An Introduction to Parallel Programming with OpenMP
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An Introduction to me

I'm just a simple kayak instructor

To support my kayaking habit, I
work as a parallel programmer

Which means I know how to turn
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OpenMP” Overview

CSOMP FLUSH fpragma omp critical #fpragma omp single
CSOMP THREADPRIVATE (/ABC/) CSOMP ATOMIC CALL OMP SET NUM THREADS (10)
OpenMP: An API for Writing Parallel Applications
call
=A set of compiler directives and library routines for parallel application programmers
oo =Originally ... Greatly simplifies writing multithreaded programs in Fortran, C and C++ -
=l ater versions ... supports non-uniform memories, vectorization and GPU programming
#pragma omp parallel for private(A, B) | C$OMP PARALLEL REDUCTION (+: A, B)
CSOMP PARALLEL COPYIN (/blk/) CSOMP DO lastprivate (XX) | | #pragma omp atomic seq cst

Nthrds = OMP GET NUM PROCS () omp set lock(lck)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.



The Growth of Complexity in OpenMP

Our goal in 1997 ... A simple interface for application programmers

Page Counts ... not including front matter, tools-interface, appendices or the index.
6.0
600 A
500 5.1
. A A
B Fortran spec 5‘0 £ o

400 © C/C++ spec
- A Merged C/C++ and Fortran spec
S 45
o 300 4
S 4.0
C
=
@ 200

30
2.5 A
100 o m 2(_9
mOMp
1.0
0 .
1995 2000 2005 2010 2015 2020 2025

The OpenMP specification is so long and complex that few (if any) humans understand the full document




The OpenMP Common Core: Most OpenMP programs only use these 21 items

OpenMP pragma, function, or clause

Concepts

#pragma omp parallel

Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set thread _num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.
SPMD pattern: Create threads with a parallel region and split up the work using the number of
threads and the thread ID.

double omp_get wtime()

Speedup and Amdahl's law. False sharing and other performance issues.

setenv OMP_NUM_THREADS N

Setting the internal control variable for the default number of threads with an environment
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list)

Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list)

Data environment.

default(none)

Force explicit definition of each variable’s storage attribute

nowait

Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush
concept (but not the flush directive).

#pragma omp single

Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.




OpenMP Basic Definitions: Basic Solution Stack
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OpenMP Basic Definitions: Basic Solution Stack

Application
Directives, : Environment

User layer

Prog.

OpenMP Runtime library

OS/system support for shared memory and threading

Shared address space (SMP

For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case ....
i.e., lots of threads with “equal cost access” to memory

System layer

=
T




OpenMP Basic Syntax

* Most of OpenMP happens through compiler directives.

C and C++ Fortran
Compiler directives
#pragma omp construct [clause [clause]...] I$OMP construct [clause [clause] ...]
Example
#pragma omp parallel private(x) ISOMP PARALLEL PRIVATE(X)
{
} I$SOMP END PARALLEL

Function prototypes and types:
#include <omp.h> use OMP_LIB

« Most OpenMP constructs apply to a “structured block”.
— Structured block: a block of one or more statements with one point of entry at the top and one point of exit at the bottom.
- It's OK to have an exit() within the structured block.



Exercise, Part A: Hello World

Verify that your environment works

* Write a program that prints “hello world”.

#include<stdio.h>
int main()

{

printf(“ hello ™);
printf(“ world \n”);
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Exercise, Part B: Hello World

Verify that your OpenMP environment works

« Write a multithreaded program that prints “hello world”.

#include <omp.h>
#include <stdio.h>
int main()

{

#pragma omp parallel

{

printf(“ hello );
printf(“ world \n”);

}

}

Switches for compiling and linking
gcc -fopenmp Gnu (Linux, OSX)
cc —qopenmp Intel (Linux@NERSC)
icc -fopenmp Intel (Linux, OSX)
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Solution

A Multi-Threaded “Hello World” Program

» Write a multithreaded program where each thread prints “hello world”.

#include <omp.h> €=

OpenMP include file

#include <stdio.h>
int main()

{

#pragma omp parallel &€
{

printf(“ hello ™);
printf(“ world \n”);

Parallel region with
default number of threads

}
) j End of the Parallel region

Sample Output:
hello hello world
world

hello hello world

world

The statements are interleaved based on how the operating schedules the threads
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A brief digression on the terminology of parallel
computing
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Let’s agree on a few definitions:

« Computer:

— A machine that transforms input values into Central Processing Unit
output values.

— Typically, a computer consists of Control,
Arithmetic/Logic, and Memory units.

— The transformation is defined by a stored Input ) Arithmetic/Logic Unit
. Device
program (von Neumann architecture).

Control Unit

 Task:

- A sequence of |nstruct|on§ plus a data Memory Unit
environment. A program is composed of
one or more tasks.

* Active task:

— A task that is available to be scheduled for execution. When the task is moving through its sequence of

instructions, we say it is making forward progress

* Fair scheduling:
— When a scheduler gives each active task an equal opportunity for execution.

Output
Device

14



Concurrency vs. Parallelism

« Two important definitions:

— Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,
they can be described as logically making forward progress at the same time.

— Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the

same time.
PE, L 1
PE, ]— | 1 o
PE,— IS )

Concurrent, non-parallel Execution

Concurrent, parallel Execution

Time

PE = Processing Element

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010



Concurrency vs. Parallelism

« Two important definitions:

— Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,
they can be described as logically making forward progress at the same time.

— Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the
same time.

In most cases, parallel programs exploit
concurrency in a problem to run tasks on

multiple processing elements

Programs

We use Parallelism to:
e Do more work in less time
« Work with larger problems

Concurrent
Programs

Parallel

If tasks execute in “lock step” they are not
Programs

[ concurrent, but they are still parallel.
Example ... a SIMD unit.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010
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OpenMP Execution model:

Fork-Join Parallelism:

¢ Initial thread spawns a team of threads as needed.

¢ Parallelism added incrementally until performance goals are met, i.e., the sequential
program evolves into a parallel program.

Parallel Regions
A Nested
/ | \ Parallel

Region

Initial

Thread \

™ /

Sequential Parts



Thread Creation: Parallel Regions

* You create threads in OpenMP with the parallel construct.
* For example, to create a 4 thread Parallel region:

double A[1000];
Each thread omp_set _num_threads(4); «
executes a #pragma omp parallel

copy of the {

the pooh(ID,A);

Runtime function to
request a certain
number of threads

code within int ID = omp_get thread _num();

- Each thread calls pooh(ID,A) for ID =0to 3

Strglcz)t;ied } \ Runtime function
returning a thread ID

19



Thread Creation: Parallel Regions Example

double A[1000];
« Each thread executes the omp_set_num_threads(4);
same code redundantly. ?fpragma omp parallel
int ID = omp_get thread _num();
pooh(ID, A);
double A[1000]; }

printf(“all done\n”);

omp_set num_threads(4)

A single copy of Ais

shared between all pooh(0,A) pooh(1,A) pooh(2,A) pooh(3,A)

orintf(“all done\n’): Threads_wait_ here for a.II threads to finish before
proceeding (i.e., a barrier)

threads.




Thread creation: How many threads did you actually get?

* Request a number of threads with omp_set num_threads()

« The number requested may not be the number you actually get.

— An implementation may silently give you fewer threads than you requested.
— Once a team of threads has launched, it will not be reduced.

Each thread double A[1000]; Runtime function to
executes 3 omp_set_num_threads(4); « request a certain
copy of the #pragma omp parallel number of threads
.y {
COdThV:thm intID  =omp_get_thread_num();
structured int nthrds = omp_get_num_threads();
block pooh(ID,A);
} Runtime function to
return actual
. Each thread calls pooh(ID,A) for ID = 0 to nthrds-1 number of threads
in the team

21



An Interesting Problem to Play With
Numerical Integration

Mathematically, we know that:

1

40 TS ‘\\ I 4.0
\ (1+x2) dx =TT
N,
\ 0
\\ We can approximate the integral as a sum of N
rectangles:

4.0/(1+x2)

N

N
Z F(X)AX = AX Z F(x)~ TU
i=0

i=0

F(x)

Where each rectangle has width Ax and height F(x;) at
0.0 X 1.0 the middle of interval i.




Serial Pl Program

static long num_steps = 100000;
double step;

int main ()

{ double x, pi, sum = 0.0;

step = 1.0/(double) num_ steps;

for (int i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

23



Serial Pl Program

#include <omp.h>

static long num_steps = 100000;
double step;

int main ()

{

double x, pi, sum = 0.0;

step = 1.0/(double) num_ steps;

double tdata = omp_get_wtime(); | The library routine

for (int i=0;i< num_steps; i++){ get_omp_wtime()
x = (i+0.5)*step; is used to find the
sum = sum + 4.0/(1.0+x*x); elapsed “wall

} time” for blocks of

pi = step * sum; code

tdata = omp_get wtime() - tdata;
printf(“ pi = %f in %f secs\n”,pi, tdata);

24



Exercise: the Parallel Pi Program

» Create a parallel version of the pi program using a parallel construct:

#pragma omp parallel

« Pay close attention to shared versus private variables.

* |[n addition to a parallel construct, you will need the runtime library routines

—int omp_get num_threads();

—int omp_get_thread_num();\

—double omp_get wtime();

—omp_set_num_threads();
pd

Number of threads in the team

Thread ID or rank

Time in seconds since a fixed point in the past

Request a number of threads in the team

25



Hints: the Parallel Pi Program

» Use a parallel construct:
#pragma omp parallel

* The challenge is to:

— divide loop iterations between threads (use the thread ID and the number of threads).

— Create an accumulator for each thread to hold partial sums that you can later combine to
generate the global sum.

* |[n addition to a parallel construct, you will need the runtime library routines
— int omp_set_num_threads();
— intomp_get num_threads();
— int omp_get thread _num();
— double omp_get wtime();

26



Example: A simple SPMD* pi program

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2 —— — " —

VOid main () romote scalar to an arra_y |menS|on.e. )

{ inti, nthreads; double pi, sum[NUM_THREADS]; / number of threads to avoid race conditon
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

{
int i, id,numthrds; Only one thread should copy the number of
double x; threads to the global value to make sure
id = omp_get_thread_num(); mul’flple th_reads writing to the same address
don’t conflict.
numthrds = omp_get_num_threads();
if (id == 0) nthreads = numthrds:
for (i=id, sum[id]=0.0;i< num_steps; i=i+numthrds) {
x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x); This is a common trick in SPMD programs to
} ’ create a cyclic distribution of loop iterations
}

for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step; . _
) *SPMD: Single Program Multiple Data



Example: A simple SPMD pi program ... an alternative solution

#include <omp.h>

static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()

{ inti, nthreads; double pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

{
int i, id,numthrds, istart, iend;
double x;
id = omp_get_thread_num();
numthrds = omp_get_num_threads();
istart = id*(num_steps/numthrds ); iend=(id+1)*(num_steps/numthrds);
if(id == (numthrds-1)) iend = num_steps;
if (id == 0) nthreads = numthrds; This is a common trick in SPMD algorithms ...
f i=istart id1=0.0"i< i d','++ it's a blocked distribution with one block per
or (i=istart, sym[l ]=0.0;i< iend; i++) { thread.
x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);
}
}

for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step; _ _
} SPMD: Single Program Multiple Data

28



Results*

 Original Serial pi program with 100000000 steps ran in 1.83 seconds.

