
An Introduction to Parallel Programming with OpenMP
Tim Mattson

An Introduction to me
I’m just a simple kayak instructor

Photo © by Greg Clopton, 2014
2

To support my kayaking habit, I
work as a parallel programmer

Which means I know how to turn
math into lines on a speedup plot

P

S

Outline
• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data Environment

• Irregular Parallelism and Tasks

• NUMA systems and GPUs

• Recap

C$OMP TASKGROUP

4

OpenMP* Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP TASKWAIT

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

#pragma omp target teams distribute parallel for simd

#pragma omp atomic capture

#pragma omp single

OpenMP: An API for Writing Parallel Applications

§A set of compiler directives and library routines for parallel application programmers

§Originally … Greatly simplifies writing multithreaded programs in Fortran, C and C++

§Later versions … supports non-uniform memories, vectorization and GPU programming

#pragma omp atomic seq_cst

The Growth of Complexity in OpenMP

5
The OpenMP specification is so long and complex that few (if any) humans understand the full document

Our goal in 1997 … A simple interface for application programmers

0

100

200

300

400

500

600

1995 2000 2005 2010 2015 2020 2025

Chart Title

1.0

1.0 1.1 2.0

2.5
3.0 3.1

4.0

4.5

5.0*

5.1*

5.2*tr10

2.0

Fortran spec
C/C++ spec
Merged C/C++ and Fortran spec

1995 2000 2005 2010 2015 2020 2025
0

500

600

400

300

200

100

Page Counts … not including front matter, tools-interface, appendices or the index.

Page C
ounts

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.
SPMD pattern: Create threads with a parallel region and split up the work using the number of
threads and the thread ID.

double omp_get_wtime() Speedup and Amdahl's law. False sharing and other performance issues.

setenv OMP_NUM_THREADS N Setting the internal control variable for the default number of threads with an environment
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items

6

OpenMP Basic Definitions: Basic Solution Stack

7

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
W

7

OpenMP Basic Definitions: Basic Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er
H

W

Shared address space (SMP)

. . .

For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case ….
i.e., lots of threads with “equal cost access” to memory 8

9

OpenMP Basic Syntax
• Most of OpenMP happens through compiler directives.

 C and C++ Fortran
Compiler directives

#pragma omp construct [clause [clause]…] !$OMP construct [clause [clause] …]

Example
#pragma omp parallel private(x)
{

}

!$OMP PARALLEL PRIVATE(X)

!$OMP END PARALLEL

Function prototypes and types:
#include <omp.h> use OMP_LIB

• Most OpenMP constructs apply to a “structured block”.
– Structured block: a block of one or more statements with one point of entry at the top and one point of exit at the bottom.
– It’s OK to have an exit() within the structured block.

10

Exercise, Part A: Hello World
Verify that your environment works

• Write a program that prints “hello world”.

#include<stdio.h>
int main()
{

 printf(“ hello ”);
 printf(“ world \n”);

}

11

Exercise, Part B: Hello World
Verify that your OpenMP environment works

• Write a multithreaded program that prints “hello world”.

#include <stdio.h>
int main()
{

 printf(“ hello ”);
 printf(“ world \n”);

}

Switches for compiling and linking

gcc -fopenmp Gnu (Linux, OSX)

cc –qopenmp Intel (Linux@NERSC)

icc -fopenmp Intel (Linux, OSX)

#pragma omp parallel

{

#include <omp.h>

}

12

Solution
A Multi-Threaded “Hello World” Program

• Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>
#include <stdio.h>
int main()
{

#pragma omp parallel
 {

 printf(“ hello ”);
 printf(“ world \n”);
 }
}

Sample Output:
hello hello world

world

hello hello world

world

OpenMP include file

Parallel region with
default number of threads

End of the Parallel region

The statements are interleaved based on how the operating schedules the threads

A brief digression on the terminology of parallel
computing

13

Let’s agree on a few definitions:

• Active task:
– A task that is available to be scheduled for execution. When the task is moving through its sequence of

instructions, we say it is making forward progress

• Fair scheduling:
– When a scheduler gives each active task an equal opportunity for execution.

14

• Computer:
– A machine that transforms input values into

output values.
– Typically, a computer consists of Control,

Arithmetic/Logic, and Memory units.
– The transformation is defined by a stored

program (von Neumann architecture).

• Task:
– A sequence of instructions plus a data

environment. A program is composed of
one or more tasks.

Concurrency vs. Parallelism
• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the
same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element

Concurrency vs. Parallelism

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

In most cases, parallel programs exploit
concurrency in a problem to run tasks on
multiple processing elements

We use Parallelism to:
• Do more work in less time
• Work with larger problems

Programs

Concurrent
Programs

Parallel
Programs If tasks execute in “lock step” they are not

concurrent, but they are still parallel.
Example … a SIMD unit.

• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the
same time.

Outline
• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data Environment

• Irregular Parallelism and Tasks

• NUMA systems and GPUs

• Recap

18

OpenMP Execution model:

Fork-Join Parallelism:
u Initial thread spawns a team of threads as needed.

uParallelism added incrementally until performance goals are met, i.e., the sequential
program evolves into a parallel program.

Parallel Regions

Initial
Thread

A Nested
Parallel
Region

Sequential Parts

19

Thread Creation: Parallel Regions
• You create threads in OpenMP with the parallel construct.
• For example, to create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID = omp_get_thread_num();
 pooh(ID,A);
}

• Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

Thread Creation: Parallel Regions Example

• Each thread executes the
same code redundantly.

double A[1000];
omp_set_num_threads(4);

 #pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID, A);
}

 printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single copy of A is
shared between all

threads.

Threads wait here for all threads to finish before
proceeding (i.e., a barrier)

20

21

Thread creation: How many threads did you actually get?

• Request a number of threads with omp_set_num_threads()

• The number requested may not be the number you actually get.
– An implementation may silently give you fewer threads than you requested.
– Once a team of threads has launched, it will not be reduced.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID = omp_get_thread_num();

 int nthrds = omp_get_num_threads();
 pooh(ID,A);
}

• Each thread calls pooh(ID,A) for ID = 0 to nthrds-1

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain

number of threads

Runtime function to
return actual

number of threads
in the team

22

An Interesting Problem to Play With
Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx = Dx å F(xi) » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a sum of N
rectangles:

Where each rectangle has width Dx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

i = 0

N

23

Serial PI Program

static long num_steps = 100000;
double step;
int main ()
{ double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (int i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

24

Serial PI Program

#include <omp.h>
static long num_steps = 100000;
double step;
int main ()
{ double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
 double tdata = omp_get_wtime();
 for (int i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
 tdata = omp_get_wtime() - tdata;
 printf(“ pi = %f in %f secs\n”,pi, tdata);
}

The library routine
get_omp_wtime()
is used to find the

elapsed “wall
time” for blocks of

code

25

Exercise: the Parallel Pi Program
• Create a parallel version of the pi program using a parallel construct:
 #pragma omp parallel
• Pay close attention to shared versus private variables.
• In addition to a parallel construct, you will need the runtime library routines
– int omp_get_num_threads();
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();

Time in seconds since a fixed point in the past

Thread ID or rank

Number of threads in the team

Request a number of threads in the team

26

Hints: the Parallel Pi Program
• Use a parallel construct:
 #pragma omp parallel

• The challenge is to:
– divide loop iterations between threads (use the thread ID and the number of threads).
– Create an accumulator for each thread to hold partial sums that you can later combine to

generate the global sum.

• In addition to a parallel construct, you will need the runtime library routines
– int omp_set_num_threads();
– int omp_get_num_threads();
– int omp_get_thread_num();
– double omp_get_wtime();

27

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS];
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id,numthrds;
 double x;
 id = omp_get_thread_num();
 numthrds = omp_get_num_threads();
 if (id == 0) nthreads = numthrds;
 for (i=id, sum[id]=0.0;i< num_steps; i=i+numthrds) {
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }
 }
 for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;
}

Example: A simple SPMD* pi program

Promote scalar to an array dimensioned by
number of threads to avoid race condition.

This is a common trick in SPMD programs to
create a cyclic distribution of loop iterations

Only one thread should copy the number of
threads to the global value to make sure
multiple threads writing to the same address
don’t conflict.

*SPMD: Single Program Multiple Data

28

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS];
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id,numthrds, istart, iend;
 double x;
 id = omp_get_thread_num();
 numthrds = omp_get_num_threads();
 istart = id*(num_steps/numthrds); iend=(id+1)*(num_steps/numthrds);
 if(id == (numthrds-1)) iend = num_steps;
 if (id == 0) nthreads = numthrds;
 for (i=istart, sum[id]=0.0;i< iend; i++) {
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }
 }
 for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;
}

Example: A simple SPMD pi program … an alternative solution

This is a common trick in SPMD algorithms …
it’s a blocked distribution with one block per
thread.

SPMD: Single Program Multiple Data

Results*

threads 1st
SPMD*

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

*SPMD: Single Program Multiple Data

Intel compiler (icpc) with default
optimization level (O2) on Apple OS X
10.7.3 with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz and
4 Gbyte DDR3 memory at 1.333 Ghz.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))))"#2)"K)#2/L(3'19))'+&:%()-"K)1&,M<=>5?@ABCDEN9
12(-)6)7.8OH'+&:%(I)#&,512(-19
+,-51(25#&,52/L(3'1H<=>5?@ABCDEI9
!-L34,3)+,- -3L3%%(%
J

"#2)"K)"'K#2/L'19
'+&:%()P9
"')6)+,-54(252/L(3'5#&,HI9
#2/L'1 6)+,-54(25#&,52/L(3'1HI9
";)H"')66)8I)))#2/L(3'1 6)#2/L'19
;+L)H"6"'K)1&,M"'N68.89"*)#&,512(-19)"6"Q#2/L'1I)J

P)6)H"Q8.RIS12(-9
1&,M"'N)Q6)T.8OH7.8QPSPI9

U
U
;+LH"68K)-"68.89"*#2/L(3'19"QQI-")Q6)1&,M"N)S)12(-9

U

29

How do we describe performance
in parallel programs

30

31

Consider performance of parallel programs

Load Data Compute T1 Consume Results Compute TN
…

Timeseq(1) = Tload + N*Ttask + Tconsume

Compute N independent tasks on one processor

Ideally Cut
runtime by ~1/P
(Note: Parallelism
only speeds-up the
concurrent part)

…

Timepar(P) = Tload + (N/P)*Ttask + Tconsume

Compute N independent tasks with P processors

Load Data

Compute T1

Compute TN

Consume Results

Talking about performance

§Speedup: the increased performance
from running on P processors.

