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An Introduction to me
I’m just a simple kayak instructor

Photo © by Greg Clopton, 2014 
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To support my kayaking habit, I 
work as a parallel programmer

Which means I know how to turn 
math into lines on a speedup plot
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C$OMP TASKGROUP
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OpenMP* Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP TASKWAIT

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

#pragma omp target teams distribute parallel for simd

#pragma omp atomic capture

#pragma omp single

OpenMP:  An API for Writing Parallel Applications

§A set of compiler directives and library routines  for parallel application programmers

§Originally … Greatly simplifies writing multithreaded programs in Fortran, C and C++

§Later versions …  supports non-uniform memories, vectorization and GPU programming  

#pragma omp atomic seq_cst



The Growth of Complexity in OpenMP
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The OpenMP specification is so long and complex that few (if any) humans understand the full document

Our goal in 1997 … A simple interface for application programmers 
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OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.  
SPMD pattern: Create threads with a parallel region and split up the work using the number of 
threads and the thread ID.  

double omp_get_wtime() Speedup and Amdahl's law.    False sharing and other performance issues.

setenv OMP_NUM_THREADS  N Setting the internal control variable for the default number of threads with an environment 
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.    
Revisit interleaved execution. 

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute 

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush 
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items

6



OpenMP Basic Definitions: Basic Solution Stack
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OpenMP Runtime library

OS/system support for shared memory and threading
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OpenMP Basic Definitions: Basic Solution Stack
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For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case …. 
i.e., lots of threads with “equal cost access” to memory 8
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OpenMP Basic Syntax
• Most of OpenMP happens through compiler directives.

 C and C++ Fortran
Compiler directives

#pragma omp construct [clause [clause]…] !$OMP construct [clause [clause] …]

Example
#pragma omp parallel private(x)
{

}

!$OMP PARALLEL PRIVATE(X)

!$OMP END PARALLEL

Function prototypes and types:
#include <omp.h> use OMP_LIB

• Most OpenMP constructs apply to a “structured block”.
– Structured block: a block of one or more statements with one point of entry at the top and one point of exit at the bottom. 
– It’s OK to have an exit() within the structured block.
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Exercise, Part A: Hello World
Verify that your environment works

• Write a program that prints “hello world”.

#include<stdio.h>
int main()
{

      

     printf(“ hello ”);
     printf(“ world \n”);

}
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Exercise, Part B: Hello World
Verify that your OpenMP environment works

• Write a multithreaded program that prints “hello world”.

#include <stdio.h>
int main()
{

     

     printf(“ hello ”);
     printf(“ world \n”);

}

Switches for compiling and linking

gcc -fopenmp Gnu (Linux, OSX)

cc –qopenmp Intel (Linux@NERSC)

icc -fopenmp  Intel (Linux, OSX)

#pragma omp parallel

{

#include <omp.h>

}
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Solution
A Multi-Threaded “Hello World” Program

• Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>
#include <stdio.h>
int  main()
{

#pragma omp parallel
 {

     printf(“ hello ”);
     printf(“ world \n”);
   }
}

Sample Output:
hello hello world

world

hello  hello world

world

OpenMP include file

Parallel region with 
default number of threads

End of the Parallel region

The statements are interleaved based on how the operating schedules the threads 



A brief digression on the terminology of parallel 
computing
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Let’s agree on a few definitions: 

• Active task: 
– A task that is available to be scheduled for execution.  When the task is moving through its sequence of 

instructions, we say it is making forward progress

• Fair scheduling:
– When a scheduler gives each active task an equal opportunity for execution. 
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• Computer:
– A machine that transforms input values into 

output values. 
– Typically, a computer consists of Control, 

Arithmetic/Logic, and  Memory units.  
– The transformation is defined by a stored 

program (von Neumann architecture).

• Task:  
– A sequence of instructions plus a data 

environment.  A program is composed of 
one or more tasks.



Concurrency vs. Parallelism
• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered.  If scheduled fairly, 

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the 
same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element



Concurrency vs. Parallelism

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

In most cases, parallel programs exploit 
concurrency in a problem to run tasks on 
multiple processing elements

We use Parallelism to:
• Do more work in less time
• Work with larger problems 

Programs

Concurrent 
Programs

Parallel 
Programs If tasks execute in “lock step” they are not 

concurrent, but they are still parallel.  
Example … a SIMD unit.

• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered.  If scheduled fairly, 

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the 
same time.
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OpenMP Execution model: 

Fork-Join Parallelism: 
u Initial thread spawns a team of threads as needed.

uParallelism added incrementally until performance goals are met, i.e., the sequential 
program evolves into a parallel program.

Parallel Regions

Initial 
Thread

A Nested 
Parallel 
Region

Sequential Parts
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Thread Creation: Parallel Regions
• You create threads in OpenMP with the parallel construct.
• For example, to create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID = omp_get_thread_num();
    pooh(ID,A);
}

• Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block

Runtime function to 
request a certain 
number of threads

Runtime function 
returning a thread ID



Thread Creation: Parallel Regions Example

• Each thread executes the 
same code redundantly.

double A[1000];
omp_set_num_threads(4);

 #pragma omp parallel
{

         int ID = omp_get_thread_num();
    pooh(ID, A);
}

 printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single copy of A is 
shared between all 

threads.

Threads wait here for all threads to finish before 
proceeding (i.e., a barrier)

20
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Thread creation: How many threads did you actually get?

• Request a number of threads with omp_set_num_threads()

• The number requested may not be the number you actually get.
– An implementation may silently give you fewer threads than you requested.
– Once a team of threads has launched, it will not be reduced.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID       = omp_get_thread_num();

             int nthrds = omp_get_num_threads();
    pooh(ID,A);
}

• Each thread calls pooh(ID,A) for ID = 0 to nthrds-1

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block

Runtime function to 
request a certain 

number of threads

Runtime function to 
return actual 

number of threads 
in the team
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An Interesting Problem to Play With 
Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx = Dx å F(xi) » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a sum of N 
rectangles:

Where each rectangle has width Dx and height F(xi) at 
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.0

2.0

1.0
X0.0
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Serial PI Program

static long num_steps = 100000;
double step;
int main ()
{   double x, pi, sum = 0.0;

   step = 1.0/(double) num_steps;

   for (int i=0;i< num_steps; i++){
    x = (i+0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
   }
   pi = step * sum;
}
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Serial PI Program

#include <omp.h>
static long num_steps = 100000;
double step;
int main ()
{   double x, pi, sum = 0.0;
               
   step = 1.0/(double) num_steps;
               double tdata = omp_get_wtime();
   for (int i=0;i< num_steps; i++){
    x = (i+0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
   }
   pi = step * sum;
           tdata = omp_get_wtime() - tdata;
               printf(“ pi = %f in %f secs\n”,pi, tdata);
}

The library routine 
get_omp_wtime() 
is used to find the 

elapsed “wall 
time” for blocks of 

code
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Exercise: the Parallel Pi Program
• Create a parallel version of the pi program using a parallel construct:
           #pragma omp parallel
• Pay close attention to shared versus private variables.
• In addition to a parallel construct, you will need the runtime library routines
– int omp_get_num_threads(); 
– int omp_get_thread_num();
–double omp_get_wtime();
–omp_set_num_threads();

Time in seconds since a fixed point in the past

Thread ID or rank

Number of threads in the team

Request a number of threads in the team
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Hints: the Parallel Pi Program
• Use a parallel construct:
           #pragma omp parallel

• The challenge is to:
– divide loop iterations between threads (use the thread ID and the number of threads).
– Create an accumulator for each thread to hold partial sums that you can later combine to 

generate the global sum.

• In addition to a parallel construct, you will need the runtime library routines
– int omp_set_num_threads();
– int omp_get_num_threads(); 
– int omp_get_thread_num();
– double omp_get_wtime();
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#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{    int i, nthreads;  double pi, sum[NUM_THREADS];
     step = 1.0/(double) num_steps;
     omp_set_num_threads(NUM_THREADS);
    #pragma omp parallel
    {    
              int i, id,numthrds;
              double x;
              id = omp_get_thread_num();
              numthrds = omp_get_num_threads();
              if (id == 0)   nthreads = numthrds;
   for (i=id, sum[id]=0.0;i< num_steps; i=i+numthrds) {
    x = (i+0.5)*step;
    sum[id] += 4.0/(1.0+x*x);
   }
     }
     for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;
}

Example: A simple SPMD* pi program  

Promote scalar to an array dimensioned by 
number of threads to avoid race condition.