}

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ inti, nthreads; double pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

{
int i, id,nthrds;
double x;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
x = (i+0.5)*step;
sum([id] += 4.0/(1.0+x*x);
}
}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum|i] * step;

*SPMD: Single Program Multiple Data

threads 1st
SPMD*

1.86
1.03
1.08
0.97

Alw|N|=

Intel compiler (icpc) with default
optimization level (O2) on Apple OS X
10.7.3 with a dual core (four HW thread)
Intel® Core™ i5 processor at 1.7 Ghz and
4 Gbyte DDR3 memory at 1.333 Ghz.
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How do we describe performance
in parallel programs

30



Consider performance of parallel programs

Load Data

Compute T,

Compute N independent tasks on one processor

Compute Ty

Consume Results

Timeseq(1) = Tload + N*Ttask + Tconsume

Compute T,

Load Data

Consume Results

Compute Ty

Timepar(P) = Tload T (NIP)*Ttask T Tconsume

Compute N independent tasks with P processors

|deally Cut
runtime by ~1/P

(Note: Parallelism
only speeds-up the
concurrent part)

31



Talking about performance

= Speedup: the increased performance Time,, (1)

from running on P processors. S(P) =

m Perfect Linear Speedup: happens when
no parallel overhead and algorithm is S ( P) =P
100% parallel.

m Efficiency: How well does your observed S(P)
speedup compare to the ideal case? g( P) —




Speedups as disinformation

The Journey From Qubits to Supercomputers
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Quantum Qubit Design Quantum Data Hybrid Quantum Error

Algorithm EDA Generation Applications Correction
Development

<ANVIDIA

A slide from an Nvidia talk at ATPESC’25 about their quantum computing product

Reported speedups without defining what they were comparing against ... included a verbal
comment that this showed if you really care about performance, you must use a GPU



Speedups as disinformation

The Journey From Qubits to Supercomputers

This was a dual processor CPU system.
The speaker was not allowed to identify The parallel code was an Nvidia
the CPU vendor or the work done to 4,000X software product (highly optimized
optimize or even parallelize the CPU code CUDA code) running on an Nvidia
GB200 NVL72 with 36 Grace
CPUs (72 ARM cores each) and
72 Blackwell GPUs

T EDOX List price ... $3 Million

)
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cuQuantum cuQuantum cuQuantum CUDA-Q CUDA-Q
Quantum Qubit Design Quantum Data Hybrid Quantum Error

Algorithm EDA Generation Applications Correction
Development

<ANVIDIA

These Speedups are blatant disinformation... it's demeaning to show such data.

The sad thing is, the Nvidia product is excellent. In a fair comparison, they’d still come out on top.
Why they need to resort to such misleading statements is baffling.

*https://lwww.datacenterdynamics.com/en/news/lambda-partners-with-pegatron-to-deploy-nvidia-gb200-nvI72-rack/



Amdahl’s Law

e What is the maximum speedup you can expect from a parallel program?

Approximate the runtime as a part that can be sped up with additional processors and a
part that is fundamentally serial.

. B . . parallel _ fraction
Time,,. (P)=(serial _ fraction + e

* If the serial fraction is oo and the parallel fraction is (1- o) then the speedup is:

)*Time,,,

S(P) = Timeseq ~ Timeseq _
Time,, (P) (a+1_a)*Timese a+1= S(P,a) = 1-a
P K P *——p
* If you had an unlimited humber of processors: P — oo
. . . 1 Amdahl’ s
* The maximum possible speedup is: §S=— «— g
o aw




Amdahl’s Law ... It's not just about the maximum speedup

Serial fraction (a) of the program

—— 0.001 -+- 0.01 --+-- 0.05 ~=- 0.1

S(P,a)

Speedup

1 2 4 8 16 32 64
Number of Processors

P



So now you should understand my silly introduction slide.

We measure our success as parallel

Introduction programmers by how close we come
to ideal linear speedup.

I'm just a simple-kayak instructor

4 t
e Nl TR
Pov .,77' e R VRS2
A ¥ o ’
) : ‘ Zehy 5 ’

To support my kayaking habit I
work as a parallel programmer

A good parallel programmer
always figures out when you
fall off the linear speedup
curve and why that has
occurred.

Photo © by Greg Clopton, 2014

Which means I know how to turn

math into lines on a speedup plot
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Internal control variables and how to control the
number of threads in a team

« We've used the following construct to control the number of threads. (e.g. to request 12 threads):
— omp_set _num_threads(12)

« What does omp_set_num_threads() actually do?

— It resets an “internal control variable” the system queries to select the default number of threads to
request on subsequent parallel constructs.

* |s there an easier way to change this internal control variable ... perhaps one that doesn’t require
re-compilation? Yes.

— When an OpenMP program starts up, it queries an environment variable OMP_NUM_THREADS and
sets the appropriate internal control variable to the value of OMP_NUM_ THREADS

— For example, to set the initial, default number of threads to request in OpenMP from my apple laptop
> export OMP_NUM_THREADS=12

38



SPMD: Single Program Multiple Data

* Run the same program on P processing elements where P can be arbitrarily large.

[
Replicate the program.
Add glue code
Break up the data

- \ 7

« Use the rank ... an ID ranging from 0 to (P-1) ... to select between a set of tasks and to manage any shared
data structures.

MPI programs almost always use this pattern ... it is probably the
most commonly used pattern in the history of parallel programming.

390
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Synchronization

Synchronization is used to impose order
constraints and to protect access to shared data

 High level synchronization included in the common core:

—critical
— barrier

41



Synchronization: critical

« Mutual exclusion: Only one thread at a time can enter a critical region.

float res;

#pragma omp parallel

{ floatB; inti,id, nthrds;

id = omp_get _thread _num();
nthrds = omp_get num_threads();
B = big_ SPMD _job(id, nthrds);

#pragma omp critical
res += consume (B);

Threads wait their turn
— only one thread at a
time calls consume()

42



Synchronization: barrier

 Barrier: a point in a program all threads much reach before any threads are allowed to proceed.
* |Itis a “stand alone” pragma meaning it is not associated with user code ... it is an executable

statement.
double Arr[8], Brr[8]; int numthrds;
omp_set_num_threads(8)
#pragma omp parallel
{ intid, nthrds;
id = omp_get thread num();
nthrds = omp_get num_threads();
if (id==0) numthrds = nthrds;
Arr[id] = big_ugly calc(id, nthrds);

Threads wait until all
threads hit the barrier.

Then they can go on. i P ) i LGy

Brr[id] = really big_and_ugly(id, nthrds, Arr);
}




Exercise

* In your first Pi program, you probably used an array to create space for each thread to store its partial
sum.

You will learn more
about this important

concept in the lecture
on memory
« If array elements happen to share a cache line, this leads to(false sharing.

— Non-shared data in the same cache line so updates invalidate the cache line ... in essence “sloshing
independent data” back and forth between threads.

« Modify your “pi program” to avoid false sharing due to the partial sum array.
int omp_get_num_threads();
int omp_get thread_num();
double omp_get wtime();
omp_set _num_threads();
#pragma omp parallel
#pragma omp critical



Pl Program with False Sharing

 Original Serial pi program with 100000000 steps ran in 1.83 seconds.

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ inti, nthreads; double pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

{
int i, id,nthrds;
double x;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);
}
}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;

Recall that promoting sum to an array made
the coding easy, but led to false sharing and
poor performance.

threads 1st
SPMD
1 1.86
2 1.03
3 1.08
4 0.97

*Intel compiler (icpc) with no
optimization on Apple OS X 10.7.3
with a dual core (four HW thread)
Intel® Core™ i5 processor at 1.7 Ghz
and 4 Gbyte DDR3 memory at 1.333
Ghz.




Example: Using a critical section to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

i Create a scalar local to each
inti, id, nthrds; double x, sum; €= thread to accumulate partial sums.
id = omp_get_thread_num();

nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step; .
sum += 4.0/(1.0+x*x); €= No array, so no false sharing. I

}

#pragma omp critical Sum goes “out of scope” beyond the parallel region ...

pi +=sum * step;, €— so you must sum it in here. Must protect summation
} into pi in a critical region so updates don’t conflict

46



Results*: pi program critical section

 Original Serial pi program with 100000000 steps ran in 1.83 seconds.

#include <omp.h>
static long num_steps = 100000;
#define NUM_THREADS 2
void main ()
{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

{

double step;

inti, id, nthrds; double x, sum;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id ==0) nthreads = nthrds;
for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);
}
#pragma omp critical
pi += sum * step;

threads 1st SPMD
SPMD critical

1 1.86 1.87

2 1.03 1.00

3 1.08 0.68

4 0.97 0.53

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3
with a dual core (four HW thread) Intel® Core™ i5 processor at
1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.
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Example: Using a critical section to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

int i, id, nthrds; double x, sum;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id ==0) nthreads = nthrds;

for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;

#pr:grrnn igrz%/c(qitiocil(*gl_ What would happen if you put the
} o ' ’ critical section inside the loop?
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Memory Models ...

e A shared address space is a region of memory visible to the team of threads ... multiple threads can read and write
variables in the shared address space.

e Multiple copies of a variable (such as y) may be present in memory, at various levels of cache, or in registers and they may
ALL have different values.

CPU

Core, Core,

Control Arithmetic Control Arithmetic
Unit Logic Unit Unit Logic Unit

e \Which value of y is the one a thread should see at any point in a computation?
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e A shared address space is a region of memory visible to the team of threads ... multiple threads can read and write
variables in the shared address space.

e Multiple copies of a variable (such as y) may be present in memory, at various levels of cache, or in registers and they may
ALL have different values.
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Memory Models ...

e The fundamental issue is how do the values of variables across the memory hierarchy interact with
the statements executed by two or more threads?

e Two options:

1. Sequential Consistency 2. Relaxed Consistency
CPU
- Threads execute and the Core, Core, - Threads execute and the
assomaf[ed loads/stores | control 11 Arithmetic Control [ Arithmetic assomafted loads/stores
appear in some order defined Unit Logic Unit Unit Logic Unit appear in some order
by the semantically allowed T Register file @ i||! © Registerfile | defined by the semantically
interleaving of program (P b—————— allowed interleaving of
g ot prog i Cache o | Cache @ E 9
statements. ivivivlsiiiviiet el ) ittt program statements.
E Q Shared Last Level Cache i
- All threads see the same [o-mmmmmmmn- R S P— —— -~ - Threads may see
interleaved order of loads | Shared Memory (DRAM) different orders of loads
1
1

and stores and stores

Most (if not all) multithreading programming models assume relaxed consistency. Maintaining
sequential consistency across the full program-execution adds too much synchronization overhead.
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Memory Models: Happens-before and synchronized-with relations

» Single thread execution:

— Program order ... Loads and stores appear to occur in the order defined
by the program’s semantics. If you can’t observe it, however, compilers
can reorder instructions to maximize performance.

« Multithreaded execution ... concurrency in action

— The compiler doesn’t understand instruction-ordering across threads ...
loads/stores to shared memory across threads can expose ambiguous
orders of loads and stores

— Instructions between threads are unordered except when specific ordering
constraints are imposed, i.e., synchronization.

— Synchronization lets us force that some instructions happens-before other
instructions

« Two parts to synchronization:

— A synchronize-with relationship exists at statements in 2 or more threads
at which memory order constraints can be established.

— Memory order: defines the view of loads/stores on either side of a
synchronized-with operations.

Thread 0 Thread 1

-
-
-
-

read 4

Use a spin
lock or other
mechanism to
force
read-after-
write

Memory orders defined at the
synchronize-with statements
define happens-before
relationships between
Loads/stores in the black/red
sections of threads 0 and 1.
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Enforcing Memory Orders: the Flush Operation

Flush defines a sequence point at which a thread is double A:
guaranteed to see a consistent view of memory*

. . . A = compute();
— Previous read/writes by this thread have completed

and are visible to other threads #pragma omp flush(A)
— No subsequent read/writes by this thread have I/ flush to memory to make sure other
occurred Il threads can see the updated value of A

A flush on its own, however, is not enough. It only controls memory visibility from the perspective of the thread
calling the flush.

You must pair it with an operation to create a synchronized-with relation between threads.

We've worked with collective synchronization operations that apply across the full team of threads (critical and
barrier). They both imply the flush so you should NEVER need to call flush explicitly

You can build custom synchronization protocols applying to any combination of pairs of threads ... but that is
seriously advanced multithreaded programming and should be avoided if at all possible

* This applies to the set of shared variables visible to a thread at the point the flush is encountered. We call this “the flush set”
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Keep it simple ... let OpenMP take care of Flushes for you

A flush operation is implied by OpenMP constructs ...

— at entry/exit of parallel regions T Ty ——
— at implicit and explicit barriers discussion of the full OpenMP

— at entry/exit of critical regions AT W WIS gl W1

explain how memory models work
and to understand the subset of
features people commonly use.

* OpenMP programs that:
* Do not use non-sequentially consistent atomic constructs;
Do not rely on the accuracy of a false result from omp_test _lock and omp_test nest lock; and
 Correctly avoid data races

... behave as though operations on shared variables were simply interleaved in an order consistent

with the order in which they are performed by each thread. The relaxed consistency model is
invisible for such programs, and any explicit flushes in such programs are redundant.

WARNING:
If you find yourself wanting to write code with explicit flushes, stop and get help. It is very difficult to manage
flushes on your own. Even experts often get them wrong.

This is why we defined OpenMP constructs to automatically apply flushes most places where you really need them.
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The Loop Worksharing Construct

* The loop worksharing construct splits up loop iterations among the threads in a team

#pragma omp parallel

{

#pragma omp for
for (I=0;I1<N;l++){
NEAT_STUFF(I);
}

Loop construct name:
*C/C++: for

eFortran: do

The loop control index | is made
“private” to each thread by default.