!"
!#"

!"
!"#$%

"#$%
!&

'()

*%+=

!!" =!"
n Perfect Linear Speedup: happens when

no parallel overhead and algorithm is
100% parallel.

n Efficiency: How well does your observed
speedup compare to the ideal case? 𝜀(𝑃) =

𝑆(𝑃)
𝑃

Speedups as disinformation

A slide from an Nvidia talk at ATPESC’25 about their quantum computing product

Reported speedups without defining what they were comparing against … included a verbal
comment that this showed if you really care about performance, you must use a GPU

Speedups as disinformation

This was a dual processor CPU system.
The speaker was not allowed to identify

the CPU vendor or the work done to
optimize or even parallelize the CPU code

The parallel code was an Nvidia
software product (highly optimized
CUDA code) running on an Nvidia

GB200 NVL72 with 36 Grace
CPUs (72 ARM cores each) and

72 Blackwell GPUs

List price … $3 Million*

*https://www.datacenterdynamics.com/en/news/lambda-partners-with-pegatron-to-deploy-nvidia-gb200-nvl72-rack/

These Speedups are blatant disinformation… it’s demeaning to show such data.

The sad thing is, the Nvidia product is excellent. In a fair comparison, they’d still come out on top.
Why they need to resort to such misleading statements is baffling.

Amdahl’s Law
• What is the maximum speedup you can expect from a parallel program?

• Approximate the runtime as a part that can be sped up with additional processors and a
part that is fundamentally serial.

!"#$%& '()"
*
+&%,-(./$%&%00"0+&%,-(./!"&(%0*'()" !"##$"$ +=

• If you had an unlimited number of processors:

• If the serial fraction is a and the parallel fraction is (1- a) then the speedup is:

S(P) =
Timeseq

Timepar (P)
=

Timeseq
(α +1−α

P
)*Timeseq

=
1

α +
1−α
P

∞→!

• The maximum possible speedup is:
α
!

=! Amdahl’s
Law

𝑆(𝑃, 𝛼) =
1

𝛼 − 1 − 𝛼𝑃

Amdahl’s Law … It’s not just about the maximum speedup

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Sp
ee

du
p

Number of Processors

Parallelizable fraction of the program

0.999 0.99 0.95 0.9

Serial fraction (𝛂) of the program

0.001 0.01 0.05 0.1

𝑆(𝑃, 𝛼) =
1

𝛼 − 1 − 𝛼𝑃
𝑆(𝑃, 𝛼)

𝑃

So now you should understand my silly introduction slide.

37

We measure our success as parallel
programmers by how close we come
to ideal linear speedup.

A good parallel programmer
always figures out when you
fall off the linear speedup
curve and why that has
occurred.

Internal control variables and how to control the
number of threads in a team

• We’ve used the following construct to control the number of threads. (e.g. to request 12 threads):
– omp_set_num_threads(12)

• What does omp_set_num_threads() actually do?
– It resets an “internal control variable” the system queries to select the default number of threads to

request on subsequent parallel constructs.

• Is there an easier way to change this internal control variable … perhaps one that doesn’t require
re-compilation? Yes.
– When an OpenMP program starts up, it queries an environment variable OMP_NUM_THREADS and

sets the appropriate internal control variable to the value of OMP_NUM_THREADS
– For example, to set the initial, default number of threads to request in OpenMP from my apple laptop

> export OMP_NUM_THREADS=12

38

39

SPMD: Single Program Multiple Data
• Run the same program on P processing elements where P can be arbitrarily large.

MPI programs almost always use this pattern … it is probably the
most commonly used pattern in the history of parallel programming.

• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared
data structures.

Replicate the program.

Add glue code

Break up the data

Outline
• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data Environment

• Irregular Parallelism and Tasks

• NUMA systems and GPUs

• Recap

41

Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

Synchronization is used to impose order
constraints and to protect access to shared data

42

Synchronization: critical

• Mutual exclusion: Only one thread at a time can enter a critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 B = big_SPMD_job(id, nthrds);

 #pragma omp critical
 res += consume (B);

}

Threads wait their turn
– only one thread at a
time calls consume()

43

Synchronization: barrier
• Barrier: a point in a program all threads much reach before any threads are allowed to proceed.
• It is a “stand alone” pragma meaning it is not associated with user code … it is an executable

statement.

double Arr[8], Brr[8]; int numthrds;

omp_set_num_threads(8)

#pragma omp parallel

{ int id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id==0) numthrds = nthrds;

 Arr[id] = big_ugly_calc(id, nthrds);

#pragma omp barrier
 Brr[id] = really_big_and_ugly(id, nthrds, Arr);
}

Threads wait until all
threads hit the barrier.
Then they can go on.

44

Exercise
• In your first Pi program, you probably used an array to create space for each thread to store its partial

sum.

• If array elements happen to share a cache line, this leads to false sharing.
– Non-shared data in the same cache line so updates invalidate the cache line … in essence “sloshing

independent data” back and forth between threads.

• Modify your “pi program” to avoid false sharing due to the partial sum array.
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
omp_set_num_threads();
#pragma omp parallel
#pragma omp critical

You will learn more
about this important

concept in the lecture
on memory

PI Program with False Sharing

*Intel compiler (icpc) with no
optimization on Apple OS X 10.7.3
with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz
and 4 Gbyte DDR3 memory at 1.333
Ghz.

threads 1st
SPMD

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Recall that promoting sum to an array made
the coding easy, but led to false sharing and
poor performance.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))))"#2)"K)#2/L(3'19))'+&:%()-"K)1&,M<=>5?@ABCDEN9
12(-)6)7.8OH'+&:%(I)#&,512(-19
+,-51(25#&,52/L(3'1H<=>5?@ABCDEI9
!-L34,3)+,- -3L3%%(%
J

"#2)"K)"'K#2/L'19
'+&:%()P9
"')6)+,-54(252/L(3'5#&,HI9
#2/L'1 6)+,-54(25#&,52/L(3'1HI9
";)H"')66)8I)))#2/L(3'1 6)#2/L'19
;+L)H"6"'K)1&,M"'N68.89"*)#&,512(-19)"6"Q#2/L'1I)J

P)6)H"Q8.RIS12(-9
1&,M"'N)Q6)T.8OH7.8QPSPI9

U
U
;+LH"68K)-"68.89"*#2/L(3'19"QQI-")Q6)1&,M"N)S)12(-9

U

46

#include <omp.h>
 static long num_steps = 100000; double step;
 #define NUM_THREADS 2
 void main ()
 { int nthreads; double pi=0.0; step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id, nthrds; double x, sum;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;
 for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 #pragma omp critical
 pi += sum * step;
 }
 }

Example: Using a critical section to remove impact of false sharing

Sum goes “out of scope” beyond the parallel region …
so you must sum it in here. Must protect summation
into pi in a critical region so updates don’t conflict

No array, so no false sharing.

Create a scalar local to each
thread to accumulate partial sums.

!"#$%&'()*+,-./0
1232"$)%+#4)#&,512(-1 6)7888889)))))))))'+&:%()12(-9
!'(;"#()<=>5?@ABCDE)F
G+"'),3"#)HI
J))"#2)#2/K(3'19)'+&:%())-"68.89 12(-)6)7.8LH'+&:%(I)#&,512(-19
+,-51(25#&,52/K(3'1H<=>5?@ABCDEI9
!-K34,3)+,- -3K3%%(%
J
"#2)"M)"'M)#2/K'19))))'+&:%()NM)1&,9
"')6)+,-54(252/K(3'5#&,HI9
#2/K'1 6)+,-54(25#&,52/K(3'1HI9
";)H"')66)8I)))#2/K(3'1 6)#2/K'19)))
;+K)H"6"'M)1&,68.89"*)#&,512(-19)"6"O#2/K'1I)J
N)6)H"O8.PIQ12(-9
1&,)O6)R.8LH7.8ONQNI9

S
!-K34,3)+,- $K"2"$3%

-")O6)1&,)Q)12(-9
S
S

Results*: pi program critical section

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3
with a dual core (four HW thread) Intel® CoreTM i5 processor at
1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

SPMD
critical

1 1.86 1.87
2 1.03 1.00
3 1.08 0.68
4 0.97 0.53

47

48

#include <omp.h>
 static long num_steps = 100000; double step;
 #define NUM_THREADS 2
 void main ()
 { int nthreads; double pi=0.0; step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
 #pragma omp parallel
 {
 int i, id, nthrds; double x, sum;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;
 for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 #pragma omp critical
 sum += 4.0/(1.0+x*x);
 }
 }
 }

Example: Using a critical section to remove impact of false sharing

What would happen if you put the
critical section inside the loop?

49

Memory Models …

l Which value of 𝛾 is the one a thread should see at any point in a computation?

l A shared address space is a region of memory visible to the team of threads … multiple threads can read and write
variables in the shared address space.

l Multiple copies of a variable (such as 𝛾) may be present in memory, at various levels of cache, or in registers and they may
ALL have different values.

Shared Memory (DRAM)

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core1

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

50

Memory Models …

l Which value of 𝛾 is the one a thread should see at any point in a computation?

l A shared address space is a region of memory visible to the team of threads … multiple threads can read and write
variables in the shared address space.

l Multiple copies of a variable (such as 𝛾) may be present in memory, at various levels of cache, or in registers and they may
ALL have different values.

