0
libc++abi: terminating
zsh: abort ./a.out

%

int main() {

auto f =[] (inti){
std::cout << "Hello ";
std::cout << "world from thread " << i << std::endl;

3

std::thread t0(f,0);

Constructor forks a thread running the
lambda function f with the argument i=0

} | Destructor for thread t0 invoked as the thread variable t0 goes out of scope.
If thread status vague to do a lack of a join or a detach, it throws an exception

* source: https://en.cppreference.com/w/cpp/language/raii.html

C++20 and jthreads (joining threads) to the rescue

« std::jthread is a wrapper class added in C++20 and included in <thread>.

« std::jthread works the same as the original threads from C++11 but ...

— A std::jthread will join by default ... no exception is thrown if the destructor is called as the thread
goes out of scope without prior invocation of join or detach.

— A capability to control how threads can be cancelled/stopped (which we will not discuss)

 Since std::jthread was added with C++20, you must tell the compiler to follow the
C++20 language specification ... for example to compile the file hello.cpp

g++ -std=c++20 hello.cpp

C++ threads: Hello World program (hello.cpp)

What happens if you

#include <thread>
#include <iostream>
int main() {

autof=[](inti)}
std::cout << "Hello ";

%

std::jthread t0(f,0);

std::cout << "world from thread " << i << std::endl;

forget to join or detach

thread tO before its
destructor is called?

% g++ -std=c++20 hello.cpp
% ./a.out

Hello world from thread O
%

Nothing bad happens if

you use std::jthread

Constructor forks a thread running the lambda
function f with the argument i=0.

Join invoked by default when function completes

} | Destructor for thread t0 invoked as the thread variable t0 goes out of scope.

C++ threads: the multithread Hello World program

#include <thread>
#include <vector>
#include <iostream>

int main() {
auto f =] (int i)

std::cout << "Hello world from thread ” << i << std::endl;

%

auto nthreads = std::thread::hardware_concurrency();
std::cout << nthreads << " HW threads available "<< std::endl;

std::vector<std::thread> threadVec;

for (auto i = 0; i<nthreads; i++)

threadVec.emplace back(f,i) ;

How do we write a

program that uses
multiple threads?

Returns the number of concurrent
threads the implementation supports

A vector container of std::thread handles

Appends an object to the end of the container and
invokes the constructor using the provided arguments

Loop over threadVec container
invoking join on each thread

}

for (auto& thrd : threadVec){
thrd.join();

}

}

C++ threads: the multithread Hello World program

#include <thread>
#include <vector>
#include <iostream>

int main() {
auto f =] (int i)
std::cout << "Hello world from thread ” << i << std::endl;

%

auto nthreads = std::thread::hardware_concurrency();
std::cout << nthreads << " HW threads available "<< std::endl;

Or with jthreads ...

Returns the number of concurrent
threads the implementation supports

std::vector<std::jthread> threadVec; | A vector container of std::thread handles

for (auto i = 0; i<nthreads; i++)

_ Appends an object to the end of the container and
threadVec.emplace_back(f,i) ; |invokes the constructor using the provided arguments

}

An explicit join is not needed

10

Synch ronization: when you need to order events in concurrent programs
 Creating threads that run concurrently is easy.

« Writing a program that is correct regardless of how the instructions from those
threads are allowed to interleave ... can be brutally difficult.

« Synchronization (ordering events between threads) is the key to safe execution of
multiple threads. There are many ways to synchronize threads.

* Mutexes and locks, « semaphores, « Atomic variables and flags
« condition variables, « Barriers * Memory order control

« We will cover only one case ... a mutex exposed through a scoped lock

— mutex: Supports mutual exclusion. A thread holds a lock on a mutex object and all other threads
trying to access the object will wait until it has been released.

— scoped_lock: wraps a mutex for RAIl style management ... constructor acquires the mutex which
is released when the scoped_lock object goes out of scope.

*The capabilities are the most essential commonly used subset. For a complete list, go to: https://en.cppreference.com/w/cpp/thread/thread.html 11

Synch ronization: when you need to order events in concurrent programs
 Creating threads that run concurrently is easy.

« Writing a program that is correct regardless of how the instructions from those
threads are allowed to interleave ... can be brutally difficult.

« Synchronization (ordering events between threads) is the key to safe execution of
multiple threads. There are many ways to synchronize threads.

. IMutexes and Iocks,l « _semaphores, « | Atomic variables fand flags
« condition variables, | Barriers I | Memory order contro
« We will cover only one cay ©OpenMP only includes a subsetof | 3 scoped lock
these synchronization mechanisms ,
— mutex: Supports mutual exc . tex object and all other threads

trying to access the object will wait until it has been released.

— scoped_lock: wraps a mutex for RAIl style management ... constructor acquires the mutex which
is released when the scoped_lock object goes out of scope.

*The capabilities are the most essential commonly used subset. For a complete list, go to: https://en.cppreference.com/w/cpp/thread/thread.html 12

Scoped Locks with Mutex for mutual exclusion

#include <thread>
#include <vector>
#include <mutex>
#include <iostream>

std::mutex critical;
int count = 0.0;

Create a mutex object in a scope that makes it
visible to all threads that need to use the mutex

int big_calc(); // function not shown

int main() {
std::vector<std::jthread> threadVec;
auto f =] ({
int test = big_calc();
{
std::scoped_lock myLock(critical);
if (test>0) count++;
}
3

for (auto i = 0; i<nthreads; i++){
threadVec.emplace_back(f);

}

Create a scoped_lock object passing a mutex to
it's constructor. Lock resources released when
the scoped_lock object goes our of scope.

auto nthreads = std::thread::hardware concurrency();

std::cout << count << " postive cases." << std::endl;

13

Exercise: Parallel Pi program with C++ threads

4.0/(1+x2)

F(x)

40 =

N
o
T

0.0

1.0

Create a parallel version of the pi program using C++ threads.

static long num_steps = 100000;
double step;

int main ()

{ double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (int i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

How does the performance of the program based on C++
threads compare to the OpenMP program?

14

Conclusion

« C++11 std::threads provides the full set of capabilities needed for multithreaded
programming ... including the low level primitives for advanced synchronization,
building runtimes for multithreading, and concurrent data structures.

 This contrasts with OpenMP which only supports the subset of synchronization
operations that applications programmers require.

« C++20 addressed a key flaw in std::threads that violated RAIl and didn’t let threads
stop their own (and each other’s) execution

— std::jthreads
— std::jthreads calls join in its destructor if join or detach was not invoked before.
— Stop tokens to control ways to stop thread execution: get_stop source, get_stop token, request_stop.

RAIl: Resource Acquisition Is Initialization. Resources are tied to the lifecycle of an object 15