Threads wait here until all
threads are finished with the
parallel loop before any proceed
past the end of the loop
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Loop Worksharing Construct
A motivating example

Sequential code for(i=0;i<N;i++) {al[i] = a[i] + bli];}

#pragma omp parallel
{
int id, i, Nthrds, istart, iend;
id = omp_get thread _num();
Nthrds = omp_get num_threads();
(SPMD Pattern) istart = id * N / Nthrds;
iend = (id+1) * (N / Nthrds);
if (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++) { ali] = a[i] + b[i];}

OpenMP parallel region

OpenMP parallel region and #pragma omp parallel
d Worksharing for construct #pragma omp for

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}
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Combined Parallel/Worksharing Construct

* OpenMP shortcut: Put the “parallel” and the worksharing directive on the same line

double res[MAX]; inti;
#pragma omp parallel
{
#pragma omp for
for (i=0;i< MAX; i++) {
res[i] = huge();
}
}

double res[MAX]; inti;
#pragma omp parallel for
for (i=0;i< MAX; i++) {
res[i] = huge();

/

These are equivalent I
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Working with loops

« Basic approach
— Find compute intensive loops

— Make the loop iterations independent ... So they can safely execute in any order without

loop-carried dependencies

— Place the appropriate OpenMP directive and test

inti, j, AIMAX];
] =9;
for (i=0;i< MAX; i++) {

j +=2;
Ali] = b'QN Remove loop /
} carried

Note: loop index
“I” is private by
default

dependence

inti, A[MAX];

#pragma omp parallel for
for (i=0;i< MAX; i++) {

intj =5+ 2%(i+1);

} Ali] = big(j);
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Reduction

- How do we handle this case?

double ave=0.0, AIMAX];

Int i;

for (i=0;i< MAX; i++) {
ave + = AJi];

}
ave = ave/MAX:

« We are combining values into a single accumulation variable (ave) ... there is a true dependence
between loop iterations that can’t be trivially removed.

» This is a very common situation ... it is called a “reduction”.

» Support for reduction operations is included in most parallel programming environments.
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Reduction

* OpenMP reduction clause:
reduction (op : list)

* Inside a parallel or a work-sharing construct:
— A local copy of each list variable is made and initialized depending on the “op” (e.g. O for “+7).
— Updates occur on the local copy.
— Local copies are reduced into a single value and combined with the original global value.

* The variables in “list” must be shared in the enclosing parallel region.

double ave=0.0, AIMAX]; inti;
#pragma omp parallel for reduction (+:ave)
for (i=0;i< MAX; i++) {
ave + = A[i];
}

ave = ave/MAX;
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OpenMP: Reduction operands/initial-values

« Many different associative operands can be used with reduction:
« Initial values are the ones that make sense mathematically.

Operator | Initial value
+ 0 Fortran Only
i 1 Operator | Initial value
min Largest pos. number AND true
max Most neg. number OR false
.NEQV. false.
C/C++ only
Operator | Initial value AEOR, 0
P 2 0 IOR. 0
JAND. All bits on
0 .EQV. true.
A 0
Y 1 OpenMP includes user defined reductions
and array-sections as reduction variables
| 0 (we just don’t cover those topics here)




Exercise: Pl with loops

« Go back to the serial pi program and parallelize it with a loop construct
* Your goal is to minimize the number of changes made to the serial program.

#pragma omp parallel

#pragma omp for

#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical

int omp_get num_threads();

int omp_get_thread _num();

double omp_get wtime();
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Example: Pl with a loop and a reduction

#include <omp.h>
void main ()
{
long num_steps = 100000;
double pi, sum = 0.0;
double step = 1.0/(double) num_steps;

#pragma omp parallel for reduction(+:sum)
for (int i=0;i< num_steps; i++){

double x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;
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Results*: Pl with a loop and a reduction
 QOriginal Serial pi program with 100000000 steps ran in 1.83 seconds.

Example: Pl with a loop and a reduction

_ threads 1st 1st SPMD Pl Loop
#include <omp.h> SPMD | SPMD | critical
void main () padded
{
long num_steps = 100000: 1 1.86 1.86 1.87 1.91
double pi, sum = 0.0; 2 1.03 1.01 1.00 1.02
double step = 1.0/(double) num_steps; 3 1.08 0.69 0.68 0.80
#pragma omp parallel for reduction(+:sum) 4 0.97 0.53 0.53 0.68
for (int i=0;i< num_steps; i++){
double x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);
}
pi = step * sum;
}

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

65




.... Let’s pause a moment and consider
one of the fundamental issues EVERY
parallel programmer must grapple with
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Load Balancing

» A parallel job isn’t done until the last thread is
finished

« Example: Partition a problem into equal sized
chunks but for work that is unevenly distributed
spatially.

— Thread 2 has MUCH more work. The uneven distribution of
work will limit performance.

* A key part of parallel programming is to design how
you partition the work between threads so every
thread has about the same amount of work. This
topic is referred to as Load Balancing.

0 i

Thread IDs ...

box

.2. .3 - A
height « amount of work
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Load Balancing

« A parallel job isn’'t done until the last thread is finished

The work in our problem is unevenly distributed spatially.

52 Bl B e reaore

A key part of parallel programming is to design how you
partition the work between threads so every thread has
about the same amount of work.

This topic is referred to as Load Balancing.

In this case we adjusted the size of each chunk to

equalize the work assigned to each thread. e = Emmal e
— Getting the right sized chunks for a variable partitioning (as done e e e e e e
here) can be really difficult. 0 1 2 3 4

Thread IDs ... box height « amount of work
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Load Balancing

« A parallel job isn’'t done until the last thread is finished

* An easier path to Load Balancing.
— Over-decompose the problem into small, fine-grained chunks

— Spread the chunks out among the threads (in this case using a cyclic
distribution)

— The work is spread out and statistically, you are likely to get a good
distribution of work

b
?
§
%
k

Colors mapped to 4 different Threads
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Load Balancing

« A parallel job isn’'t done until the last thread is finished

* An easier path to Load Balancing.
— Over-decompose the problem into small, fine-grained chunks

- Spread the chunks out among the threads (in this case using a cyclic
distribution)

— The work is spread out and statistically, you are likely to get a good
distribution of work

* Vocabulary review

— Load Balancing ... giving each thread work sized so all threads
take the same amount of time

— Partitioning or decomposition ... breaking up the problem
domain into partitions (or chunks) and assigning different partitions
to different threads.

— Granularity ... the size of the block of work. Find grained (small
chunks) vs coarse grained (large chunks)

— Over-decomposition ... when you decompose your problem into
partitions such that there are many more partitions than threads to
do the work

i
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Loop Worksharing Constructs: The schedule clause

* The schedule clause affects how loop iterations are mapped onto threads

— schedule(static [,chunk])

— Deal-out blocks of iterations of size “chunk” to each thread.

— schedule(dynamic[,chunk])

— Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

« Example:

— #pragma omp for schedule(dynamic, 10)

Schedule Clause

When To Use

STATIC

Pre-determined and predictable

by the programmer

£

DYNAMIC

Unpredictable, highly variable
work per iteration

Least work at runtime :

/ scheduling done at

compile-time

Most work at runtime :

e

complex scheduling
logic used at run-time
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Loop Worksharing Constructs: The schedule clause

* The schedule clause ... most common cases:

i
?
]
A
o
i

#pragma omp parallel for schedule (static)

‘E
?
']
A
o

Thread IDs
, ,,
0 - Q. . : : . : ]
1 \ Int small = 8; // loop iterations, i.e., width of boxes in the figure
2 —

#pragma omp parallel for schedule (static, small) .



We'll finish with loops by looking one
more time at synchronization overhead
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The nowait clause

 Barriers are really expensive. You need to understand when they are implied
and how to skip them when it's safe to do so.

double A[big], B[big], C[big];

#pragma omp parallel

{

int id=omp_get_thread _num();
A[id] = big_calc1(id);

#pragma omp barrier implicit barrier at the end of a for
worksharing construct
#pragma omp for
for(i=0;i<N;i++){C[i]=big_calc3(i,A);}

#pragma omp for nowait
for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }

A[id] = big_calc4(id); \
\ implicit barrier at the end no implicit barrier
of a parallel region due to nowait
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Data Environment: Default storage attributes

« Shared memory programming model:
— Most variables are shared by default

 Global variables are SHARED among threads

— Fortran: COMMON blocks, SAVE variables, MODULE variables

— C: File scope variables, static
— Both: dynamically allocated memory (ALLOCATE, malloc, new)

» But not everything is shared...

— Stack variables in subprograms(Fortran) or functions(C) called from parallel
regions are PRIVATE

— Automatic variables within a statement block are PRIVATE.
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Data Sharing: Examples

double A[10];
int main() {
int index[10];
#pragma omp parallel
work(index);
printf(“%d\n”, index[0]);
}

A, index and count are
shared by all threads.

temp is local to each
thread

A,

A,

index,

extern double A[10];

void work(int *index) {
double temp[10];
static int count;

count

temp temp temp

index,

count

a4



Data Sharing: Changing storage attributes

* One can selectively change storage attributes for constructs using the
fO”OWing clauses (note: list is a comma-separated list of variables)

—shared(list)
— private(list)
—firstprivate(list)
* These can be used on parallel and for constructs ... other than shared
which can only be used on a parallel construct

« Force the programmer to explicitly define storage attributes
—default (none)

default() can only be used
on parallel constructs
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Data Sharing: Private clause

* private(var) creates a new local copy of var for each thread.

int N = 1000:;

extern void init_arrays(int N, double *A, double *B, double *C);

void example () {
inti, j;
double A[N][N], B[N][N], C[N][NI;
init_arrays(N, *A, *B, *C);

#pragma omp parallel for private(j)
for (i=0;i<1000; i++)
for(j=0; j<1000; j++)
C[ill] = Afi]l] + BIIGT;

OpenMP makes the loop
control index on the
parallel loop (i) private by
default ... but not for the
second loop (j)
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Data Sharing: Private clause

 private(var) creates a new local copy of var for each thread.
— The value of the private copies is uninitialized
— The value of the original variable is unchanged after the region

When you need
to refer to the
variable incr that
exists prior to the
construct, we call
it the original
variable.

incr = 0;

#pragma omp parallel for private(incr)

for (i=0; i <= MAX; i++) {
if ((1%2)==0) incr++;
A[l] = incr;

incr was not
initialized

}

printf(" incr= %d\n”, incr);

‘ incr is O here I
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Firstprivate clause

* Variables initialized from a shared variable
 C++ objects are copy-constructed

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i=0; i <= MAX; i++) {

if ((i%2)==0) incr++;

All] = incr;

) T |

Each thread gets its own copy of
incr with an initial value of 0
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Data sharing:
A data environment test

» Consider this example of PRIVATE and FIRSTPRIVATE

variables: A=1B=1,C=1
#pragma omp parallel private(B) firstprivate(C)

« Are A,B,C private to each thread or shared inside the parallel region?
« What are their initial values inside and values after the parallel region?

Inside this parallel region ...
e “A’ is shared by all threads; equals 1
e “B” and “C” are private to each thread.
— B’s initial value is undefined
— C’s initial value equals 1
Following the parallel region ...
e B and C revert to their original values of 1
e Ais either 1 or the value it was set to inside the parallel region
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Exercise: Mandelbrot set area

* The supplied program (mandel.c)
computes the area of a Mandelbrot set.

* The program has been parallelized with
OpenMP, but we were lazy and didn’t do it
right.

* Find and fix the errors.

* Once you have a working version, try to
optimize the program.

Image Source: Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

The Mandelbrot set ... The points, c, for which the
following iterative map converges

— 2
Zpnyl = Zn + C

With z,, and ¢ as complex numbers and z; = 0.