Shared Memory (DRAM)

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core1

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

A memory
consistency model

(or “memory model”
for short) provides
the rules needed to

answer this
question.

51

Memory Models …
l The fundamental issue is how do the values of variables across the memory hierarchy interact with

the statements executed by two or more threads?
l Two options:

Shared Memory (DRAM)

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core1

Cache

Control
Unit

Arithmetic
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

!

! !

! !

!

1. Sequential Consistency

- Threads execute and the
associated loads/stores
appear in some order defined
by the semantically allowed
interleaving of program
statements.

- All threads see the same
interleaved order of loads
and stores

2. Relaxed Consistency

- Threads execute and the
associated loads/stores
appear in some order
defined by the semantically
allowed interleaving of
program statements.

- Threads may see
different orders of loads
and stores

Most (if not all) multithreading programming models assume relaxed consistency. Maintaining
sequential consistency across the full program-execution adds too much synchronization overhead.

Memory Models: Happens-before and synchronized-with relations

• Multithreaded execution … concurrency in action
– The compiler doesn’t understand instruction-ordering across threads …

loads/stores to shared memory across threads can expose ambiguous
orders of loads and stores

– Instructions between threads are unordered except when specific ordering
constraints are imposed, i.e., synchronization.

– Synchronization lets us force that some instructions happens-before other
instructions

• Two parts to synchronization:
– A synchronize-with relationship exists at statements in 2 or more threads

at which memory order constraints can be established.
– Memory order: defines the view of loads/stores on either side of a

synchronized-with operations.
52

• Single thread execution:
– Program order ... Loads and stores appear to occur in the order defined

by the program’s semantics. If you can’t observe it, however, compilers
can reorder instructions to maximize performance.

Thread 1Thread 0

synchronize-with

Memory orders defined at the
synchronize-with statements

define happens-before
relationships between

Loads/stores in the black/red
sections of threads 0 and 1.

Use a spin
lock or other

mechanism to
force

read-after-
write

write

read

53

Enforcing Memory Orders: the Flush Operation
• Flush defines a sequence point at which a thread is

guaranteed to see a consistent view of memory*
– Previous read/writes by this thread have completed

and are visible to other threads
– No subsequent read/writes by this thread have

occurred

* This applies to the set of shared variables visible to a thread at the point the flush is encountered. We call this “the flush set”

double A;
A = compute();

#pragma omp flush(A)

 // flush to memory to make sure other
 // threads can see the updated value of A

• A flush on its own, however, is not enough. It only controls memory visibility from the perspective of the thread
calling the flush.

• You must pair it with an operation to create a synchronized-with relation between threads.

• We’ve worked with collective synchronization operations that apply across the full team of threads (critical and
barrier). They both imply the flush so you should NEVER need to call flush explicitly

• You can build custom synchronization protocols applying to any combination of pairs of threads … but that is
seriously advanced multithreaded programming and should be avoided if at all possible

54

Keep it simple … let OpenMP take care of Flushes for you
• A flush operation is implied by OpenMP constructs …
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions

WARNING:
If you find yourself wanting to write code with explicit flushes, stop and get help. It is very difficult to manage

flushes on your own. Even experts often get them wrong.

This is why we defined OpenMP constructs to automatically apply flushes most places where you really need them.

• OpenMP programs that:
• Do not use non-sequentially consistent atomic constructs;
• Do not rely on the accuracy of a false result from omp_test_lock and omp_test_nest_lock; and
• Correctly avoid data races

… behave as though operations on shared variables were simply interleaved in an order consistent
with the order in which they are performed by each thread. The relaxed consistency model is
invisible for such programs, and any explicit flushes in such programs are redundant.

This has not been a detailed
discussion of the full OpenMP

memory model. The goal was to
explain how memory models work
and to understand the subset of
features people commonly use.

Outline
• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data Environment

• Irregular Parallelism and Tasks

• NUMA systems and GPUs

• Recap

56

The Loop Worksharing Construct

• The loop worksharing construct splits up loop iterations among the threads in a team

#pragma omp parallel

{
#pragma omp for
 for (I=0;I<N;I++){
 NEAT_STUFF(I);
 }
}

Loop construct name:

•C/C++: for

•Fortran: do

The loop control index I is made
“private” to each thread by default.

Threads wait here until all
threads are finished with the

parallel loop before any proceed
past the end of the loop

57

Loop Worksharing Construct
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{
 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * (N / Nthrds);
 if (id == Nthrds-1)iend = N;
 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}
}

#pragma omp parallel
#pragma omp for
 for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel region

(SPMD Pattern)

OpenMP parallel region and
a worksharing for construct

58

Combined Parallel/Worksharing Construct

• OpenMP shortcut: Put the “parallel” and the worksharing directive on the same line

double res[MAX]; int i;
#pragma omp parallel
{
 #pragma omp for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }
}

These are equivalent

double res[MAX]; int i;
#pragma omp parallel for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }

59

Working with loops

• Basic approach
– Find compute intensive loops
– Make the loop iterations independent ... So they can safely execute in any order without

loop-carried dependencies
– Place the appropriate OpenMP directive and test

int i, j, A[MAX];
 j = 5;
 for (i=0;i< MAX; i++) {
 j +=2;
 A[i] = big(j);
 }

int i, A[MAX];
 #pragma omp parallel for
 for (i=0;i< MAX; i++) {
 int j = 5 + 2*(i+1);
 A[i] = big(j);
 } Remove loop

carried
dependence

Note: loop index
“i” is private by
default

60

Reduction

• We are combining values into a single accumulation variable (ave) … there is a true dependence
between loop iterations that can’t be trivially removed.

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel programming environments.

double ave=0.0, A[MAX];
 int i;
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

• How do we handle this case?

61

Reduction
• OpenMP reduction clause:

reduction (op : list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy.
– Local copies are reduced into a single value and combined with the original global value.

• The variables in “list” must be shared in the enclosing parallel region.

double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

62

OpenMP: Reduction operands/initial-values
• Many different associative operands can be used with reduction:
• Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
* 1

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0
| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

OpenMP includes user defined reductions
and array-sections as reduction variables

(we just don’t cover those topics here)

63

Exercise: PI with loops

• Go back to the serial pi program and parallelize it with a loop construct
• Your goal is to minimize the number of changes made to the serial program.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();

64

Example: PI with a loop and a reduction
#include <omp.h>
void main ()
{
 long num_steps = 100000;
 double pi, sum = 0.0;
 double step = 1.0/(double) num_steps;

 #pragma omp parallel for reduction(+:sum)
 for (int i=0;i< num_steps; i++){
 double x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

Results*: PI with a loop and a reduction

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

SPMD
critical

PI Loop

1 1.86 1.86 1.87 1.91
2 1.03 1.01 1.00 1.02
3 1.08 0.69 0.68 0.80
4 0.97 0.53 0.53 0.68

65

…. Let’s pause a moment and consider
one of the fundamental issues EVERY
parallel programmer must grapple with

66

67

Load Balancing
• A parallel job isn’t done until the last thread is

finished

• Example: Partition a problem into equal sized
chunks but for work that is unevenly distributed
spatially.
– Thread 2 has MUCH more work. The uneven distribution of

work will limit performance.

• A key part of parallel programming is to design how
you partition the work between threads so every
thread has about the same amount of work. This
topic is referred to as Load Balancing.

0 1 2 3 4
Thread IDs … box height ∝ amount of work

68

Load Balancing
• A parallel job isn’t done until the last thread is finished

• The work in our problem is unevenly distributed spatially.

• A key part of parallel programming is to design how you
partition the work between threads so every thread has
about the same amount of work.

• This topic is referred to as Load Balancing.

• In this case we adjusted the size of each chunk to
equalize the work assigned to each thread.
– Getting the right sized chunks for a variable partitioning (as done

here) can be really difficult. 0 1 2 3 4
Thread IDs … box height ∝ amount of work

69

Load Balancing
• A parallel job isn’t done until the last thread is finished

• An easier path to Load Balancing.
– Over-decompose the problem into small, fine-grained chunks
– Spread the chunks out among the threads (in this case using a cyclic

distribution)
– The work is spread out and statistically, you are likely to get a good

distribution of work

0
1
2
3

Colors mapped to 4 different Threads

70

Load Balancing
• A parallel job isn’t done until the last thread is finished

• An easier path to Load Balancing.
– Over-decompose the problem into small, fine-grained chunks
– Spread the chunks out among the threads (in this case using a cyclic

distribution)
– The work is spread out and statistically, you are likely to get a good

distribution of work

• Vocabulary review
– Load Balancing … giving each thread work sized so all threads

take the same amount of time
– Partitioning or decomposition … breaking up the problem

domain into partitions (or chunks) and assigning different partitions
to different threads.

– Granularity … the size of the block of work. Find grained (small
chunks) vs coarse grained (large chunks)

– Over-decomposition … when you decompose your problem into
partitions such that there are many more partitions than threads to
do the work

0
1
2
3

Colors mapped to 4 different Threads

71

Loop Worksharing Constructs: The schedule clause
• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

• Example:
– #pragma omp for schedule(dynamic, 10)

Schedule Clause When To Use
STATIC Pre-determined and predictable

by the programmer

DYNAMIC Unpredictable, highly variable
work per iteration

Least work at runtime :
scheduling done at
compile-time

Most work at runtime :
complex scheduling
logic used at run-time

72

Loop Worksharing Constructs: The schedule clause
• The schedule clause … most common cases:

#pragma omp parallel for schedule (static)

Int small = 8; // loop iterations, i.e., width of boxes in the figure

#pragma omp parallel for schedule (static, small)

Thread IDs

We’ll finish with loops by looking one
more time at synchronization overhead

73

74

The nowait clause
• Barriers are really expensive. You need to understand when they are implied

and how to skip them when it’s safe to do so.
double A[big], B[big], C[big];

#pragma omp parallel
{
 int id=omp_get_thread_num();
 A[id] = big_calc1(id);
#pragma omp barrier
#pragma omp for
 for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait
 for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
 A[id] = big_calc4(id);
}

implicit barrier at the end
of a parallel region

implicit barrier at the end of a for
worksharing construct

no implicit barrier
due to nowait

Outline
• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data Environment

• Irregular Parallelism and Tasks

• NUMA systems and GPUs

• Recap

76

Data Environment: Default storage attributes

• Shared memory programming model:
–Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called from parallel

regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.