This is a common trick in SPMD programs to 
create a cyclic distribution of loop iterations

Only one thread should copy the number of 
threads to the global value to make sure 
multiple threads writing to the same address 
don’t conflict.  

*SPMD: Single Program Multiple Data
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#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{    int i, nthreads;  double pi, sum[NUM_THREADS];
     step = 1.0/(double) num_steps;
     omp_set_num_threads(NUM_THREADS);
    #pragma omp parallel
    {    
              int i, id,numthrds, istart, iend;
              double x;
              id = omp_get_thread_num();
              numthrds = omp_get_num_threads();
              istart = id*(num_steps/numthrds );       iend=(id+1)*(num_steps/numthrds);
              if(id == (numthrds-1)) iend = num_steps;
              if (id == 0)   nthreads = numthrds;
   for (i=istart, sum[id]=0.0;i< iend; i++) {
    x = (i+0.5)*step;
    sum[id] += 4.0/(1.0+x*x);
   }
     }
     for(i=0, pi=0.0;i<nthreads;i++) pi += sum[i] * step;
}

Example: A simple SPMD pi program … an alternative solution  

This is a common trick in SPMD algorithms … 
it’s a blocked distribution with one block per 
thread.  

SPMD: Single Program Multiple Data



Results*

threads 1st 
SPMD*

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

*SPMD: Single Program Multiple Data

Intel compiler (icpc) with default 
optimization level (O2) on Apple OS X 
10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 
4 Gbyte DDR3 memory at 1.333 Ghz.
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How do we describe performance 
in parallel programs

30
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Consider performance of parallel programs

Load Data Compute T1 Consume Results Compute TN
…

Timeseq(1) = Tload + N*Ttask + Tconsume 

Compute N independent  tasks on one processor

Ideally Cut 
runtime by ~1/P 
(Note: Parallelism 
only speeds-up the 
concurrent part)

…

Timepar(P) = Tload + (N/P)*Ttask + Tconsume 

Compute N independent  tasks with P processors

Load Data

Compute T1

Compute TN

Consume Results 



Talking about performance

§Speedup: the increased performance 
from running on P processors.  
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!!" =!"
n Perfect Linear Speedup:   happens when 

no parallel overhead and algorithm is 
100% parallel.  

n Efficiency:  How well does your observed 
speedup compare to the ideal case? 𝜀(𝑃) =

𝑆(𝑃)
𝑃



Speedups as disinformation

A slide from an Nvidia talk at ATPESC’25 about their quantum computing product

Reported speedups without defining what they were comparing against … included a verbal 
comment that this showed if you really care about performance, you must use a GPU



Speedups as disinformation

This was a dual processor CPU system. 
The speaker was not allowed to identify 

the CPU vendor or the work done to 
optimize or even parallelize the CPU code

The parallel code was an Nvidia 
software product (highly optimized 
CUDA code) running on an Nvidia 

GB200 NVL72 with 36 Grace 
CPUs (72 ARM cores each) and 

72 Blackwell GPUs

List price … $3 Million*

*https://www.datacenterdynamics.com/en/news/lambda-partners-with-pegatron-to-deploy-nvidia-gb200-nvl72-rack/

These Speedups are blatant disinformation… it’s demeaning to show such data.

The sad thing is, the Nvidia product is excellent.   In a fair comparison, they’d still come out on top.  
Why they need to resort to such misleading statements is baffling.



Amdahl’s Law
• What is the maximum speedup you can expect from a parallel program?

• Approximate the runtime as a part that can be sped up with additional processors and a 
part that is fundamentally serial. 
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• If you had an unlimited number of processors:

• If the serial fraction is a  and the parallel fraction is (1- a) then the speedup is: 
 

S(P) =
Timeseq

Timepar (P)
=

Timeseq
(α +1−α

P
)*Timeseq

=
1

α +
1−α
P

∞→!

• The maximum possible speedup is:
α
!

=! Amdahl’s 
Law

𝑆(𝑃, 𝛼) =
1

𝛼 − 1 − 𝛼𝑃



Amdahl’s Law … It’s not just about the maximum speedup
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Serial fraction (𝛂) of the program
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𝑆(𝑃, 𝛼) =
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𝛼 − 1 − 𝛼𝑃
𝑆(𝑃, 𝛼)
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So now you should understand my silly introduction slide.
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We measure our success as parallel 
programmers by how close we come 
to ideal linear speedup.