This exercise come from Mark Bull of EPCC (at University of Edinburgh)
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The Mandelbrot Set Area Program (original code)

#include <omp.h>
# define NPOINTS 1000
# define MXITR 1000
void testpoint(double, double);
int numoutside = 0;
int main(){
inti, j;
int num=0;
double C_real, C_imag;
double area, error, eps = 1.0e-5;
#pragma omp parallel for private(eps)
for (i=0; i<NPOINTS; i++) {
for (j=0; j<NPOINTS; j++) {
C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
testpoint(C_real, C_imag);
}

}
area=2.0*2.5%1.125*(double)(NPOINTS*NPOINTS-

numoutside)/(double)(NPOINTS*NPOINTS);
error=area/(double)NPOINTS;

}

void testpoint(double C_real, double C_imag){
double zr, zi;
int iter;
double temp;

zr=C real; zi=C_imag;
for (iter=0; iter<MXITR; iter++){
temp = (zr*zr)-(zi*zi)+C_real;
Zi = zr*zi*2+C_imag;
zr = temp;
if ((zr*zr+zi*zi)>4.0) {
numoutside++;
break; // exit the loop

}
}

return O;
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The Mandelbrot Set Area Program

#include <omp.h>
# define NPOINTS 1000
# define MXITR 1000
void testpoint(double, double);
Int numoutside = 0;
int main(){
inti, j;
int num=0;
double C_real, C_imag;
double area, error, eps = 1.0e-5;
#pragma omp parallel for private(j, C_real, C_imag)
for (i=0; i<NPOINTS; i++) {
for (j=0; j<NPOINTS; j++) {
C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
testpoint(C_real, C_imag);
}

}
area=2.0*2.5%1.125*(double)(NPOINTS*NPOINTS-

numoutside)/(double)(NPOINTS*NPOINTS);
error=area/(double)NPOINTS;

}

void testpoint(double C_real, double C_imag){
double zr, zi;
int iter;
double temp;

zr=C real; zi=C_imag;
for (iter=0; iter<MXITR; iter++){
temp = (zr*zr)-(zi*zi)+C_real;
Zi = zr*zi*2+C_imag;
zr = temp;
if ((zr*zr+zi*zi)>4.0) {
#pragma omp critical
numoutside++;
break; // exit the loop

}
}

return O;

eps was not initialized
Data race on j, C_real, and C_imag
Protect updates of numoutside
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Data Sharing: Default clause

 default(none). Forces you to define the storage attributes for variables that

appear inside the static extent of the construct ... if you fail the compiler will complain.
Good programming practice!

* You can put the default clause on parallel and parallel + workshare constructs.

#include <omp.h>

int main()
{
. inti, j=5; double x=0.0, y=42.0;

The static — C Lk
extent is the #pragma omp parallel for default(none) reduction(*:x)
code in the for (i=9;i<'\_l;i"'"'.){

compilation unit— for(j=0; j<3; j++) The compiler would
that contains x+= foobar(i, j, y); complain about j and y,
the Construct_ _ } which is Ifnportant since
printf(“ x is %f\n”,(float)x); you dor;;;";g” tobe

}

The full OpenMP specification has other versions of the default clause, but they
are not used very often so we skip them in the common core
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Irregular Parallelism

* Let’s call a problem “irregular” when one or both of the following hold:
— Data Structures are sparse or involve indirect memory references
— Control structures are not basic for-loops

« Example: Traversing Linked lists:

p = listhead ;

while (p) {
process (p) ;
p=p->next;

}

« Using what we’ve learned so far, traversing a linked list in parallel using OpenMP
is difficult.
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Exercise: Traversing linked lists

« Consider the program linked.c
— Traverses a linked list computing a sequence of Fibonacci numbers at each node.

 Parallelize this program selecting from the following list of constructs:
#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get num_threads();
int omp_get thread _num();
double omp_get wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

 Hint: Just worry about the while loop that is timed inside main(). You
don’t need to make any changes to the “list functions”
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Linked Lists with OpenMP: My solution

« See the file solutions/linked _notasks.c

while (p '= NULL) {
p = p->next;
count++;

}

Count number of items in the linked list

struct node *parr = (struct node*) malloc(count*sizeof(struct node));

p = head;
for(i=0; i<count; i++) {
parrfi] = p;
p = p->next;
}
#pragma omp parallel
{
#pragma omp for schedule(static,1)
for(i=0; i<count; i++)
processwork(partrfi]);

Copy pointer to each node into an array

Process nodes in parallel with a for loop
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Linked Lists with OpenMP (without tasks)

« See the file solutions/linked _notasks.c
while (p != NULL) {

p = p->next; Count number of items in the linked list
count++; :
} With so much
. ~ . ' N PN code to add
struct node *parr = (struct node*) malloc(count*sizeof(struct node)); o] e
p = head; passes through
for(i=0; i<count; i++ Qi
( : " Copy pointer to each node into an array the data, this is
parr[i] = p; really ugly.
p = p->next;

} There has got
#pragma omp parallel to be a better
{ way to do this

#pragma omp for schedule(static,1) Process nodes in parallel with a for loop
for(i=0; i< t; i++
or(i=0; | courrll( Iarr[)i]) Number of Schedule
rocesswo ;
) i g threads Default Static,1
1 48 seconds 45 seconds
2 39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2
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What are Tasks?

« Tasks are independent units of work

» Tasks are composed of:
— code to execute
— data to compute with

* Threads are assigned to perform the work of each
task.

— The thread that encounters the task construct may execute
the task immediately.

— The threads may defer execution until later

Serial

Parallel
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What are Tasks?

 The task construct includes a structured block of code

 Inside a parallel region, a thread encountering a task
construct will package up the code block and its data

for execution

« Tasks can be nested: i.e., a task may itself generate

tasks.

Serial Parallel

A common Pattern is to have one thread create the tasks while the
other threads wait at a barrier and execute the tasks
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Single Worksharing Construct

* The single construct denotes a block of code that is executed by only one thread
(not necessarily the primary* thread).

A barrier is implied at the end of the single block (can remove the barrier with a
nowait clause).

#pragma omp parallel

{
do_many_things();
#pragma omp single
{ exchange boundaries(); }
do_many_other_things();
}

*This used to be called the “master thread”. The term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.

98



Task Directive

#pragma omp task [clauses]

structured-block

#pragma omp parallel. ———

{
#pragma omp single _

Create some threads

One Thread

{
#pragma omp task

fred() ;
#pragma omp task

daisy () ;
#pragma omp task

billy();

packages tasks

Tasks executed by
some thread in some
order

}
} \ All tasks complete before this barrier is released
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Exercise: Simple tasks

» Write a program using tasks that will “randomly” generate one of two strings:

— “l think “ “race” “car” “s are fun”
— “l think “ “car” “race” “s are fun”

« Hint: use tasks to print the indeterminate part of the output (i.e. the “race” or “car” parts).

« This is called a “Race Condition”. It occurs when the result of a program depends on
how the OS schedules the threads.

« NOTE: A “data race” is when threads “race to update a shared variable”. They produce
race conditions. Programs containing data races are undefined (in OpenMP but also

ANSI standards C++'11 and beyond).

#pragma omp parallel
#pragma omp task
#pragma omp single

This exercise comes from Ruud van der Pas of Oracle 100



Racey Cars: Solution

#include <stdio.h>

#include <omp.h>
int main()

{ printf("l think");
#pragma omp parallel

{
#pragma omp single
{
#pragma omp task
printf(" car");
#pragma omp task
printf(" race");
}
}
printf("s");
printf(" are fun\n");

}
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Data Scoping with Tasks

 Variables can be shared, private or firstprivate with respect to task

* These concepts are a little bit different compared with threads:

— If a variable is shared on a task construct, the references to it inside the construct
are to the storage with that name at the point where the task was encountered

— |f a variable is private on a task construct, the references to it inside the construct
are to new uninitialized storage that is created when the task is executed

— |f a variable is firstprivate on a construct, the references to it inside the construct are

to new storage that is created and initialized with the value of the existing storage of
that name when the task is encountered
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Data Scoping Defaults

« The behavior you want for tasks is usually firstprivate, because the task may not be
executed until later (and variables may have gone out of scope)

— Variables that are private when the task construct is encountered are firstprivate by default

« Variables that are shared in all constructs starting from the innermost enclosing parallel
construct are shared by default

#pragma omp parallel shared(A) private (B)

{
#pragma omp task A is shared
{ B is firstprivate
int C; / C is private
compute (A, B, C);
}
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Exercise: Traversing linked lists

« Consider the program linked.c
— Traverses a linked list computing a sequence of Fibonacci numbers at each node.

 Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp single
#pragma omp task

int omp_get num_threads();
int omp_get _thread _num();
double omp_get wtime();
private(), firstprivate()

» Hint: Just worry about the contents of main(). You

don’t need to make any changes to the “list functions” o



Parallel Linked List Traversal

Only one thread

#pragma omp parallel packages tasks
{

#pragma omp single
{
p = listhead ;
while (p) {
#pragma omp task firstprivate (p)
{

process (p)

}

=next ; \
P P) makes a copy of p
} when the task is
} packaged
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When/Where are Tasks Complete?

At thread barriers (explicit or implicit)

— all tasks generated inside a region must complete at the next barrier encountered by the threads
in that region. Common examples:
— Tasks generated inside a single construct: all tasks complete before exiting the barrier on the
single.
— Tasks generated inside a parallel region: all tasks complete before exiting the barrier at the end of
the parallel region.

At taskwait directive

— i.e. Wait until all tasks defined in the current task have completed.
#pragma omp taskwait

— Note: applies only to tasks generated in the current task, not to “"descendants” .
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Example

#pragma omp parallel

{
#pragma omp single
{
#pragma omp task fred() anddaisy()
fred () ; must complete before

billy () starts, but
#pragma omp task /this does not include

daisy () ; | tasks created inside
#pragma omp taskwait fred() and daisy()
#pragma omp task

billy() ;

}
} \ All tasks including those created
inside fred() and daisy() must

complete before exiting this barrier
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Example

#pragma omp parallel
{
#pragma omp single nowait
{
#pragma omp task
fred() ;
#pragma omp task
daisy () ;
#pragma omp taskwait
#pragma omp task
billy();

\

The barrier at the end of the
single is expensive and not
needed since you get the
barrier at the end of the
parallel region. So use
nowait to turn it off.

}  1&11 tasks including those created

inside fred() and daisy() must
complete before exiting this barrier
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Example: Fibonacci numbers

int fib (int n)
{

° |:n = |:n—1 + I:n—2
int x,y; * Inefficient O(2") recursive
if (n < 2) return n; implementation!

x = fib(n-1);
y = fib (n-2);
return (x+y);

}

int main()

{
int NW = 5000;
fib(NW);

}



Parallel Fibonacci
int fib (int n)
{ intxy;
if (n < 2) return n;

#pragma omp task shared(x)

x = fib(n-1);
#pragma omp task shared(y)
y = fib (n-2);

#pragma omp taskwait
return (x+y);

}

Int main()
{ int NW = 5000;
#pragma omp parallel
{
#pragma omp single
fib(NW);

Binary tree of tasks

Traversed using a recursive
function

A task cannot complete until all
tasks below it in the tree are
complete (enforced with taskwait)

x,y are local, and so by default
they are private to current task

— must be shared on child tasks so they
don’t create their own firstprivate
copies at this level!
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Divide and Conquer

» Split the problem into smaller sub-problems; continue until the sub-problems can be
solved directly

[ problem ]

/plit
[ subproblem } subproblem | 3 Options for parallelism:
it it N 0 Do work as you split

[ subproblem1 [subproblem1 rsubproblem rsubproblem1 into sub-problems
solve solve solve solve 0 Do work Only at the
[ subsolution | [subsolution | [ subsolution | [ cubsolution | leaves
) ’ ’ R ’ 0 Do work as you
merge .
. recombine
subsolution subsolution

u
merg/
[ solution ]




Exercise: Pl with tasks

* Go back to the original pi.c program
— Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single

double omp_get wtime()

int omp_get thread _num();
int omp_get num_threads();

« Hint: first create a recursive pi program and verify that it works. Think about the
computation you want to do at the leaves. If you go all the way down to one
iteration per leaf-node, won’t you just swamp the system with tasks?
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Results™: Pi with tasks

threads | 1st SPMD SPMD Pl Loop Pi tasks
critical
1 1.86 1.87 1.91 1.87
2 1.03 1.00 1.02 1.00
3 1.08 0.68 0.80 0.76
4 0.97 0.53 0.68 0.52

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

114



Using Tasks

Don’t use tasks for things already well supported by OpenMP
—e.g. standard do/for loops
—the overhead of using tasks is greater

Don’t expect miracles from the runtime

— best results usually obtained where the user controls the number
and granularity of tasks
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Outline OpenMP

* |[ntroduction to OpenMP

« Creating Threads

e Synchronization

 Parallel Loops

» Data Environment

* Irregular Parallelism and Tasks
=) - NUMA systems and GPUs

* Recap



The growth of complexity in OpenMP

« OpenMP started out in 1997 as a simple interface for the application programmers more versed in their area
of science than computer science.

« The complexity has grown considerably over the years!