77

double A[10];
 int main() {
 int index[10];
 #pragma omp parallel
 work(index);
 printf(“%d\n”, index[0]);
 }

extern double A[10];
void work(int *index) {
 double temp[10];
 static int count;
 ...
}

Data Sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

78

Data Sharing: Changing storage attributes

• One can selectively change storage attributes for constructs using the
following clauses (note: list is a comma-separated list of variables)

–shared(list)
–private(list)
–firstprivate(list)

• These can be used on parallel and for constructs … other than shared
which can only be used on a parallel construct

• Force the programmer to explicitly define storage attributes
–default (none) default() can only be used

on parallel constructs

79

Data Sharing: Private clause

int N = 1000;
extern void init_arrays(int N, double *A, double *B, double *C);

void example () {
 int i, j;
 double A[N][N], B[N][N], C[N][N];
 init_arrays(N, *A, *B, *C);

 #pragma omp parallel for private(j)
 for (i = 0; i < 1000; i++)
 for(j = 0; j<1000; j++)
 C[i][j] = A[i][j] + B[i][j];
}

• private(var) creates a new local copy of var for each thread.

OpenMP makes the loop
control index on the
parallel loop (i) private by
default … but not for the
second loop (j)

incr = 0;
#pragma omp parallel for private(incr)
for (i = 0; i <= MAX; i++) {
 if ((i%2)==0) incr++;
 A[i] = incr;
}
printf(“ incr= %d\n”, incr);

80

Data Sharing: Private clause

• private(var) creates a new local copy of var for each thread.
– The value of the private copies is uninitialized
– The value of the original variable is unchanged after the region

incr is 0 here

When you need
to refer to the

variable incr that
exists prior to the
construct, we call

it the original
variable.

incr was not
initialized

Firstprivate clause

• Variables initialized from a shared variable
• C++ objects are copy-constructed

81

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {
 if ((i%2)==0) incr++;
 A[i] = incr;
}

Each thread gets its own copy of
incr with an initial value of 0

81

82

Data sharing:
A data environment test
• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C private to each thread or shared inside the parallel region?
• What are their initial values inside and values after the parallel region?

variables: A = 1,B = 1, C = 1
#pragma omp parallel private(B) firstprivate(C)

Inside this parallel region ...
l “A” is shared by all threads; equals 1
l “B” and “C” are private to each thread.

– B’s initial value is undefined
– C’s initial value equals 1

Following the parallel region ...
l B and C revert to their original values of 1
l A is either 1 or the value it was set to inside the parallel region

83

Exercise: Mandelbrot set area

• The supplied program (mandel.c)
computes the area of a Mandelbrot set.

• The program has been parallelized with
OpenMP, but we were lazy and didn’t do it
right.

• Find and fix the errors.

• Once you have a working version, try to
optimize the program.

This exercise come from Mark Bull of EPCC (at University of Edinburgh)

Image Source: Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

The Mandelbrot set … The points, c, for which the
following iterative map converges

𝑧!"# = 𝑧!$ + 𝑐

With zn and c as complex numbers and z0 = 0.

The Mandelbrot Set Area Program (original code)
#include <omp.h>
define NPOINTS 1000
define MXITR 1000
void testpoint(double, double);
int numoutside = 0;
int main(){
 int i, j;
 int num=0;
 double C_real, C_imag;
 double area, error, eps = 1.0e-5;
#pragma omp parallel for private(eps)
 for (i=0; i<NPOINTS; i++) {
 for (j=0; j<NPOINTS; j++) {
 C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
 C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
 testpoint(C_real, C_imag);
 }
 }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
 error=area/(double)NPOINTS;
}

84

void testpoint(double C_real, double C_imag){
 double zr, zi;
 int iter;
 double temp;

 zr=C_real; zi=C_imag;
 for (iter=0; iter<MXITR; iter++){
 temp = (zr*zr)-(zi*zi)+C_real;
 zi = zr*zi*2+C_imag;
 zr = temp;
 if ((zr*zr+zi*zi)>4.0) {
 numoutside++;
 break; // exit the loop
 }
 }
 return 0;
}

The Mandelbrot Set Area Program
#include <omp.h>
define NPOINTS 1000
define MXITR 1000
void testpoint(double, double);
Int numoutside = 0;
int main(){
 int i, j;
 int num=0;
 double C_real, C_imag;
 double area, error, eps = 1.0e-5;
#pragma omp parallel for private(j, C_real, C_imag)
 for (i=0; i<NPOINTS; i++) {
 for (j=0; j<NPOINTS; j++) {
 C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
 C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
 testpoint(C_real, C_imag);
 }
 }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
 error=area/(double)NPOINTS;
}

85

void testpoint(double C_real, double C_imag){
 double zr, zi;
 int iter;
 double temp;

 zr=C_real; zi=C_imag;
 for (iter=0; iter<MXITR; iter++){
 temp = (zr*zr)-(zi*zi)+C_real;
 zi = zr*zi*2+C_imag;
 zr = temp;
 if ((zr*zr+zi*zi)>4.0) {
 #pragma omp critical
 numoutside++;
 break; // exit the loop
 }
 }
 return 0;
}

• eps was not initialized
• Data race on j, C_real, and C_imag
• Protect updates of numoutside

86

Data Sharing: Default clause
• default(none): Forces you to define the storage attributes for variables that

appear inside the static extent of the construct … if you fail the compiler will complain.
Good programming practice!

• You can put the default clause on parallel and parallel + workshare constructs.

The full OpenMP specification has other versions of the default clause, but they
are not used very often so we skip them in the common core

#include <omp.h>
int main()
{
 int i, j=5; double x=0.0, y=42.0;
 #pragma omp parallel for default(none) reduction(*:x)
 for (i=0;i<N;i++){
 for(j=0; j<3; j++)
 x+= foobar(i, j, y);
 }
 printf(“ x is %f\n”,(float)x);
}

The static
extent is the
code in the

compilation unit
that contains
the construct.

The compiler would
complain about j and y,
which is important since

you don’t want j to be
shared

Outline
• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data Environment

• Irregular Parallelism and Tasks

• NUMA systems and GPUs

• Recap

89

Irregular Parallelism
• Let’s call a problem “irregular” when one or both of the following hold:

– Data Structures are sparse or involve indirect memory references
– Control structures are not basic for-loops

• Example: Traversing Linked lists:

• Using what we’ve learned so far, traversing a linked list in parallel using OpenMP
is difficult.

p = listhead ;
while (p) {
 process(p);
 p=p->next;
}

90

Exercise: Traversing linked lists
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the while loop that is timed inside main(). You
don’t need to make any changes to the “list functions”

91

Linked Lists with OpenMP: My solution
• See the file solutions/linked_notasks.c

while (p != NULL) {
 p = p->next;
 count++;
 }
 struct node *parr = (struct node*) malloc(count*sizeof(struct node));
 p = head;
 for(i=0; i<count; i++) {
 parr[i] = p;
 p = p->next;
 }
 #pragma omp parallel
 {
 #pragma omp for schedule(static,1)
 for(i=0; i<count; i++)
 processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

92

Linked Lists with OpenMP (without tasks)

while (p != NULL) {
 p = p->next;
 count++;
 }
 struct node *parr = (struct node*) malloc(count*sizeof(struct node));
 p = head;
 for(i=0; i<count; i++) {
 parr[i] = p;
 p = p->next;
 }
 #pragma omp parallel
 {
 #pragma omp for schedule(static,1)
 for(i=0; i<count; i++)
 processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

Number of
threads

Schedule
Default Static,1

1 48 seconds 45 seconds

2 39 seconds 28 seconds

With so much
code to add
and three

passes through
the data, this is

really ugly.

There has got
to be a better
way to do this

• See the file solutions/linked_notasks.c

What are Tasks?

• Tasks are independent units of work

• Tasks are composed of:
– code to execute
– data to compute with

• Threads are assigned to perform the work of each
task.
– The thread that encounters the task construct may execute

the task immediately.
– The threads may defer execution until later

Serial Parallel

96

What are Tasks?

• The task construct includes a structured block of code

• Inside a parallel region, a thread encountering a task
construct will package up the code block and its data
for execution

• Tasks can be nested: i.e., a task may itself generate
tasks.

Serial Parallel

A common Pattern is to have one thread create the tasks while the
other threads wait at a barrier and execute the tasks

97

98

Single Worksharing Construct

• The single construct denotes a block of code that is executed by only one thread
(not necessarily the primary* thread).

• A barrier is implied at the end of the single block (can remove the barrier with a
nowait clause).

#pragma omp parallel
{
 do_many_things();
 #pragma omp single
 { exchange_boundaries(); }
 do_many_other_things();

}

*This used to be called the “master thread”. The term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.

Task Directive

#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp task
 billy();
 }
}

One Thread
packages tasks

Create some threads

Tasks executed by
some thread in some
order

All tasks complete before this barrier is released

#pragma omp task [clauses]

 structured-block

99

Exercise: Simple tasks
• Write a program using tasks that will “randomly” generate one of two strings:

– “I think “ “race” “car” “s are fun”
– “I think “ “car” “race” “s are fun”

• Hint: use tasks to print the indeterminate part of the output (i.e. the “race” or “car” parts).