A good parallel programmer 
always figures out when you 
fall off the linear speedup 
curve and why that has 
occurred.



Internal control variables and how to control the 
number of threads in a team

• We’ve used the following construct to control the number of threads. (e.g. to request 12 threads):
– omp_set_num_threads(12)

• What does omp_set_num_threads() actually do?
– It resets an “internal control variable” the system queries to select the default number of threads to 

request on subsequent parallel constructs.

• Is there an easier way to change this internal control variable … perhaps one that doesn’t require 
re-compilation?  Yes.
– When an OpenMP program starts up, it queries an environment variable OMP_NUM_THREADS and 

sets the appropriate internal control variable to the value of OMP_NUM_THREADS
– For example, to set the initial, default number of threads to request in OpenMP from my apple laptop

> export OMP_NUM_THREADS=12

38
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SPMD: Single Program Multiple Data
• Run the same program on P processing elements where P can be arbitrarily large. 

MPI programs almost always use this pattern … it is probably the 
most commonly used pattern in the history of parallel programming.

• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared 
data structures. 

Replicate the program.

Add glue code

Break up the data
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Synchronization

• High level synchronization included in the common core:
–critical
–barrier

• Other, more advanced, synchronization operations:
–atomic
–ordered
– flush
– locks (both simple and nested)

Synchronization is used to impose order 
constraints and to protect access to shared data
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Synchronization: critical  

• Mutual exclusion: Only one thread at a time can enter a critical region.

float  res;

#pragma omp parallel

{     float B;   int i, id, nthrds;

      id = omp_get_thread_num();

      nthrds = omp_get_num_threads();

      B =  big_SPMD_job(id, nthrds);

      #pragma omp critical 
             res += consume (B);

      
}

Threads wait their turn 
– only one thread at a 
time calls consume()
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Synchronization: barrier
• Barrier: a point in a program all threads much reach before any threads are allowed to proceed.
• It is a “stand alone” pragma meaning it is not associated with user code … it is an executable 

statement. 

double Arr[8], Brr[8];            int numthrds;

omp_set_num_threads(8)

#pragma omp parallel

{    int id, nthrds;

      id = omp_get_thread_num();

      nthrds = omp_get_num_threads();

      if (id==0) numthrds = nthrds; 

      Arr[id] = big_ugly_calc(id, nthrds);

#pragma omp barrier 
      Brr[id] = really_big_and_ugly(id, nthrds, Arr); 
}

Threads wait until all 
threads hit the barrier.  
Then they can go on.
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Exercise
• In your first Pi program, you probably used an array to create space for each thread to store its partial 

sum.

• If array elements happen to share a cache line, this leads to false sharing.
– Non-shared data in the same cache line so updates invalidate the cache line … in essence “sloshing 

independent data” back and forth between threads.

• Modify your “pi program” to avoid false sharing due to the partial sum array.
int omp_get_num_threads(); 
int omp_get_thread_num();
double omp_get_wtime();
omp_set_num_threads();
#pragma omp parallel
#pragma omp critical

You will learn more 
about this important 

concept in the lecture 
on memory



PI Program with False Sharing

*Intel compiler (icpc) with no 
optimization on Apple OS X 10.7.3 
with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz 
and 4 Gbyte DDR3 memory at 1.333 
Ghz.

threads 1st 
SPMD

1 1.86
2 1.03
3 1.08
4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

Recall that promoting sum to an array made 
the coding easy, but led to false sharing and 
poor performance.
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#include <omp.h>
 static long num_steps = 100000;         double step;
 #define NUM_THREADS 2
 void main ()
 {  int nthreads; double  pi=0.0;   step = 1.0/(double) num_steps;
    omp_set_num_threads(NUM_THREADS);
   #pragma omp parallel
   {
        int i, id, nthrds;    double x, sum;
        id = omp_get_thread_num();
        nthrds = omp_get_num_threads();
         if (id == 0)   nthreads = nthrds;   
         for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
  x = (i+0.5)*step;
               sum += 4.0/(1.0+x*x);
          }
         #pragma omp critical
    pi += sum * step;
    }
 }

Example: Using a  critical section to remove impact of false sharing 

Sum goes “out of scope” beyond the parallel region … 
so you must sum it in here.   Must protect summation 
into pi in a critical region so updates don’t conflict

No array, so no false sharing. 