600

500

400

B Fortran spec
© C/C++ spec

A Merged C/C++ and Fortran spec

Target constructs added
to OpenMP ... supports
host-device model

300

sjuno) abey

Supports general
multithreading, but
the emphasis was

(TR C N R S

The comnon core ...
focused on SMP

systems

Page Counts (not including front matter, indices or appendices) for OpenMP Specs
6.0
A

Beyond the common
core with NUMA and
GPU systems

Affinity and Places added
to handle NUMA systems

Tasks added to OpenMP ...

supports irregular parallelism

2010 2015 2020

2025

NUMA: non-uniform
memory architecture




OpenMP basic definitions: the solution stack

Application
Directiyes, OpenMP library Enwrgnment
Compiler variables
OpenMP Runtime library

User layer

Prog.

OS/system support for shared memory and threading

i [ i

Shared address space (NUMA)

System layer

Hard
ware

CPU cores SIMD units [ GPU cores [




NUMA Systems: You must optimize code for their complex memory subsystems

* Afloating-point operation takes O(~1 ns).

- L1 Cache ~1.5ns - L3 Cache reference ~25 ns

- L2 Cache reference ~5 ns -  Near memory DRAM access ~100ns

* The key to performance is to minimize memory movement .... get the memory movement right and the “rest” is easy

ns: nanosecond

(2K
DDR

' ¢
DDR

Near memory DRAM access ~100ns
Far memory DRAM access ~200 ns

DDR

K

DDR

Dual Socket node with Intel® Xeon™ E5-2698v3 CPUs

L3%| | L3$ L3%| | L3
Socket 1
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Example: use all available memory

« Stream memory bandwidth benchmark running on a two socket Intel® Xeon™ X5675 with 12 threads on 12 cores
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SL2 unified SL2 unifi;d $L2ynified
A[O’N-]_] SL1 SL1D ‘ SL1 ‘ SPD ‘ SL1 SL1D ‘
Bgckend ’ Backeré ‘ BgCkend
B[O,N-1] H ) wr [ Hm [ A ]| e ] e
’ gg HT, HT, HQ TO HT,
C[O N_l] ’ @ackend ’ Backen( ’ cgackend
' sbyo [sun || (s [ [ 3Go [
SL2 unified SL2 unified SL2 unified
Memory SL3 Tile SL3 Tile SL3 Tile

SL3 Tile

SLZ)lnified

A[0,(N/2)-1]

s | s |

ENEQ

ackend

’ Backen%

B[O,(N/2)-1]

EALA

[rm ][ o |

Cache Coherent Interconnect

SL3 Tile

$SL2 unified

SL3 Tile

SL2 unified

SL3 Tile

SL2 unified

S&|| SL1D

ackend

sty D

SN I || $L1D

Backend

[+ ][ m ]

[ ][ #m |

’ éackend

Backen

s[;o H SLLI

SL1D H s(y

SL2 unified

SL2 unifie"

$SL2 unified

C[0,(N/2)-1]

Memory
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Based on content from Christian Terboven (RWTH/AACHEN) and Michael Klemm (OpenMP)
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Example: use all available memory

« Stream memory bandwidth benchmark running on a two socket Intel® Xeon™ X5675 with 12 threads on 12 cores

SL3 Tile SL3 Tile SL3 Tile SL3 Tile SL3 Tile SL3 Tile

)
8}
SL2 unified SL2 unifi;d $L2‘unified qé $SL2 unified SL2 unified SL2 unified
A[O,N'l] SL1 SLlD‘ SL11 ‘SPD‘ SL1 $L1D‘ § S&I | SL1D St || sbyD SN I || SL1D
Bgckend ’ Backer{ ‘ BgCkend 3 ackend Backe Backend
[T H ) wr [ Hm [ A ]| e ] e £ E o, || HT, ES RN

3 arrays in one NUMA domain

But how did we make sure we got one thread per core?

threads/sockets?

How do you control the how threads are mapped onto cores/hardware-

You can fill all the cores in the node and disable simultaneous
multithreading (to enable the multiple hardware threads per core) but you
usually cannot control SMT settings on a node ... and sometimes on large

copy scale add triad
18.8 18.5 18.1 18.2
GB/s GB/s GB/s GB/s

Arrays split between both NUMA

B[O,(N/2)-1]

C[0,(N/2)-1]

Memory

scale nodes, there are more cores than you need. domains
00 e 0 A e 0 PR 0 ) e | o i | copy scale add triad
ww w HT, g : HS EdIEY TS B[N/Z'N-ll
’ Backen( Backgnd 'g g ckend Bagkénd 413 393 403 404
scpo [ suun || | stao [ s ||| s D% $L11 ﬁ subf sui[|[ sdo | su]|[ stiod sui C[N/2,N-1] GB/s GB/s GB/s GB/s
$12 unified $12 unified $12 uflified S $12 Qhified $12 unified $12 unified
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Based on content from Christian Terboven (RWTH/AACHEN) and Michael Klemm (OpenMP)




NUMA nodes and the places we can put threads

* OpenMP defines the concept of places on a NUMA node where threads can execute.
* The idea is to map the OS defined virtual cores onto places visible to OpenMP for threads assignment

* The first step is to understand the OS defined virtual cores (also known as virtual processing units or PUs)

I I
I I
I I
I I
I I
I I
g x [
I () =) I
1 - O [a ¥zl
| |
I I
I I
I I
I I
I I
I I
I I
I I
| > x x - |
I ) ) I
:<-> a) L3$| | L3$| | L3$|| L3 a) 0:
| :F |
I I
I I
I I
I I
I I

Socket 0 ! Socket 1
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Discover the OS view of virtual cores

e Portable Hardware Locality tools .... hwloc-Is, Istopo, Numactl and others
depending on the system. Generates text or graphical output depending on
how the tools are configured on your system.

Machine (126GB total)

| NUMANode P#0 (63GB)

Package P#0
‘ L3 (40MB) ‘

L2 (256KB)| | L2 (256KB)|| L2 (256KB) || L2 (256KB)|| L2 (256KB) || L2 (256KB)|| L2 (256KB)|| L2 (256KB)| | L2 (256KB)|| L2 (256KB)|| L2 (256KB)|| L2 (256KB)|| L2 (256KB)|| L2 (256KB)|| L2 (256KB)| | L2 (256KB)|

| L1d (32B)| | L1d (32kB)|| L1d (32kB)|| L1d (32KB)|| L1d (32kB)|| L1d (32KB)|| L1d (32kB)|| L1d (32KB)|| L1d (32kB)|| L1d (32kB)|| L1d (32KB)|| L1d (32kB)|| L1d (32KB)|| L1d (32kB)|| L1d (32KB)| | L1d (32KB)|

| L1i 32kB)| | L11 (32kB)| | L1i (32KB) | | L1i (32kB)| | L1i (32kB)| | L1i (32kB)| | L1i (32kB)| | L1i (32KB)| | L1i (32kB)| | L1i (32KB)] | L1i (32kB) || L1i (32B) || L1i (32KB) | | L1i (32kB) || L1i (32KB) || L1i (32KB) |

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 Core P#8 Core P#9 Core P#10| | Core P#11|| Core P#12|| Core P#13| | Core P#14 || Core P#15
PU P#0 PU P#1 PU P#2 ‘ PU P#3 PU P#4 PU P#5 PU P#6 PU P#7 PU P#8 PU P#9 PU P#10 PU P#11 PU P#lz‘ PU P#13 PU P#14‘ PU P#15
PU P#32 PU P#33 PU P#34‘ PU P#35 PU P#36 PU P#37 PU P#38 PU P#39 PU P#40 PU P#41 PU P#42 PU P#43 PU P#44‘ PU P#45 PU P#46’ PU P#47

‘ NUMANode P#1 (63GB) ‘

Package P#1
‘ L3 (40MB) ‘

12 256KkB)|| L2 (256KB)|| L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB) || L2 (256KB)|| L2 (256KB)|| L2 (256KB)|| L2 (256KB)|| L2 (256KB)|| L2 (256KB)|| L2 (256KB)|| L2 (256KB)|| L2 (256KB)|| L2 (256KB)]

L1d (32kB)|| L1d (32kB)|| L1d (32kB)|| L1d (32KB)|| L1d (32KB)|| L1d (32KB)|| L1d (32KB)|| L1d (32KB)|| L1d (32KB)|| L1d (32KB)|| L1d (32KB)|| L1d (32KB)|| L1d (32KB)|| L1d (32KB)|| L1d (32KB)|| L1d (32KB)]

111 (32kB)| | L1i (32kB)| | L1i (32kB)| | L1i (32kB)| | L1i (32KkB)| | L1i (32KB)| | L1i (32KB)| | L1i (32KB)| | L1i (32KB)| | L1i (32KB)| | L1i (32KB) || L1i (32KB) || L1i 32KB) || L1i 32KB) | | L1i 32KB) || L1i 32KB) |

Yun (Helen) He from NERSC )

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 Core P#8 Core P#9 Core P#10| | Core P#11|| Core P#12 || Core P#13|| Core P#14 || Core P#15
PU P#16 PU P#17 PU P#18 PU P#19 PU P#20 PU P#21 PU P#ZZ‘ PU P#23 PU P#24‘ PU P#25 PU P#26 PU P#27 PU P#28 PU P#29 PU P#30 PU P#31
PU P#48 PU P#49 PU P#50 PU P#51 PU P#52 PU P#53 PU P#54‘ PU P#55 PU P#56’ PU P#57 PU P#58 PU P#59 PU P#60 PU P#61 PU P#62 PU P#63
Graphical output for a dual Socket node with Intel® Xeon™ E5-2698v3 CPUs
Based on content from
PU: processor unit. The smallest physical execution unit that hwloc recognizes.




Using OMP_PLACES to select where to run code

« After using a tool to learn the logical core IDs :
(processor units or PUs) use environment | «
variables to define where threads can be = -
scheduled to execute. |
> export OMP_PLACES=%0, 3, 15, 12, 19, 16, 28, 31}"
> export NUM_THREADS= 6 + o
) ot (@]
#pragma omp parallel E 1547 hajas| 32| [12}a " 28|60 |29|61| |30[62] |31|63
{ S Socket O, NUMAdomain0 i Socket!,NUMAdomain{
// do a bunch of cool stuff T ey B e e )
: 032 |1 [33] | 2[34] | 335! " 19]51| [18]s0] [17[4o] [16]4e
E o[
} -l L38]) [L3s] [L3$ o H b £3s | [L3s ] | L3s | T3S =
| -8 L3s| [ Las| [ Las| [Las ST L3s] [L3s] [ Las] [ L3 e
| ]?9‘ ]:I iF ; —F—
- =1 17039 (8 [28] |57 |4 [36| s - =1(2959 [21]5 22|54| |23|5 -
E | [s]eo] [s 1] fiofi2] [fed] [2 EE &|[21sd [26]se| [25]57] [2a]q L2
o] o L3g | Lag] | L3s| | L33 ! L3s| | L3s] [ L3s| [ L3s o
' ol 2 C3s] [039 [T39 [3s zl [T L3s] [03s] [139] 13 g
: ofy 1C
E 5H7| alas| hafe2| [12Ja4 " 28|60| |20[61| [30]62] [31]6

Socket 0, NUMA domain 0 ) Socket 1, NUMA domain 1



Using OMP_PLACES to select where to run code

_______Q__

_-__-__*__‘_-_____-___ R SN

) ] E ol32] |1 [23] | 2|34| | 3|38] - 19[51] [18[s0| [17]4g] [16]48
« After using a tool to learn the logical core IDs | r_ == == == =2 55 — j
(processor units or PUs) use environment Rl L el (£ Less)|ss||Las||L3s o
. . ! | ’ I Q
variables to define where threads can be o L L ) EptEy WES ;5: :'-é L3 J 8
scheduled to execute. | v L Tolsd [fsd [22]5d ea]se] [k
E EE 27|59| |26|58| |25|57| |24|5
> export OMP_PLACES="{0, 3, 15, 12, 19, 16, 28, 31}" = ; |3:”I|I
> eXEOI't NUM THR A r\r\{ } ! ! L3S] | L3%] | L3%] | L3S w o
Programmers can use OMP_PLACES for detalled control over the execution- | t3s|| L33 | a
#pragma omp parall units threads utilize. BUT ... e 31
{ Th | £ . t el i it licated MA domain 1
. rules for mapping onto sical execution units are complicated. |zzzzzzzzzzzzzziis
// do a bunch of ¢ © PPINg PRYSIC P
« PLACES expressed as numbers is non-portable % 16]+¢
} c . L3% |1TL3% .
There has to be an easier and more portable way to describe places 1T g
L Ij% == 5
: =1 17129 18 138 |5 7] [4]%) [ " =1(29057 (2153 [22154 259 [
E | 8 [40( |9 41| hop2| |11]4 E EE E 27159 |26l58] [25|57| |24|5 5
o] o L3 | L3g | L3s| [ L3s ! L3s) | L3g| | L3s| | L3s o
| | B 3| [34 [T39 [135 T ! Z 38| T3] [3s] [ Q
E S5W7| N4146| N3K2| |12144 EE 28|60| |29|61| |30|62] |31|6