• This is called a “Race Condition”. It occurs when the result of a program depends on
how the OS schedules the threads.

• NOTE: A “data race” is when threads “race to update a shared variable”. They produce
race conditions. Programs containing data races are undefined (in OpenMP but also
ANSI standards C++’11 and beyond).

#pragma omp parallel
#pragma omp task
#pragma omp single

100This exercise comes from Ruud van der Pas of Oracle

Racey Cars: Solution
#include <stdio.h>
#include <omp.h>
int main()
{ printf("I think");

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
printf(" car");

#pragma omp task
printf(" race");

}
}
printf("s");
printf(" are fun!\n");

} 101

Data Scoping with Tasks
• Variables can be shared, private or firstprivate with respect to task

• These concepts are a little bit different compared with threads:
– If a variable is shared on a task construct, the references to it inside the construct

are to the storage with that name at the point where the task was encountered

– If a variable is private on a task construct, the references to it inside the construct
are to new uninitialized storage that is created when the task is executed

– If a variable is firstprivate on a construct, the references to it inside the construct are
to new storage that is created and initialized with the value of the existing storage of
that name when the task is encountered

102 102

103

Data Scoping Defaults
• The behavior you want for tasks is usually firstprivate, because the task may not be

executed until later (and variables may have gone out of scope)
– Variables that are private when the task construct is encountered are firstprivate by default

• Variables that are shared in all constructs starting from the innermost enclosing parallel
construct are shared by default

#pragma omp parallel shared(A) private(B)
{
 ...
#pragma omp task
 {
 int C;
 compute(A, B, C);
 }
}

A is shared
B is firstprivate
C is private

103

104

Exercise: Traversing linked lists
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp single
#pragma omp task
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
private(), firstprivate()

• Hint: Just worry about the contents of main(). You
don’t need to make any changes to the “list functions”

105

Parallel Linked List Traversal
#pragma omp parallel
{
 #pragma omp single
 {
 p = listhead ;
 while (p) {
 #pragma omp task firstprivate(p)
 {
 process (p);
 }
 p=next (p) ;
 }
 }
}

makes a copy of p
when the task is
packaged

Only one thread
packages tasks

105

106

When/Where are Tasks Complete?
• At thread barriers (explicit or implicit)

– all tasks generated inside a region must complete at the next barrier encountered by the threads
in that region. Common examples:
– Tasks generated inside a single construct: all tasks complete before exiting the barrier on the

single.
– Tasks generated inside a parallel region: all tasks complete before exiting the barrier at the end of

the parallel region.

• At taskwait directive
– i.e. Wait until all tasks defined in the current task have completed.

#pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to “descendants” .

106

Example

107

#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp taskwait
 #pragma omp task
 billy();
 }
}

fred() and daisy()
must complete before
billy() starts, but
this does not include
tasks created inside
fred() and daisy()

All tasks including those created
inside fred() and daisy() must
complete before exiting this barrier

107

Example

108

#pragma omp parallel
{
 #pragma omp single nowait
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp taskwait
 #pragma omp task
 billy();
 }
}

The barrier at the end of the
single is expensive and not
needed since you get the
barrier at the end of the
parallel region. So use
nowait to turn it off.

All tasks including those created
inside fred() and daisy() must
complete before exiting this barrier

108

Example: Fibonacci numbers

• Fn = Fn-1 + Fn-2

• Inefficient O(2n) recursive
implementation!

int fib (int n)
{
 int x,y;
 if (n < 2) return n;

 x = fib(n-1);
 y = fib (n-2);
 return (x+y);
}

int main()
{
 int NW = 5000;
 fib(NW);
}

109

Parallel Fibonacci

110

• Binary tree of tasks

• Traversed using a recursive
function

• A task cannot complete until all
tasks below it in the tree are
complete (enforced with taskwait)

• x,y are local, and so by default
they are private to current task

– must be shared on child tasks so they
don’t create their own firstprivate
copies at this level!

int fib (int n)
{ int x,y;
 if (n < 2) return n;

#pragma omp task shared(x)
 x = fib(n-1);
#pragma omp task shared(y)
 y = fib (n-2);
#pragma omp taskwait
 return (x+y);
}

Int main()
{ int NW = 5000;
 #pragma omp parallel
 {
 #pragma omp single
 fib(NW);
 }
} 110

Divide and Conquer

• Split the problem into smaller sub-problems; continue until the sub-problems can be
solved directly

n 3 Options for parallelism:
¨ Do work as you split

into sub-problems
¨ Do work only at the

leaves
¨ Do work as you

recombine

subproblem

subsolution

subproblem subproblem

problem

solution

subsolution subsolution

subproblem

subsolution

subproblem subproblem

subsolution subsolution

merge

merge merge

split

splitsplit

solve solvesolvesolve

111

112

Exercise: PI with tasks

• Go back to the original pi.c program
– Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

• Hint: first create a recursive pi program and verify that it works. Think about the
computation you want to do at the leaves. If you go all the way down to one
iteration per leaf-node, won’t you just swamp the system with tasks?

Results*: Pi with tasks

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st SPMD SPMD
critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

114

115

Using Tasks

• Don’t use tasks for things already well supported by OpenMP
–e.g. standard do/for loops
– the overhead of using tasks is greater

• Don’t expect miracles from the runtime
–best results usually obtained where the user controls the number

and granularity of tasks

115

Outline
• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data Environment

• Irregular Parallelism and Tasks

• NUMA systems and GPUs

• Recap

The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for the application programmers more versed in their area

of science than computer science.

• The complexity has grown considerably over the years!

Supports general
multithreading, but
the emphasis was
on parallel loops

Tasks added to OpenMP ...
supports irregular parallelism

Beyond the common
core with NUMA and

GPU systems

Target constructs added
to OpenMP ... supports
host-device model

Affinity and Places added
to handle NUMA systems

NUMA: non-uniform
memory architecture

The comnon core …
focused on SMP

systems

SMP: symmetric multiprocessing

OpenMP basic definitions: the solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
ar

d
w

ar
e

NUMA Systems: You must optimize code for their complex memory subsystems

119

• A floating-point operation takes O(~1 ns).

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$D
D

R
D

D
R

D
D

R
D

D
RPC

Ie

PC
Ie

Q
PI

Q
PI

Q
PI

Q
PI

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

Socket 0 Socket 1

ns: nanosecond

- L1 Cache ~1.5 ns
- L2 Cache reference ~5 ns

- L3 Cache reference ~25 ns
- Near memory DRAM access ~100ns

- Near memory DRAM access ~100ns
- Far memory DRAM access ~200 ns

• The key to performance is to minimize memory movement …. get the memory movement right and the “rest” is easy

Dual Socket node with Intel® XeonTM E5-2698v3 CPUs

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Ca
ch

e
Co

he
re

nt
 In

te
rc

on
ne

ct

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

Example: use all available memory
• Stream memory bandwidth benchmark running on a two socket Intel® XeonTM X5675 with 12 threads on 12 cores

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Ca
ch

e
Co

he
re

nt
 In

te
rc

on
ne

ct

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

A[0,N-1]

B[0,N-1]

C[0,N-1]

A[0,(N/2)-1]

B[0,(N/2)-1]

C[0,(N/2)-1]

A[N/2,N-1]

B[N/2,N-1]

C[N/2,N-1]

Memory Memory

Memory Memory

Based on content from Christian Terboven (RWTH/AACHEN) and Michael Klemm (OpenMP)

copy scale add triad

18.8
 GB/s

18.5
 GB/s

18.1
 GB/s

18.2
 GB/s

copy scale add triad

41.3
GB/s

39.3
GB/s

40.3
GB/s

40.4
GB/s

3 arrays in one NUMA domain

Arrays split between both NUMA
domains

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Ca
ch

e
Co

he
re

nt
 In

te
rc

on
ne

ct

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

Example: use all available memory
• Stream memory bandwidth benchmark running on a two socket Intel® XeonTM X5675 with 12 threads on 12 cores

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Ca
ch

e
Co

he
re

nt
 In

te
rc

on
ne

ct

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

A[0,N-1]

B[0,N-1]

C[0,N-1]

A[0,(N/2)-1]

B[0,(N/2)-1]

C[0,(N/2)-1]

A[N/2,N-1]

B[N/2,N-1]

C[N/2,N-1]

Memory Memory

Memory Memory

Based on content from Christian Terboven (RWTH/AACHEN) and Michael Klemm (OpenMP)

copy scale add triad

18.8
 GB/s

18.5
 GB/s

18.1
 GB/s

18.2
 GB/s

copy scale add triad

41.3
GB/s

39.3
GB/s

40.3
GB/s

40.4
GB/s

3 arrays in one NUMA domain

Arrays split between both NUMA
domains

But how did we make sure we got one thread per core?

How do you control the how threads are mapped onto cores/hardware-
threads/sockets?

You can fill all the cores in the node and disable simultaneous
multithreading (to enable the multiple hardware threads per core) but you
usually cannot control SMT settings on a node … and sometimes on large

scale nodes, there are more cores than you need.

NUMA nodes and the places we can put threads

122

• OpenMP defines the concept of places on a NUMA node where threads can execute.

• The idea is to map the OS defined virtual cores onto places visible to OpenMP for threads assignment

• The first step is to understand the OS defined virtual cores (also known as virtual processing units or PUs)

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$D
D

R
D

D
R

D
D

R
D

D
RPC

Ie

PC
Ie

Q
PI

Q
PI

Q
PI

Q
PI

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

Socket 0 Socket 1

Discover the OS view of virtual cores

Machine (126GB total)

NUMANode P#0 (63GB)

Package P#0

L3 (40MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#32

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#33

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#34

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#35

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

PU P#36

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#5

PU P#37

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#6

PU P#38

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#7

PU P#39

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#8

PU P#40

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#9

PU P#41

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#10

PU P#42

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#11

PU P#43

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#12

PU P#44

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#13

PU P#13

PU P#45

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#14

PU P#14

PU P#46

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#15

PU P#15

PU P#47

NUMANode P#1 (63GB)

Package P#1

L3 (40MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#16

PU P#48

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#17

PU P#49

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#18

PU P#50

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#19

PU P#51

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#20

PU P#52

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#21

PU P#53

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#22

PU P#54

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#23

PU P#55

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#24

PU P#56

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#25

PU P#57

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#26

PU P#58

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#27

PU P#59

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#28

PU P#60

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#13

PU P#29

PU P#61

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#14

PU P#30

PU P#62

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#15

PU P#31

PU P#63

• Portable Hardware Locality tools …. hwloc-ls, lstopo, Numactl and others
depending on the system. Generates text or graphical output depending on
how the tools are configured on your system.