Create a scalar local to each 
thread to accumulate partial sums.
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Results*: pi program critical section

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 
with a dual core (four HW thread) Intel® CoreTM i5 processor at 
1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st 
SPMD

SPMD 
critical

1 1.86 1.87
2 1.03 1.00
3 1.08 0.68
4 0.97 0.53
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#include <omp.h>
 static long num_steps = 100000;         double step;
 #define NUM_THREADS 2
 void main ()
 {  int nthreads; double  pi=0.0;   step = 1.0/(double) num_steps;
    omp_set_num_threads(NUM_THREADS);
   #pragma omp parallel
   {
        int i, id, nthrds;    double x, sum;
        id = omp_get_thread_num();
        nthrds = omp_get_num_threads();
         if (id == 0)   nthreads = nthrds;   
         for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
  x = (i+0.5)*step;
               #pragma omp critical
                    sum += 4.0/(1.0+x*x);
          }
     }
 }

Example: Using a  critical section to remove impact of false sharing 

What would happen if you put the 
critical section inside the loop?
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Memory Models …

l Which value of 𝛾 is the one a thread should see at any point in a computation?

l A shared address space is a region of memory visible to the team of threads … multiple threads can read and write 
variables in the shared address space.

l Multiple copies of a variable (such as 𝛾) may be present in memory, at various levels of cache, or in registers and they may 
ALL have different values.

Shared Memory (DRAM)

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core1

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾
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Memory Models …

l Which value of 𝛾 is the one a thread should see at any point in a computation?

l A shared address space is a region of memory visible to the team of threads … multiple threads can read and write 
variables in the shared address space.

l Multiple copies of a variable (such as 𝛾) may be present in memory, at various levels of cache, or in registers and they may 
ALL have different values.

Shared Memory (DRAM)

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core1

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

𝛾

𝛾 𝛾

𝛾 𝛾

𝛾

A memory 
consistency model 

(or “memory model” 
for short) provides 
the rules needed to 

answer this 
question. 
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Memory Models …
l The fundamental issue is how do the values of variables across the memory hierarchy interact with 

the statements  executed by two or more threads?
l Two options:

Shared Memory (DRAM)

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core1

Cache

Control 
Unit

Arithmetic 
Logic Unit

Register file

Core2

Shared Last Level Cache

CPU

!

! !

! !

!

1. Sequential Consistency

- Threads execute and the 
associated loads/stores 
appear in some order defined 
by the semantically allowed 
interleaving of program 
statements.

- All threads see the same 
interleaved order of loads 
and stores 

2. Relaxed Consistency

- Threads execute and the 
associated loads/stores 
appear in some order 
defined by the semantically 
allowed interleaving of 
program statements.

- Threads may see 
different orders of loads 
and stores

Most (if not all) multithreading programming models assume relaxed consistency.  Maintaining 
sequential consistency across the full program-execution adds too much synchronization overhead. 



Memory Models: Happens-before and synchronized-with relations

• Multithreaded execution … concurrency in action
– The compiler doesn’t understand instruction-ordering across threads … 

loads/stores to shared memory across threads can expose ambiguous 
orders of loads and stores

– Instructions between threads are unordered except when specific ordering 
constraints are imposed, i.e., synchronization.

– Synchronization lets us force that some instructions happens-before other 
instructions

• Two parts to synchronization:
– A synchronize-with relationship exists at statements in 2 or more threads 

at which memory order constraints can be established. 
– Memory order: defines the view of loads/stores on either side of a 

synchronized-with operations.
52

• Single thread execution:
– Program order ... Loads and stores appear to occur in the order defined 

by the program’s semantics.  If you can’t observe it, however, compilers 
can reorder instructions to maximize performance.

Thread 1Thread 0

synchronize-with

Memory orders defined at the 
synchronize-with statements 

define happens-before 
relationships between 

Loads/stores in the black/red 
sections of threads 0 and 1.