Socket 0, NUMA domain 0 - Socket 1, NUMA domain 1
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Hardware Abstraction: OMP_PLACES

e OMP_PLACES environment variable

o controls thread allocation
o defines a series of places to which the threads are assigned

e It can be an abstract name or a specific list
o threads: each place corresponds to a single hardware thread
o cores: each place corresponds to a single core (which may have one or more
hardware threads)
o sockets: each place corresponds to a single socket (consisting of one or more cores)

o a list with explicit place values of CPU ids, such as:
a export OMP_PLACES="{0:4:2},{1:4:2}" (equivalent to “{0,2,4,6},{1,3,5,7}")

e Examples:
o export OMP_PLACES=threads
o export OMP_PLACES=cores



Thread Affinity ... mapping threads to places
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Thread affinity to places: OMP_PROC_BIND

o Controls thread affinity within and between OpenMP places

o Allowed values:
o true: the runtime will not move threads around between processors

o false: the runtime may move threads around between processors
o close: bind threads close to the primary* thread

o spread: bind threads as evenly distributed as possible (i.e., spread them out)
o primary: bind threads to the same place as the primary thread

e The values primary*, close, and spread imply the value true

Examples:
export OMP_PROC_BIND=spread

*Primary thread: this is the thread with ID=0 that encountered the parallel construct and created the team of threads



Thread affinity to places: OMP_PROC_BIND

o Controls thread affinity within and between OpenMP places

o Allowed values:
o true: the runtime will not move threads around between processors

o false: the runtime may move threads around between processors
o close: bind threads close to the primary* thread

o spread: bind threads as evenly distributed (spreaded) as possible
o primary: bind threads to the same place as the primary thread

e The values primary*, close, and spread imply the value true

Example ... using clauses on a parallel construct:
#pragma omp parallel num_threads(4) proc_bind(spread)

*Primary thread: this is the thread with ID=0 that encountered the parallel construct and created the team of threads



Examples: OMP_PROC _BIND

Consider 4 cores total, 2 hardware threads per core,
4 OpenMP threads

none: no affinity setting

close: Bind threads as close to each other as possible

Node Core 0 Core 1 Core 2 Core 3
HT, HT, HT, HT, HT, HT, HT, HT,
PUO [ PU1 PU 2 PU 3 PU 4 PU5 PU 6 PU 7
Thread 0 1 2 3

spread: Bind threads as far apart as possible

Node Core 0 Core 1 Core 2 Core 3
HT, HT, HT, HT, HT, HT, HT, HT,
PUO [ PU1 PU 2 PU 3 PU 4 PU5 PU 6 PU 7
Thread 0 1 2 3

We define places explicitly with the IDs of the OS
virtual cores (the PUs).

We do not control where the initial thread is placed.
We will assume it is placed on HT1 or Core 0.

For this example, we have 4 place partitions.

OMP_PLACES={0,1},{2,3},{4,5},{6,7}
With close, threads placed in consecutive

locations

With spread, threads placed in first place of
each partition

primary: bind threads to the same place as the primary thread

PU: processor unit. The smallest physical execution unit that hwloc recognizes.




OMP_PROC_BIND Choices for STREAM Benchmark

OMP_NUM_THREADS=32
OMP_PLACES=threads

OMP_PROC_BIND=close

Threads 0 to 31 bind to cores
(0,32),(1,33),(2,34),...(15,47). All threads are in the
first socket. The second socket is idle. Not optimal.

OMP_PROC_BIND=spread

Threads 0 to 31 bind to cores 0,1,2,... to 31. Both
sockets and memory are used to maximize memory
bandwidth.

____________________________________________________________________

DDR

switch

L3$| | L3$| [ L3 [ L3% L3$] | L3$| | L3$]| | L3S

L3g|[ L3 | E E f L39g| [L3%
i

15147 (14 146| [13[45] |12[44 :: 28|60| 129|61| 130|162 [31|63
"

Socket 0, NUMA domain 0 N Socket 1, NUMA domain 1

2K
DDR
DDR

Bandwidth (GB/s)

Blue: OMP_PROC_BIND=close
Red: OMP_PROC_BIND=spread
Both with First Touch

STREAM OMP_PROC_BIND Effect

«0==0MP_PROC_BIND=close  *##=OMP_PROC_BIND=spread

140
120
100
80
60
0 t
20 Threads beyond 32 land in
the second NUMA domain
0
1 2 3 4 8 12 16 20 24 28 32 36 42 48 52 56 60 64

# OpenMP Threads

Stream is a well known memory bandwidth benchmark
based on simple vector operations on huge vectors

Based on content from Yun (Helen) He from NERSC )



Alighing memory to threads ... First touch
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Memory Affinity: Exploiting “First Touch” page mapping policy

Step 1.1 Initialization by primary thread only
for (j=0; j<VectorSize; j++) {
a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

Step 1.2 Initialization by all threads
#pragma omp parallel for
for (j=0; j<VectorSize; j++) {

alj] = 1.0; b[j] = 2.0; c[j] = 0.0;}

Step 2 Compute

#pragma omp parallel for

for (j=0; j<VectorSize; j++)
a[j]=b[j]+d*c[j];

T e e = = = = = T~ i Tl T e e i 7 ]

IKe 4
32| 1 ]33 34 | 3 [35

Numa
Domain 0

IS P S

C o e e e o S - —r— !

A dual Socket node with Intel® Xeon™ E5-2698v3 CPUs

The OS maps pages of memory based on a first touch policy.

Hence, Affinity to memory is not defined when memory is
allocated ... it is defined when the memory is initialized.

The result is memory is local to the thread which initializes it.

Red: step 1.1 + step 2. Memory from Numa Domain 0 only
Blue: step 1.2 + step 2. Memory used from both NUMA domains

STREAM NUMA Effect

e=(==Fjrst Touch ={3=No First Touch

120 — OMP_PLACES=threads
OMP_PROC_BIND=close

=
)] (0] o
o (@) o

Bandwisth (GB/s)

i
o

20

1 2 3 4 8 12 16 20 24 28 32 36 42 48 52 56 60 64
# OpenMP Threads

Based on content from Yun (Helen) He from NERSC )



Example: working with the First Touch Policy
Rember this slide?

« Stream memory bandwidth benchmark running on a two socket Intel® Xeon™ X5675 with 12 threads on 12 cores
SL3 Tile NERIE SR '5) SL3 Tile SL3 Tile NER
¢ " & | § "y T |
$L2 unified $L2 unified SL2 ynified c $L2 unified $L2 unified $L2 unified . .
AIO.N-1 i sao]| [ sal \sfpo\ w Jsas S % [suo o [$Go 5. [suo 3 arrays in one NUMA domain
Arrays A, B y an d C [ON-1] B3ckend Backend sefiend g Gpackend Backep Backend
initialized on BION-1] P I A | A I H £ | [0l =T R0l copy | scale | add | triad
) £ 2 £ £
_ R ]| ¢ | e e s T s T ol 1 10
p rm a ry th read C[O,N-1] Gackend Backen: ackend § Gackend Backendl Backen . . . .
S[)DH Sl $L1|3H Sl.(sl s(}DH sL1l e s[)D H sL11 SLIDH sq\ SLwH s(}l GB/S GB/S GB/S GB/S
$L2 unified $12 unified $L2 unified S L2 unified $L2 unifidy $12 unified
Memory SL3 Tile SL3 Tile SL3 Tile 8 SL3 Tile SL3 Tile SL3 Tile Memory
SL3 Tile SL3 Tile SL3 Tile B NERI SL3 Tile SL3 Tile .
$J2 unified sL2 uniﬂ@ $L2 pinified qé $L2 unified @12 unified SL2inified Arrays Spl It bEtwee n bOth N U MA
ALD (N/Z) " sasl [su1p | [ 5111 ] sqp | su( $11D § su?lc $11D S1| [sup ||| sugf st AR domains
) = ackend Backen& B{ckend 3 Bgckend Backend B&end ,IN=
Arra S A B and C 5 11—‘ E E ] f. = E E”E E = copy scale add triad
. SN2 | |F T ] | 8| e | e ] | BN
. g . . ’ v, || HT, W L en 20 = | 2| v || v ||+ wr, || w Yoe ]l 3 ,
Inltlallzed In parallel [ %kend Backen Backgnd ‘qg) Baéfnd éckend Bagk€nd 41.3 39.3 40.3 40.4
C[O,(N/Z)-].] SL??D H sint || [ sto H Slﬂ\l sL1 Dmasul 3 $L1§J$L1| s(D H SL11 $L10¢$L1| C[N/Z,N'll GB/S GB/S GB/S GB/S
$12 unified $12 unified 12 ufified ) L2 Onified (2 unified $L2 unified
Vemory | el Ty oI i Vicmry
Based on content from Christian Terboven (RWTH/AACHEN) and Michael Klemm (OpenMP)

But its not just any “in parallel”. You want to initialize the arrays with the same “parallel
for schedule” that will be used when the threads do the computations with A, B, and C




Nested parallelism

135



Process and Thread Affinity in Nested OpenMP

Consider a
program with #pragma omp parallel
nested parallel #pragma omp parallel Running on a system with 2 sockets, 4 cores per socket, 4 hardware-threads per core
regions
export OMP_MAX ACTIVE LEVELS=2 export OMP_MAX_ACTIVE_LEVELS=2
export OMP_NUM_THREADS=4,4 export OMP_NUM_THREADS=4,4
export OMP_PLACES=cores export OMP_PLACES=threads
export OMP_PROC_BIND=spread,close export OMP_PROC_BIND=spread,close
Ja.out Ja.out

initial

spreac

i

\
1
1
1
1
1
1
1
1
1
1
1
1
]

i------f

close !

SocketO ________  TTTTmmmee Socket ===~
Cyclic distribution between “close” cores Distribution across four hardware threads

Based on content from Yun (Helen) He from NERSC )



Wrapping up our discussion of taking NUMA
features of a system into account in your
multithreaded programs ...
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Getting the affinity right can have serious impacts on performance

Application Benchmark Performance for a number of benchmarks at NERSC

= = N N w w
o (%) o (%) (@) (9

Slowdown naive/optimal

33

“ naive affinity

“ optinal affinity

275 —
15 1 1 121 1 . 1

GTC MILC miniGhost miniDFT

Lower is better

_______________________________________________________________________

=

%
DDR
Vi

20(52| | 21]53| [22]s4] |23 (55

27(59]| [26]58| |25(57| [24|56

I|
" 1
35| [38] [133] [ l E I E !
()
: ) EI |
! 1
. 5 |47 HH :: 28|60 [29]61| [30]62| |31 |63 !
1 1
1 1

| Socket 0 ; Socket 1 !
1

DDR

Results running on the Cori system at
NERSE which has dual Socket nodes with
Intel® Xeon™ E5-2698v3 CPUs

Based on content from Yun (Helen) He from NERSC (National Energy Research Supercomputing Center)



Finding the best strategy for thread affinity

e Experiment to find the best combinations of OMP_PLACES and OMP_PROC_BIND.