Graphical output for a dual Socket node with Intel® XeonTM E5-2698v3 CPUs

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

31 63623061296028

DD
R

DD
R

DD
R

DD
R

24 56572558265927

23 55542253215220

16 48491750185119

PC
Ie

PC
Ie

Q
PI

Q
PI

Q
PI

Q
PI

3 35342331320

4 36375386397

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

11 434210419408

12 44421346144715

Socket 0 Socket 1

PU: processor unit. The smallest physical execution unit that hwloc recognizes.
Based on content from
Yun (Helen) He from NERSC)

Using OMP_PLACES to select where to run code
• After using a tool to learn the logical core IDs

(processor units or PUs) use environment
variables to define where threads can be
scheduled to execute.

124

> export OMP_PLACES=“{0, 3, 15, 12, 19, 16, 28, 31}”
> export NUM_THREADS= 6

#pragma omp parallel
{
 // do a bunch of cool stuff

}

Using OMP_PLACES to select where to run code
• After using a tool to learn the logical core IDs

(processor units or PUs) use environment
variables to define where threads can be
scheduled to execute.

125

> export OMP_PLACES=“{0, 3, 15, 12, 19, 16, 28, 31}”
> export NUM_THREADS= 6

#pragma omp parallel
{
 // do a bunch of cool stuff

}

Programmers can use OMP_PLACES for detailed control over the execution-
units threads utilize. BUT …

• The rules for mapping onto physical execution units are complicated.
• PLACES expressed as numbers is non-portable

There has to be an easier and more portable way to describe places

Hardware Abstraction: OMP_PLACES

● OMP_PLACES environment variable
○ controls thread allocation
○ defines a series of places to which the threads are assigned

● It can be an abstract name or a specific list
○ threads: each place corresponds to a single hardware thread
○ cores: each place corresponds to a single core (which may have one or more

hardware threads)
○ sockets: each place corresponds to a single socket (consisting of one or more cores)
○ a list with explicit place values of CPU ids, such as:

■ export OMP_PLACES=“ {0:4:2},{1:4:2}” (equivalent to “{0,2,4,6},{1,3,5,7}”)

● Examples:
○ export OMP_PLACES=threads
○ export OMP_PLACES=cores

Thread Affinity … mapping threads to places

127

Thread affinity to places: OMP_PROC_BIND
● Controls thread affinity within and between OpenMP places
● Allowed values:

○ true: the runtime will not move threads around between processors
○ false: the runtime may move threads around between processors
○ close: bind threads close to the primary* thread
○ spread: bind threads as evenly distributed as possible (i.e., spread them out)
○ primary: bind threads to the same place as the primary thread

● The values primary*, close, and spread imply the value true

Examples:
export OMP_PROC_BIND=spread

*Primary thread: this is the thread with ID=0 that encountered the parallel construct and created the team of threads

Thread affinity to places: OMP_PROC_BIND
● Controls thread affinity within and between OpenMP places
● Allowed values:

○ true: the runtime will not move threads around between processors
○ false: the runtime may move threads around between processors
○ close: bind threads close to the primary* thread
○ spread: bind threads as evenly distributed (spreaded) as possible
○ primary: bind threads to the same place as the primary thread

● The values primary*, close, and spread imply the value true

Example … using clauses on a parallel construct:
#pragma omp parallel num_threads(4) proc_bind(spread)

*Primary thread: this is the thread with ID=0 that encountered the parallel construct and created the team of threads

Consider 4 cores total, 2 hardware threads per core,
4 OpenMP threads

● none: no affinity setting

● close: Bind threads as close to each other as possible

● spread: Bind threads as far apart as possible

● primary: bind threads to the same place as the primary thread

Examples: OMP_PROC_BIND

OMP_PLACES={0,1},{2,3},{4,5},{6,7}

We define places explicitly with the IDs of the OS
virtual cores (the PUs).

We do not control where the initial thread is placed.
We will assume it is placed on HT1 or Core 0.

For this example, we have 4 place partitions.

With close, threads placed in consecutive
locations

With spread, threads placed in first place of
each partition

PU: processor unit. The smallest physical execution unit that hwloc recognizes.

Node Core 0 Core 1 Core 2 Core 3

HT0 HT1 HT0 HT1 HT0 HT1 HT0 HT1

PU 0 PU 1 PU 2 PU 3 PU 4 PU 5 PU 6 PU 7

Thread 0 1 2 3

Node Core 0 Core 1 Core 2 Core 3

HT0 HT1 HT0 HT1 HT0 HT1 HT0 HT1

PU 0 PU 1 PU 2 PU 3 PU 4 PU 5 PU 6 PU 7

Thread 0 1 2 3

OMP_PROC_BIND Choices for STREAM Benchmark
OMP_NUM_THREADS=32
OMP_PLACES=threads

OMP_PROC_BIND=close
Threads 0 to 31 bind to cores
(0,32),(1,33),(2,34),…(15,47). All threads are in the
first socket. The second socket is idle. Not optimal.

OMP_PROC_BIND=spread
Threads 0 to 31 bind to cores 0,1,2,… to 31. Both
sockets and memory are used to maximize memory
bandwidth.

Blue: OMP_PROC_BIND=close
Red: OMP_PROC_BIND=spread
Both with First Touch

Stream is a well known memory bandwidth benchmark
based on simple vector operations on huge vectors

Threads beyond 32 land in
the second NUMA domain

Based on content from Yun (Helen) He from NERSC)

Aligning memory to threads … First touch

132

Memory Affinity: Exploiting “First Touch” page mapping policy

Red: step 1.1 + step 2. Memory from Numa Domain 0 only
Blue: step 1.2 + step 2. Memory used from both NUMA domains

Step 1.1 Initialization by primary thread only
 for (j=0; j<VectorSize; j++) {
 a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

 Step 1.2 Initialization by all threads
 #pragma omp parallel for
 for (j=0; j<VectorSize; j++) {
 a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

• The OS maps pages of memory based on a first touch policy.

• Hence, Affinity to memory is not defined when memory is
allocated … it is defined when the memory is initialized.

• The result is memory is local to the thread which initializes it.

OMP_PLACES=threads
OMP_PROC_BIND=close

A dual Socket node with Intel® XeonTM E5-2698v3 CPUs

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

31 63623061296028

DD
R

DD
R

DD
R

DD
R

24 56572558265927

23 55542253215220

16 48491750185119

PC
Ie

PC
Ie

Q
PI

Q
PI

Q
PI

Q
PI

3 35342331320

4 36375386397

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

11 434210419408

12 44421346144715

Socket 0 Socket 1

Step 2 Compute
 #pragma omp parallel for
 for (j=0; j<VectorSize; j++)
 a[j]=b[j]+d*c[j];

Numa
Domain 0

Numa
Domain 1

M
em

or
y

1

M
em

or
y

0

Based on content from Yun (Helen) He from NERSC)

Example: working with the First Touch Policy

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Ca
ch

e
Co

he
re

nt
 In

te
rc

on
ne

ct

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

Example: use all available memory
• Stream memory bandwidth benchmark running on a two socket Intel® XeonTM X5675 with 12 threads on 12 cores

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0 HT1

$L2 unified

$L1 D $L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Backend

HT0HT1

$L2 unified

$L1 D$L1 I

$L3 Tile

Ca
ch

e
Co

he
re

nt
 In

te
rc

on
ne

ct

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

A[0,N-1]

B[0,N-1]

C[0,N-1]

A[0,(N/2)-1]

B[0,(N/2)-1]

C[0,(N/2)-1]

A[N/2,N-1]

B[N/2,N-1]

C[N/2,N-1]

Memory Memory

Memory Memory

Based on content from Christian Terboven (RWTH/AACHEN) and Michael Klemm (OpenMP)

copy scale add triad

18.8
 GB/s

18.5
 GB/s

18.1
 GB/s

18.2
 GB/s

copy scale add triad

41.3
GB/s

39.3
GB/s

40.3
GB/s

40.4
GB/s

3 arrays in one NUMA domain

Arrays split between both NUMA
domains

Rember this slide?