— Using the environment variables makes it easy to try many options

e The best approach depends on the system but also on the features of an application
— Putting threads for apart ... on different sockets
— May improve aggregate memory bandwidth available to an application
— May improve combined cache size for the application
— May increase synchronization overhead

— Putting threads close together ... on adjacent cores that may share some caches

— May reduce synchronization overhead
— May decrease memory bandwidth and total cache size

e VVendors have their own constructs for controlling NUMA features of a system.
— Avoid vendor-specific constructs if you can ... use portable OMP_PLACES and OMP_PROC_BIND
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Introduction to GPU programming
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A Generic Host/Device Platform Model

oo
o %@H
| ==}/
Processing —onn H
Element [REaNa
0 rm . mm
UL
T~
Compute Unit Device

* One Host and one or more Devices

— Each Device is composed of one or more Compute Units
— Each Compute Unit is divided into one or more Processing Elements

 Memory divided into host memory and device memory

Host
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The “BIG idea” Behind GPU programming

Data Parallel vadd with CUDA

oy o f - T C =
Traditional Loop based vector addition (vadd) Z .g°mp“;ebs‘;m of length-N vectors: C = A + B
void _ global__

vecAdd (float* a, float* b, float* c, int N) {

int main() { int i = blockIdx.x * blockDim.x + threadIdx.Xx;
int N=...; if (i < N) c[i] = a[i] + b[i];
float *a, *b, *c; b Assume a GPU with
unified shared memory
a* =(float *) malloc(N * sizeof(float)); s TainN() { Qg;&ﬁ?i;&gﬁ;
in = v

* * E Yok
// ... allocate other arrays (b and c) VICETE By M9, M8 A/////////

// and fill with data cudaMalloc (&a, sizeof(float) * N);
// ... allocate other arrays (b and c)
for (int i=0;i<N; i++) // and fill with data

c[i] = a[i] + b[i];
’ // Use thread blocks with 256 threads each

) vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
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How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

1. Write kernel code for the
scalar work-items

// Compute sum of order-N matrices: C = A + B
void _ global__
matAdd (float* a, float* b, float* c, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
) if (1 < N && je<N) c[i][3] == a[i][3] + b[i][]];

int main () {
int N= ... ;
float *a, *b, *c;
cudaMalloc (&a, sizeof(float) * N);
// ... allocate other arrays (b and c)
// and fill with data

// define threadBlocks and the Grid
dim3 dimBlock(4,4);
dim3 dimGrid(4,4);

// Launch kernel on Grid
matAdd <<< dimGrid,dimBlock>>> (a, b, c, N);

This is CUDA code

2. Map work-items onto an 4. Run on hardware
N dim index space. designed around the
same SIMT
eee eeee 00ee 0000 execution model
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
000 00060 0000 0000
3. Map data structures

onto the same index
space
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SIMT: One instruction stream maps onto many Processing Elements

« SIMT model: Individual scalar instruction streams are grouped together for SIMD execution on hardware

A stream of
Scalar
instructions
from a single
work-item

\ 4

1d x
mul a

add — add | add | add | add |[add | add | add | add

st y

PE, PE, PE, PE; PE, PEs; PE; PE;

ldx |1dx | 1d x| 1d x |1d x J1d x | 1d x | 14 x

mul a lmul al mul almul a|mul a [mul almul almul a

SIMD execution scheduled StY |sty sty |sty|5t¥ |sty [stVy |sty
across a fixed number of <€ >
Processing Elements set of work-items executing together: a warp

(analogous to the width of a CPU SIMD unit)

GPU nomenclature is really messed up. (sorry about that ... we tried to unify around OpenCL but failed).

Instruction stream at finest grain

Work-item, /ﬁ)A Thl%h\g These names are particularly awful

Blocks for scheduling work-items

— —— since they conflict with established
work-group, \Ihr@d W names from CPU Computing.

Execution width for work-items Subgroup, warp /
Finest grained processing element (PE) in a GPU SIMD Lane, Processing Element, (CUDA (340@1

Block of PEs driven by a single Instruction sequencer | multithreaded SIMD processor, compute unit, Streaming multiprocessor
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A Generic GPU (following Hennessey and Patterson)

Instruction Cache

\ Tntucton Cache 1l Tratracton Cache ] \ structon Cahe 1l Tnstrcton Cache ]
[ SIMD Thread Scheduler I SIMD Thread Scheduler | [ SIMD Thread Scheduler I SIMD Thread Scheduler |
[oispatch unit ] [ oispatchunit_ ||| [ ispatchunit_| [ oispatch unic | [oispatch unit ] [ oispatchunie ]| |[ispatchunit | [ oispatchunit | SIM D Th read Scheduler
[ Register File Il Register File | [ Register File Il Register File |
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Cache Cache Cache Cache

A multithreaded SIMD
processor
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Computer Architecture: A Quantitative Approach. John L. Hennessv and David A. Patterson.



Program
defines work

Executing a program on CPUs and GPUs

Work decomposed
into blocks
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Program
defines work

Executing a program on CPUs and GPUs

Work decomposed
into blocks
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CPU/GPU execution models

Executing a program on CPUs and GPUs

Work decomposed Mapped onto

into blocks threads-for
execution
L0 I:>
T
Program
defines work A
i
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decomposed into Organized into  Enqueued for
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Programming a GPU with OpenMP



Running code on the GPU:

The target construct and default data movement

Scalars and statically allocated

Host thread arrays are moved onto the device
Generating Task by default before execution
float A[N], B[N]; A, BandN
mapped to the
v #pragma omp target device Initial task
-------------- 2 {
Host thread .
Target task
waits for the argetias target region, Device Initial
: canuse A,Band N
task region to thread

complete

the arrays
Aand B
mapped back to
the host

Only the statically allocated arrays
are moved back to the host after
the target region completes

Based on figure 6.4 in Using OpenMP — The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017 150



Default Data Sharing: example

1. Variables created in host
memory.

int main(void) {
int N = 1024; /

double A[N], B[N];

#pragma omp target — |

2. Scalar N and stack arrays
A and B are copied to device
memory. Execution
transferred to device.

{

for (int ii = 0; ii < N; ++ii) { «—

3. 11 is private on the device
as it's declared within the
target region

Afii] = Alii] + BJii]; <

4. Execution on the device.

}
.

} I/ end of target region

5. stack arrays A and B are
copied from device memory
back to the host. Host

resumes execution.

}
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Now let’s run code in parallel on the device

int main(void) {
int N = 1024;
double A[N], B[NJ;

#pragma omp target

{
#pragma omp loop
for (int ii = O; ii < N; ++ii) {
Al[ii] = AJii] + BIii];
}

} I/ end of target region
}

The loop construct tells the compiler:

"this loop will execute correctly if
the loop iterations run in any order.
You can safely run them
concurrently. And the loop-body
doesn’t contain any OpenMP
constructs. So do whatever you
can to make the code run fast”

The loop construct is a declarative construct. You
tell the compiler what you want done but you DO
NOT tell it how to “do it”.  This is new for OpenMP



Solution: Simple vector add in OpenMP on GPU

int main ()

{

float a[N], b[N], c[N],
int err=0;

// fill the arrays
#pragma omp parallel for
for (int i=0; i<N; i++) {
al[i] = (float)i;
b[i] = 2.0*(float)i;
c[i] = 0.0;
res[i] = i + 2%i;

}

// add two vectors

#pragma omp target

#pragma omp loop

for (int i=0; i<N; i++){
c[i] = a[i] + bI[i];

res[N];

// test results
#pragma omp parallel for reduction (+:err)
for(int i=0;i<N;i++) {
float val = c[i] - res[i];
val = val*val;
if (val>TOL) err++;
}
printf ("vectors added with %d errors\n", err);

return 0;



No single processor is best at everything

* The idea that you should move everything to the GPU makes no sense

« Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

1 LIS |

_ Where are Tasks running?
|:| & ) |:| ’ii (1) [ ] onacru
l I—l l D 4 C] On an Accelerator
==
c ||
1B (11 |
Heterogeneous
Computing
l Offload
v



5-point stencil: the heat program

The heat equation models changes in temperature over time.

Jdu V2 = 0
5 aVeu =

WEe'll solve this numerically on a computer using an explicit finite difference discretisation.
u = u(t, x,y) is a function of space and time.
Partial differentials are approximated using diamond difference formulae:

ou N ut+1,x,y) —u(t,x,y)
ot dt

0%u  u(t,x+1,y)—2ult,x,y) +u(t,x—1,y)

0x2 dx?

— Forward finite difference in time, central finite difference in space.



5-point stencil: the heat program

Given an initial value of u, and any boundary conditions, we can calculate the value of u at time
t+1 given the value at time t.

Each update requires values from the north, south, east and west neighbours only:

AN
<EE
%

Computation is essentially a weighted average of each cell and its neighbouring cells.
If on a boundary, look up a boundary condition instead.




Heat diffusion problem: 5-point stencil code

const double r = alpha * dt / (dx * dx);
const double r2 = 1.0 - 4.0*r;

// malloc and initialize u tmp and u (code not shown)

for (int t = 0; t < nsteps; ++t) { Loop over time steps

for (int i = 0; 1 < n; ++i) {

for (int j 0; § < n; ++j) { Loop over NxN spatial domain
u tmp[i+j*n] = r2 * u[i+j*n] +
r * ((i < n-1) ? u[i+l+j*n] : 0.0) + Update the S-point
£* (>0 | ?uli-legml : 0.0) + | el meminy
r * ((J <n-1) ? u[i+(3+1)*n] : 0.0) + edges of the domain
r * ((J > 0) ? u[i+(J-1)*n] : 0.0); are fixed at zero.
}
}
// Pointer swap to get ready for next step
tmp = u;
u = u _tmp;

u tmp = tmp;

Serial CPU code



Parallel CPU code, n=4000

Heat diffusion problem: 5-point stencil code

const double r = alpha * dt / (dx * dx);

const double r2 = 1.0 - 4.0*r;

// malloc and initialize u tmp and u (code not shown)

for (int t =

0

; t < nsteps;

++t) {

#pragma omp parallel for collapse(2)
= 0; 1 < n; ++1i) {

for (int i

for (int j = 0; j < n;
u tmp[i+j*n] = r2 *

r
r
r
r

}
}

*

*
*
*

// Pointer

tmp = u;

u = u_tmp;
u tmp = tmp;

((i < n-1)
((1 > 0)
((J < n-1)
((3 > 0)

?
?
?
?

++3) |
u[i+j*n]
u[i+l+j*n]
u[i-1+j*n]
u[i+ (j+1) *n]
ufi+(3j-1)*n]

o O O o

+

.0) +
.0) +
.0) +
.0);

swap to get ready for next step

heat problem, n=4000
8
8 threads 0.290 secs
Q 6
-
D
o 4
o
@ 9
0 1 thread 1.80 secs
0 2 4 6 8 10
Threads
Intel® Xeon™ Gold 5218 @ 2.3 Ghz, 8 cores.
Nvidia HPC Toolkit compiler nvc —fast —fopenmp heat.c



Parallel GPU code, n=4000

Heat diffusion problem: 5-point stencil code

const double r
const double r2

// malloc and initialize u tmp and u (code not shown)

for (int t = 0;

#pragma omp target map(tofrom: u[0O:n*n], u tmp[0:n*n])

#pragma omp
for (int i =
for (int j
u tmp[i+

r *

r*
r*
r*

}
}
// Pointer
tmp = u;
u = u_tmp;
u tmp = tmp

= alpha * dt / (dx * dx);

=1.0 - 4.0*r;

t < nsteps;

loop

++t) {

0; 1i < n; ++i) {

=0; j < n;
j*n] = r2 *
((i < n-1)
((i > 0)
((J < n-1)
((3 > 0)

?
?
?
?

++3) |
u[i+j*n]
u[i+l+j*n]
u[i-1+j*n]
u[i+ (j+1) *n]
ufi+(3j-1)*n]

+
0.0) +
0.0) +
0.0) +
0.0);

swap to get ready for next step

.
4

When you map pointers between the host and the
device, OpenMP remembers the address.

Swapped addresses on the hosts swaps
addresses on the device

GPU Solver time = 1.40 secs

This isn’t much better than the
runtime for a single CPU (1.8 secs)

and worse than 8 cores on a CPU
(0.29 secs).

Why is the performance so bad?

NVIDIA T4 GPU, 16 Gbyte, Turing Arch.
Nvidia HPC Toolkit compiler
nvc —fast —-mp=gpu —gpu=cc75 heat.c



Parallel GPU code, n=4000

Heat diffusion problem: 5-point stencil code

const double r = alpha * dt / (dx * dx); With a runtime of 1.4 secs (worse than the
const double r2 = 1.0 - 4.0*r; CPU time) we see that Data Movement
dominates performance.

// malloc and initialize u tmp and u (code not shown)

for (int t = 0; t < nsteps; ++t) { At the beginning of each
#pragma omp target map(tofrom: u[0O:n*n], u tmp[0:n*n]) iteration, copy
#pragr]na omp lOOP_ _ (2*N2)*sizeof(TYPE) bytes
for (int i = 0; i < n; ++1i) { to the device
for (int j = 0; j < n; ++3j) {

u tmp[i+j*n] = r2 * u[i+j*n] +
r * ((1 < n-1) ? ul[i+l+j*n] : 0.0) +
r * ((i > 0) ? ul[i-1+j*n] : 0.0) +
r * ((j < n-1) ? u[i+(j+1l)*n] : 0.0) +
r* ((J >0) ? u[i+(3-1)*n] : 0.0); We need to create a data region on the GPU
\ } that is distinct from the target region.
// Pointer swap to get ready for next step That way, we can keep the data on the device
Em z ;_tl;lp; between target constructs
u_tmp = tmp; | Atthe end of each iteration, copy
} (2*N2)*sizeof(TYPE) bytes
} from the device




Target enter/exit data constructs

« Create a data region on the target device (a device data environment) with two
standalone directives:

#pragma omp target enter data map(...)
#pragma omp target exit data map(...)