Arrays A, B, and C
initialized on

primary thread

Arrays A, B, and C
initialized in parallel

But its not just any “in parallel”. You want to initialize the arrays with the same “parallel
for schedule” that will be used when the threads do the computations with A, B, and C

Nested parallelism

135

Process and Thread Affinity in Nested OpenMP

export OMP_MAX_ACTIVE_LEVELS=2
export OMP_NUM_THREADS=4,4
export OMP_PLACES=cores
export OMP_PROC_BIND=spread,close
./a.out

spread

close

Running on a system with 2 sockets, 4 cores per socket, 4 hardware-threads per core
#pragma omp parallel
 #pragma omp parallel

initial

Consider a
program with

nested parallel
regions

Cyclic distribution between “close” cores Distribution across four hardware threads

export OMP_MAX_ACTIVE_LEVELS=2
export OMP_NUM_THREADS=4,4
export OMP_PLACES=threads
export OMP_PROC_BIND=spread,close
./a.out

spread

close

initial

Socket 0 Socket 0 Socket 1Socket 1

Based on content from Yun (Helen) He from NERSC)

Wrapping up our discussion of taking NUMA
features of a system into account in your

multithreaded programs …

137

Getting the affinity right can have serious impacts on performance
Application Benchmark Performance for a number of benchmarks at NERSC

Lower is better

Results running on the Cori system at
NERSE which has dual Socket nodes with

Intel® XeonTM E5-2698v3 CPUs

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

L3$ L3$ L3$ L3$

31 63623061296028

DD
R

DD
R

DD
R

DD
R

24 56572558265927

23 55542253215220

16 48491750185119

PC
Ie

PC
Ie

Q
PI

Q
PI

Q
PI

Q
PI

3 35342331320

4 36375386397

sw
itc
h

sw
itc
h

sw
itc
h

sw
itc
h

11 434210419408

12 44421346144715

Socket 0 Socket 1

Based on content from Yun (Helen) He from NERSC (National Energy Research Supercomputing Center)

Finding the best strategy for thread affinity
• Experiment to find the best combinations of OMP_PLACES and OMP_PROC_BIND.
– Using the environment variables makes it easy to try many options

• The best approach depends on the system but also on the features of an application
– Putting threads for apart … on different sockets
– May improve aggregate memory bandwidth available to an application
– May improve combined cache size for the application
– May increase synchronization overhead

– Putting threads close together … on adjacent cores that may share some caches
– May reduce synchronization overhead
– May decrease memory bandwidth and total cache size

• Vendors have their own constructs for controlling NUMA features of a system.
– Avoid vendor-specific constructs if you can … use portable OMP_PLACES and OMP_PROC_BIND

139

Introduction to GPU programming

140

A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

141

The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c)
 // and fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

142

Assume a GPU with
unified shared memory

… allocate on host,
visible on device too

int main() {
 int N = . . . ;
 float *a, *b, *c;

 a* =(float *) malloc(N * sizeof(float));

 // ... allocate other arrays (b and c)
 // and fill with data

 for (int i=0;i<N; i++)
 c[i] = a[i] + b[i];

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA

How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

143

// Compute sum of order-N matrices: C = A + B
void __global__
matAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;
 if (i < N && j<N) c[i][j] == a[i][j] + b[i][j];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c)
 // and fill with data

 // define threadBlocks and the Grid
 dim3 dimBlock(4,4);
 dim3 dimGrid(4,4);

 // Launch kernel on Grid
 matAdd <<< dimGrid,dimBlock>>> (a, b, c, N);
}

1. Write kernel code for the
scalar work-items 2. Map work-items onto an

N dim index space.
4. Run on hardware

designed around the
same SIMT

execution model

3. Map data structures
onto the same index

spaceThis is CUDA code

144

SIMT: One instruction stream maps onto many Processing Elements
• SIMT model: Individual scalar instruction streams are grouped together for SIMD execution on hardware

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

ld x
mul a
ld y
add
st y

A stream of
Scalar

instructions
from a single

work-item

set of work-items executing together: a warp
(analogous to the width of a CPU SIMD unit)

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st ySIMD execution scheduled
across a fixed number of

Processing Elements

GPU nomenclature is really messed up. (sorry about that … we tried to unify around OpenCL but failed).

Instruction stream at finest grain Work-item, CUDA Thread

Blocks for scheduling work-items work-group, thread block

Execution width for work-items Subgroup, warp

Finest grained processing element (PE) in a GPU SIMD Lane, Processing Element, CUDA Core

Block of PEs driven by a single Instruction sequencer multithreaded SIMD processor, compute unit, Streaming multiprocessor

These names are particularly awful
since they conflict with established

names from CPU Computing.

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD
processor

Computer Architecture: A Quantitative Approach, John L. Hennessy and David A. Patterson.

SIMD
Lane

Processing
Element

CUDA
Core≡ ≡

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

Enqueued for
execution

Mapped onto
threads for
execution

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

CPU/GPU execution models

For a CPU, the
threads are all
active and able

to make forward
progress.

For a GPU, any
given work-group

might be in the
queue waiting to

execute.

Programming a GPU with OpenMP

Running code on the GPU:
The target construct and default data movement

Host thread
Generating Task

Initial task

Target task

#pragma omp target
{
 target region,
can use A, B and N

}

Device Initial
thread

Host thread
waits for the

task region to
complete

float A[N], B[N]; A, B and N
mapped to the

device

the arrays
A and B

mapped back to
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and statically allocated
arrays are moved onto the device

by default before execution

Only the statically allocated arrays
are moved back to the host after

the target region completes

150

Default Data Sharing: example
int main(void) {
 int N = 1024;
 double A[N], B[N];

 #pragma omp target
 {

 for (int ii = 0; ii < N; ++ii) {

 A[ii] = A[ii] + B[ii];

 }

 } // end of target region
}

1. Variables created in host
memory.

2. Scalar N and stack arrays
A and B are copied to device

memory. Execution
transferred to device.

3. ii is private on the device
as it’s declared within the

target region

4. Execution on the device.

5. stack arrays A and B are
copied from device memory

back to the host. Host
resumes execution.

151

Now let’s run code in parallel on the device
int main(void) {
 int N = 1024;
 double A[N], B[N];

 #pragma omp target
 {
 #pragma omp loop
 for (int ii = 0; ii < N; ++ii) {

 A[ii] = A[ii] + B[ii];

 }

 } // end of target region
}

The loop construct tells the compiler:
“this loop will execute correctly if

the loop iterations run in any order.
You can safely run them

concurrently. And the loop-body
doesn’t contain any OpenMP

constructs. So do whatever you
can to make the code run fast”

152

The loop construct is a declarative construct. You
tell the compiler what you want done but you DO
NOT tell it how to “do it”. This is new for OpenMP

Solution: Simple vector add in OpenMP on GPU
int main()
{
 float a[N], b[N], c[N], res[N];
 int err=0;

 // fill the arrays
 #pragma omp parallel for
 for (int i=0; i<N; i++){

 a[i] = (float)i;
 b[i] = 2.0*(float)i;
 c[i] = 0.0;
 res[i] = i + 2*i;
 }

 // add two vectors
 #pragma omp target

 #pragma omp loop

 for (int i=0; i<N; i++){
 c[i] = a[i] + b[i];
 }

// test results
#pragma omp parallel for reduction(+:err)
for(int i=0;i<N;i++){

 float val = c[i] - res[i];
 val = val*val;
 if(val>TOL) err++;
}

 printf("vectors added with %d errors\n", err);
return 0;

}

No single processor is best at everything
• The idea that you should move everything to the GPU makes no sense

• Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

Where are Tasks running?

On a CPU

On an Accelerator

Ru
n

Ti
m

e

CPU only

Offload

Heterogeneous
Computing

5-point stencil: the heat program

• The heat equation models changes in temperature over time.

• We’ll solve this numerically on a computer using an explicit finite difference discretisation.
• 𝑢 = 𝑢 𝑡, 𝑥, 𝑦 is a function of space and time.
• Partial differentials are approximated using diamond difference formulae:

𝜕𝑢
𝜕𝑡

≈
𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦

𝑑𝑡

𝜕$𝑢
𝜕𝑥$ 	≈

𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)
𝑑𝑥$

– Forward finite difference in time, central finite difference in space.

𝜕𝑢
𝜕𝑡 − 𝛼∇

!𝑢 = 0

5-point stencil: the heat program

• Given an initial value of 𝑢, and any boundary conditions, we can calculate the value of 𝑢	at time
t+1 given the value at time t.

• Each update requires values from the north, south, east and west neighbours only:

• Computation is essentially a weighted average of each cell and its neighbouring cells.
• If on a boundary, look up a boundary condition instead.

Heat diffusion problem: 5-point stencil code
const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;

 // malloc and initialize u_tmp and u (code not shown)

 for (int t = 0; t < nsteps; ++t) {

 for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 u_tmp[i+j*n] = r2 * u[i+j*n] +
 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +
 r * ((i > 0) ? u[i-1+j*n] : 0.0) +
 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);
 }
 }
 // Pointer swap to get ready for next step
 tmp = u;
 u = u_tmp;
 u_tmp = tmp;
 }

}

Loop over time steps

Loop over NxN spatial domain

Update the 5-point
stencil. Boundary
conditions on the
edges of the domain
are fixed at zero.

Serial CPU code

Heat diffusion problem: 5-point stencil code
const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;

 // malloc and initialize u_tmp and u (code not shown)

 for (int t = 0; t < nsteps; ++t) {

 #pragma omp parallel for collapse(2)
 for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 u_tmp[i+j*n] = r2 * u[i+j*n] +
 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +
 r * ((i > 0) ? u[i-1+j*n] : 0.0) +
 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);
 }
 }
 // Pointer swap to get ready for next step
 tmp = u;
 u = u_tmp;
 u_tmp = tmp;
 }

}

Parallel CPU code, n=4000

Intel® XeonTM Gold 5218 @ 2.3 Ghz, 8 cores.
Nvidia HPC Toolkit compiler nvc –fast –fopenmp heat.c

0

2

4

6

8

0 2 4 6 8 10

heat problem, n=4000

Threads

Sp
ee

du
p

1 thread 1.80 secs

8 threads 0.290 secs

Heat diffusion problem: 5-point stencil code
const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;

 // malloc and initialize u_tmp and u (code not shown)

 for (int t = 0; t < nsteps; ++t) {
 #pragma omp target map(tofrom: u[0:n*n], u_tmp[0:n*n])
 #pragma omp loop

 for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 u_tmp[i+j*n] = r2 * u[i+j*n] +
 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +
 r * ((i > 0) ? u[i-1+j*n] : 0.0) +
 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);
 }
 }
 // Pointer swap to get ready for next step
 tmp = u;
 u = u_tmp;
 u_tmp = tmp;
 }

}

Parallel GPU code, n=4000

GPU Solver time = 1.40 secs

This isn’t much better than the
runtime for a single CPU (1.8 secs)
and worse than 8 cores on a CPU
(0.29 secs).

Why is the performance so bad?

NVIDIA T4 GPU, 16 Gbyte, Turing Arch.
Nvidia HPC Toolkit compiler
nvc -fast -mp=gpu -gpu=cc75 heat.c

When you map pointers between the host and the
device, OpenMP remembers the address.

Swapped addresses on the hosts swaps
addresses on the device

Heat diffusion problem: 5-point stencil code
const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;

 // malloc and initialize u_tmp and u (code not shown)

 for (int t = 0; t < nsteps; ++t) {
 #pragma omp target map(tofrom: u[0:n*n], u_tmp[0:n*n])
 #pragma omp loop

 for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 u_tmp[i+j*n] = r2 * u[i+j*n] +
 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +
 r * ((i > 0) ? u[i-1+j*n] : 0.0) +
 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);
 }
 }
 // Pointer swap to get ready for next step
 tmp = u;
 u = u_tmp;
 u_tmp = tmp;
 }

}

Parallel GPU code, n=4000

At the beginning of each
iteration, copy

(2*N2)*sizeof(TYPE) bytes
to the device

At the end of each iteration, copy
(2*N2)*sizeof(TYPE) bytes

from the device

With a runtime of 1.4 secs (worse than the
CPU time) we see that Data Movement

dominates performance.

We need to create a data region on the GPU
that is distinct from the target region.

That way, we can keep the data on the device
between target constructs

Target enter/exit data constructs

• Create a data region on the target device (a device data environment) with two
standalone directives:

#pragma omp target enter data map(…)
#pragma omp target exit data map(…)

• The target enter data maps variables to the device data environment.

• The target exit data unmaps variables from the device data environment.

• Once created, subsequent target regions inherit the existing data environment.

Target enter/exit data example
void init_array(int *A, int *B, int N) {
 for (int i = 0; i < N; ++i) { A[i] = i; B[i]=2*I;}

 #pragma omp target enter data map(to: A[0:N], B[0:N])
}

int main(void) {

 int N = 1024;
 int *A = malloc(sizeof(int) * N);
 int *B = malloc(sizeof(int) * N);
 init_array(A, B, N);

 #pragma omp target
 #pragma omp loop
 for (int i = 0; i < N; ++i)
 A[i] = A[i] * B[i];

 #pragma omp target exit data map(from: A[0:N])
}

Heat diffusion problem: 5-point stencil code
const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;
 // malloc and initialize u_tmp and u (code not shown)
 #pragma omp target enter data map(to: u[0:n*n], u_tmp[0:n*n])

 for (int t = 0; t < nsteps; ++t) {
 #pragma omp target
 #pragma omp loop

 for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 u_tmp[i+j*n] = r2 * u[i+j*n] +
 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +
 r * ((i > 0) ? u[i-1+j*n] : 0.0) +
 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);
 }
 }
 // Pointer swap to get ready for next step
 tmp = u;
 u = u_tmp;

 u_tmp = tmp;
 }
 #pragma omp target exit data map(from: u[0:n*n])
}

Parallel GPU code, n=4000

Create a data region and
map indicated data on entry

Exit the data
region and map
indicated data

NVIDIA T4 GPU, 16 Gbyte, Turing Arch.
Nvidia HPC Toolkit compiler
nvc -fast -mp=gpu -gpu=cc75 heat.c

GPU Solver time* = 0.42 secs

This is a general principal …
if you want performance, you

must optimize data
movement.

*includes time for target enter/exit data

Heat diffusion problem: 5-point stencil code
const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;
 // malloc and initialize u_tmp and u (code not shown)

 for (int t = 0; t < nsteps; ++t) {

 #pragma omp parallel for

 for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 u_tmp[i+j*n] = r2 * u[i+j*n] +
 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +
 r * ((i > 0) ? u[i-1+j*n] : 0.0) +
 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);
 }
 }
 // Pointer swap for next step
 tmp = u;
 u = u_tmp;

 u_tmp = tmp;
 }

}

Parallel CPU results,
n=4000

Num threads ij loop order
1 1.512849
2 0.776229
4 0.400822
8 0.227317

Intel® XeonTM Gold 5218 @ 2.3 Ghz, 8 cores.
Nvidia HPC Toolkit compiler nvc –fast –fopenmp heat.c

C
PU

All times in seconds

This is the ij loop order.

Let’s optimize the CPU code as well

Heat diffusion problem: 5-point stencil code
const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;
 // malloc and initialize u_tmp and u (code not shown)

 for (int t = 0; t < nsteps; ++t) {

 #pragma omp parallel for

 for (int j = 0; j < n; ++j) {
 for (int i = 0; i < n; ++i) {
 u_tmp[i+j*n] = r2 * u[i+j*n] +
 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +
 r * ((i > 0) ? u[i-1+j*n] : 0.0) +
 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);
 }
 }
 // Pointer swap for next step
 tmp = u;
 u = u_tmp;

 u_tmp = tmp;
 }

}

Parallel CPU results,
n=4000

Make j the outermost loop so adjacent loop
iterations access adjacent memory locations.

Num threads ij loop order ji loop order
1 1.512849 0.262260
2 0.776229 0.132453
4 0.400822 0.064220
8 0.227317 0.046586

Intel® XeonTM Gold 5218 @ 2.3 Ghz, 8 cores.
Nvidia HPC Toolkit compiler nvc –fast –fopenmp heat.c

This is the ji loop order.
Swap these loops to get

the ij order. C
PU

All times in seconds

This is particularly important on a GPU … you want memory
coalesced with the GPUs processing elements (PE) … i.e.,

elements of u accessed by PEi should be adjacent to the elements
of u accessed by PEi+1

Heat diffusion problem: 5-point stencil code
const double r = alpha * dt / (dx * dx);

 const double r2 = 1.0 - 4.0*r;
 // malloc and initialize u_tmp and u (code not shown)
 #pragma omp target enter data map(to: u[0:n*n], u_tmp[0:n*n])

 for (int t = 0; t < nsteps; ++t) {
 #pragma omp target
 #pragma omp loop

 for (int j = 0; j < n; ++j) {
 for (int i = 0; i < n; ++i) {
 u_tmp[i+j*n] = r2 * u[i+j*n] +
 r * ((i < n-1) ? u[i+1+j*n] : 0.0) +
 r * ((i > 0) ? u[i-1+j*n] : 0.0) +
 r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

 r * ((j > 0) ? u[i+(j-1)*n] : 0.0);
 }
 }
 // Pointer swap
 tmp = u;
 u = u_tmp;

 u_tmp = tmp;
 }
 #pragma omp target exit data map(from: u[0:n*n])
}

Parallel CPU and GPU
results, n=4000

Memory coalescence is important for CPUs and GPUs.

Note: collapse(2) did not help on the GPU or the CPU

NVIDIA T4 GPU, 16 Gbyte, Turing Arch.
Nvidia HPC Toolkit compiler. nvc -fast -mp=gpu heat.c

Num threads ij loop order ji loop order
1 1.512849 0.262260
2 0.776229 0.132453
4 0.400822 0.064220
8 0.227317 0.046586

Intel® XeonTM Gold 5218 @ 2.3 Ghz, 8 cores.
Nvidia HPC Toolkit compiler nvc –fast –fopenmp heat.c

This is the ji
loop order.

ij without timing
enter and exit data

ij loop
order

ji without timing
enter and exit data

ji loop order

0.056830 0.417887 0.020123 0.358905

C
PU

G
PU

All times in seconds

Outline
• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data Environment

• Memory Model

• Irregular Parallelism and Tasks

• Recap

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.
SPMD pattern: Create threads with a parallel region and split up the work using the number of
threads and the thread ID.

double omp_get_wtime() Speedup and Amdahl's law. False sharing and other performance issues.

setenv OMP_NUM_THREADS N Setting the internal control variable for the default number of threads with an environment
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.
Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items

168

Resources
• The OpenMP Architecture review Board (ARB) has a wealth of helpful resources on its web site: www.openmp.org

169

Including a
comprehensiv
e collection of
examples of

code using the
OpenMP

constructs

http://www.openmp.org/

To learn OpenMP:
• An exciting new book that Covers the

Common Core of OpenMP plus a few key
features beyond the common core that
people frequently use

• It’s geared towards people learning
OpenMP, but as one commentator put it
… everyone at any skill level should
read the memory model chapters.

• Available from MIT Press

170www.ompcore.com for code samples and the Fortran supplement

http://www.ompcore.com/

Books about OpenMP

171

A great book that covers
OpenMP features beyond

OpenMP 2.5

Books about OpenMP

172

The latest book on OpenMP …

Released in November 2023.

A book about how to use OpenMP to
program a GPU.

GPU programming with OpenMP
• There is much more … which you can learn about from our book

– Loop is a descriptive construct … you leave all the details to the runtime.
Always start with Loop plus enter-data/exit-data since often that is all you
need

– OpenMP includes constructs for detailed control of the GPU so you can do
programing akin to that with CUDA. I do not recommend this. You
maximize portability if you let the runtime system handle mapping code onto
hardware details for you. But if you want to control local memories, you may
have no choice.

– The interop constructs let you call functions native to a particular GPU (such
as BLAS) from inside the OpenMP program. They are a bit complicated to
work with. See our book to learn more.

173

Learn all the details of GPU programming with
OpenMP (up to version 5.2) . Released in November 2023

Exercises to play with during consolidation

174

175

Exercise: PI with tasks

• Go back to the original pi.c program
– Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

• Hint: first create a recursive pi program and verify that it works. Think about the
computation you want to do at the leaves. If you go all the way down to one
iteration per leaf-node, won’t you just swamp the system with tasks?

176

Exercise: Traversing linked lists
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the while loop that is timed inside main(). You
don’t need to make any changes to the “list functions”

You saw my solution to this
problem (without using

tasks). Try and come up
with some additional

solutions. There are many
ways to do this, so get

creative.