* The target enter data maps variables to the device data environment.

* The target exit data unmaps variables from the device data environment.

* Once created, subsequent target regions inherit the existing data environment.



Target enter/exit data example

void init_array(int *A, int *B, int N) {
for (inti=0;i<N; ++i) { Ali] =1i; BJ[i]=2"I;}

#pragma omp target enter data map(to: A[0:N], B[0:N])
}

int main(void) {

int N = 1024;
int *A = malloc(sizeof(int) * N);

int *B = malloc(sizeof(int) * N);
init_array(A, B, N);

#pragma omp target

#pragma omp loop

for (inti=0;i<N; ++i)
Alil = Ali] * BIi];

#pragma omp target exit data map(from: A[0:N])
}



Parallel GPU code, n=4000

Heat diffusion problem: 5-point stencil code

const double r = alpha * dt / (dx * dx);

const double r2 = 1.0 - 4.0*r;

// malloc and initialize u_tmp and u (code not shown)
#pragma omp target enter data map(to: u[0:n*n], u tmp[0:n*n]) Create a data region and
map indicated data on entry

for (int t = 0; t < nsteps; ++t) {
#pragma omp target
#pragma omp loop
for (int i = 0; i < n; ++i) {

f int § = 0; jJ < n; ++] .
or {int 3 3 < miwd) A GPU Solver time* = 0.42 secs
u_tmp[i+j*n] = r2 * u[i+j*n] +
r * ((i < n-1) ? u[i+l+j*n] 0.0) +
* (1> ? ul[i-1+3* 0.0) + . L
r* (1>0) uli-1+3%n] ) This is a general principal ...
£ * (I <n-l) 2 ulit(+l)*n] = 0.0) 4 if you want performance, you
r* ((3 >0) 2 u[i+(j-1)*n] : 0.0); must optimize data’
}
} movement.
// Pointer swap to get ready for next step *includes time for target enter/exit data
tmp = u;
u = u_tmp;
u_tmp = tmp; Exit the data

}
#fpragma omp target exit data map(from: u[0:n*n])

}

. NVIDIA T4 GPU, 16 Gbyte, Turing Arch.
_reg_lon and e} Nvidia HPC Toolkit compiler
indicated data nvc —-fast —-mp=gpu —-gpu=cc75 heat.c




. . . . Parallel CPU results,
Heat diffusion problem: 5-point stencil code

const double r = alpha * dt / (dx * dx);
const double r2 = 1.0 - 4.0*r;
// malloc and initialize u_tmp and u (code not shown)

Let’s optimize the CPU code as well

for (int t = 0; t < nsteps; ++t) {

Num threads | ij loop order
#pragma omp parallel for T 0 (T fi |
j loop order.
for (int i = 0; i < n; ++i) { 1 1.512849
for (int j = 0; j < n; ++j) { 2 2 0.776229
u_tmp[i+j*n] = r2 * u[i+j*n] + %)
r * ((i < n-1) ? u[i+l+j*n] : 0.0) + 4 0.400822
r* ((i >0) 2 u[i-14j*n] : 0.0) + 8 0.227317
r * ((3 <n-1) ? u[i+(3+1)*n] : 0.0) + Intel® Xeon™ Gold 5218 @ 2.3 Ghz, 8 cores.
r* ((J >0) ? u[i+(j-1)*n] : 0.0); Nvidia HPC Toolkit compiler nvc —fast —fopenmp heat.c
} All times in seconds

}

// Pointer swap for next step
tmp = u;

u = u_tmp;

u_tmp = tmp;



. . . . Parallel CPU results,
Heat diffusion problem: 5-point stencil code

const double r = alpha * dt / (dx * dx);

const double r2 = 1.0 - 4.0%r; Make j the outermost loop so adjacent loop
// malloc and initialize u_tmp and u (code not shown) iterations access adjacent memory locations.
for (int t = 0; t < nsteps; ++t) { Num threads | ij loop order | ji loop order
1 1.512849 0.262260
#pragma omp parallel for This is the ji loop order. - 2 0.776229 0.132453
for (int j = 0; j < n; ++3j) { Swap these loops to get o
for (int i = 0; i < n; ++i) { the ij order. O 4 0.400822 0.064220
u_tmpli+3*n] = r2 * ul[i+3*n] * 8 0.227317 | 0.046586
r * ((i < n-1) ? u[i+l+j*n] : 0.0) + : :
r* ((i > 0) ? u[i-1+j*n] : 0.0) + Intel® Xeon™ Gold 5218 @ 2.3 Ghz, 8 cores.
r * ((3 < n-1) ? u[i+(5+1)*n] : 0.0) + Nvidia HPC Toolkit compiler nvc —fast —fopenmp heat.c
r* ((3 >0) 2 u[i+(j-1)*n] : 0.0); All times in seconds
}
}
// Pointer swap for next step
tmp = u; This is particularly important on a GPU ... you want memory
u = u_tmp; coalesced with the GPUs processing elements (PE) ... i.e.,
u_tmp = tmp; elements of u accessed by PE; should be adjacent to the elements
} of u accessed by PE;,;




. . . . Parallel CPU and GPU
Heat diffusion problem: 5-point stencil code

const double r = alpha * dt / (dx * dx);

const double r2 = 1.0 - 4.0%r; Memory coalescence is important for CPUs and GPUs.
// malloc and initialize u_tmp and u (code not shown)
#pragma omp target enter data map(to: u[O:n*n], u_tmp[0| Note: collapse(2) did not help on the GPU or the CPU
for (int t = 0; t < nsteps; ++t) {
#pragma omp target Num threads | ij loop order | ji loop order
#pragma omp loop
for (int 3 = 0; 3 < n; ++3) { This is the ji 1 1.512849 0.262260
for (int i = 0; i < n; ++i) { loop order. = 2 0.776229 | 0.132453
u_tmp[i+j*n] = r2 * u[i+j*n] + O
r * ((i < n-1) ? ul[i+l+j*n] : 0.0) + 4 0.400822 0.064220
r* ((i >0) 2 u[i-1+j*n] : 0.0) + 8 0.227317 0.046586
r* (3 <n-d) ? ull+(3+1)*n] 2 0.0) + Intel® Xeon™ Gold 5218 @ 2.3 Ghz, 8 cores.
r* ((j >0) ? uf[i+(3-1)*n] : 0.0); Nvidia HPC Toolkit compiler nvc —fast -fopenmp heat.c
} . .
| All times in seconds
// Pointer swa . .. . . . .
tmp = u; P ij without timing ij loop ji without timing ji loop order
4= u tmp; = | enter and exit data | order enter and exit data
u_tmp = tmp; O10.056830 0.417887 | 0.020123 0.358905
}
#fpragma omp target exit data map(from: u[0:n*n]) NVIDIA T4 GPU, 16 Gbyte, Turing Arch.

} Nvidia HPC Toolkit compiler. nvc-fast-mp=gpu heat.c



Outline OpenMP

* |[ntroduction to OpenMP

« Creating Threads
e Synchronization
 Parallel Loops

» Data Environment
 Memory Model

* Irregular Parallelism and Tasks
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The OpenMP Common Core: Most OpenMP programs only use these 21 items

OpenMP pragma, function, or clause

Concepts

#pragma omp parallel

Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set thread _num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.
SPMD pattern: Create threads with a parallel region and split up the work using the number of
threads and the thread ID.

double omp_get wtime()

Speedup and Amdahl's law. False sharing and other performance issues.

setenv OMP_NUM_THREADS N

Setting the internal control variable for the default number of threads with an environment
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list)

Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list)

Data environment.

default(none)

Force explicit definition of each variable’s storage attribute

nowait

Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush
concept (but not the flush directive).

#pragma omp single

Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

168



Resources

« The OpenMP Architecture review Board (ARB) has a wealth of helpful resources on its web site: www.openmp.org

OpenMP

Community v Resources v News & Events v About v

The OpenMP API specification for parallel programming

SpeCiﬁ Catio ns Home > Specifications
Includi OpenMP 5.2 Specification OpenMP 5.1 Specification
Nncliuding a
comprehensiv = OpenMP API 5.2 Specification - Nov 2021 = OpenMP API 5.1 Specification - Nov 2020
e collection of = Softcover Book on Amazon = HTML Version  Softcover Book on Amazon

= OpenMP API Additional Definitions 2.0 - Nov 2020

examples Of = OpenMP API 5.2 Reference Guide (English) (Japanese)
: = OpenMP API 5.2 Supplementary Source Code
code using the \(—Qm
Open M P = Softcover Book on Amazon
L |5.
Constru CtS OpenMP API 5.2 Stack Overflow

OpenMP API Additional Definitions 2.0 - Nov 2020
OpenMP API 5.1 Reference Guide

OpenMP API 5.1 Supplementary Source Code
OpenMP API 5.1 Examples - August 2021

OpenMP API 5.1 Stack Overflow
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http://www.openmp.org/

To learn OpenMP:

« An exciting new book that Covers the
Common Core of OpenMP plus a few key
features beyond the common core that
people frequently use

THE OPENMP
COMMON CORE

Making OpenMP Simple Again

* It's geared towards people learning
OpenMP, but as one commentator put it
... everyone at any skill level should
read the memory model chapters.
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* Available from MIT Press
Timothy G. Mattson, Yun (Helen) He,

and Alice E. Koniges

www.ompcore.com for code samples and the Fortran supplement
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http://www.ompcore.com/

Books about OpenMP

A great book that covers
OpenMP features beyond
OpenMP 2.5
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THE NEXT STEP

Affinity, Accelerators, Tasking, and SIMD

Ruud van der Pas, Eric Stotzer,
and Christian Terboven

USING.OPENMP— -

b3
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Books about OpenMP

/ PROGRAMMING
/\/YOUR GPU WITH

The latest book on OpenMP ...

Released in November 2023. 2 () OPENMP
/ . Performance Portability for GPUs
A book about how to use OpenMP to , A
program a GPU. | (

Tom Deakin and Timothy G. Mattson

’
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GPU programming with OpenMP

» There is much more ... which you can learn about from our book

— Loop is a descriptive construct ... you leave all the details to the runtime.

Always start with Loop plus enter-data/exit-data since often that is all you ’ 'y
need °P v { PROGRAMMING
.+ Y YOUR GPU WITH
— OpenMP includes constructs for detailed control of the GPU so you can do e \ OPE N M P
programing akin to that with CUDA. | do not recommend this. You 7 SR

]
*  Performance Portability for GPUs

maximize portability if you let the runtime system handle mapping code onto
hardware details for you. But if you want to control local memories, you may ! A
have no choice. ; (

Tom Deakin and Timothy G. Mattson

— The interop constructs let you call functions native to a particular GPU (such ”
as BLAS) from inside the OpenMP program. They are a bit complicated to ‘
work with. See our book to learn more.

Learn all the details of GPU programming with
OpenMP (up to version 5.2) . Released in November 2023
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Exercises to play with during consolidation
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Exercise: Pl with tasks

* Go back to the original pi.c program
— Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single

double omp_get wtime()

int omp_get thread _num();
int omp_get num_threads();

« Hint: first create a recursive pi program and verify that it works. Think about the
computation you want to do at the leaves. If you go all the way down to one
iteration per leaf-node, won’t you just swamp the system with tasks?
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Exercise: Traversing linked lists

« Consider the program linked.c
— Traverses a linked list computing a sequence of Fibonacci numbers at each node.

 Parallelize this program selecting from the following list of constructs:
#pragma omp parallel
#pragma omp for
#pragma omp parallel for You saw my solution to this

#pragma omp for reduction(op:list) problem (without using
#pragma omp critical tasks). Try and come up

int omp_get num_threads(); W_ith some additional

_ solutions. There are many
int omp_get thread _num(); ways to do this, so get
double omp_get_wtime(); creative.
schedule(static[,chunk]) or schedule(dynamic[,chunk])

private(), firstprivate(), default(none)

 Hint: Just worry about the while loop that is timed inside main(). You

don’t need to make any changes to the “list functions” 176