Use a spin 
lock or other 

mechanism to 
force

read-after-
write

write

read
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Enforcing Memory Orders:  the Flush Operation
• Flush defines a sequence point at which a thread is 

guaranteed to see a consistent view of memory*
– Previous read/writes by this thread have completed 

and are visible to other threads
– No subsequent read/writes by this thread have 

occurred

* This applies to the set of shared variables visible to a thread at the point the flush is encountered.  We call this “the flush set”

double A;
A = compute();

#pragma omp flush(A)

   // flush to memory to make sure other
   //  threads can see the updated value of A

• A flush on its own, however, is not enough.  It only controls memory visibility from the perspective of the thread 
calling the flush.

• You must pair it with an operation to create a synchronized-with relation between threads.

• We’ve worked with collective synchronization operations that apply across the full team of threads (critical and 
barrier).   They both imply the flush so you should NEVER need to call flush explicitly

• You can build custom synchronization protocols applying to any combination of pairs of threads … but that is 
seriously advanced multithreaded programming and should be avoided if at all possible
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Keep it simple … let OpenMP take care of Flushes for you
• A flush operation is implied by OpenMP constructs … 
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions

WARNING:
If you find yourself wanting to write code with explicit flushes, stop and get help.  It is very difficult to manage 

flushes on your own.  Even experts often get them wrong.

This is why we defined OpenMP constructs to automatically apply flushes most places where you really need them. 

• OpenMP programs that: 
• Do not use non-sequentially consistent atomic constructs; 
• Do not rely on the accuracy of a false result from omp_test_lock and omp_test_nest_lock; and 
• Correctly avoid data races  

… behave as though operations on shared variables were simply interleaved in an order consistent 
with the order in which they are performed by each thread. The relaxed consistency model is 
invisible for such programs, and any explicit flushes in such programs are redundant. 

This has not been a detailed 
discussion of the full OpenMP 

memory model. The goal was to 
explain how memory models work  
and to understand the subset of 
features people commonly use.
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The Loop Worksharing Construct

• The loop worksharing construct splits up loop iterations among the threads in a team

#pragma omp parallel

{
#pragma omp for 
 for (I=0;I<N;I++){
  NEAT_STUFF(I);
 }
}

Loop construct name:

•C/C++: for

•Fortran: do

The loop control index I is made 
“private” to each thread  by default.  

Threads wait here until all 
threads are finished with the 

parallel loop before any proceed 
past the end of the loop
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Loop Worksharing Construct
A motivating example

for(i=0;i<N;i++)   { a[i] = a[i] + b[i];}

#pragma omp parallel
{
 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * (N / Nthrds);
 if (id == Nthrds-1)iend = N;
 for(i=istart;i<iend;i++)   { a[i] = a[i] + b[i];}
}

#pragma omp parallel 
#pragma omp for   
 for(i=0;i<N;i++)   { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel region

(SPMD Pattern)

OpenMP parallel region and 
a worksharing for construct
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Combined Parallel/Worksharing Construct

• OpenMP shortcut: Put the “parallel” and the worksharing directive on the same line

double  res[MAX];  int i;
#pragma omp parallel 
{ 
    #pragma omp for
    for (i=0;i< MAX; i++) {
         res[i] = huge();
    } 
} 

These are equivalent 

double  res[MAX];  int i;
#pragma omp parallel for
    for (i=0;i< MAX; i++) {
         res[i] = huge();
    } 
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Working with loops

• Basic approach
– Find compute intensive loops
– Make the loop iterations independent ... So they can safely execute in any order without 

loop-carried dependencies
– Place the appropriate OpenMP directive and test

int i, j, A[MAX];
     j = 5;
 for (i=0;i< MAX; i++) {
         j +=2;
         A[i] = big(j); 
    } 

int i,  A[MAX];
    #pragma omp parallel for
 for (i=0;i< MAX; i++) {
         int j = 5 + 2*(i+1);
          A[i] = big(j); 
    } Remove loop 

carried 
dependence

Note: loop index 
“i” is private by 
default
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Reduction

• We are combining values into a single accumulation variable (ave) … there is a true dependence 
between loop iterations that can’t be trivially removed.

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel programming environments.

double  ave=0.0, A[MAX];
   int i;
 for (i=0;i< MAX; i++) {
         ave + = A[i];
   } 
   ave = ave/MAX; 

• How do we handle this case?
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Reduction
• OpenMP reduction clause:   

reduction (op : list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy. 
– Local copies are reduced into a single value and combined with the original global value.

• The variables in “list” must be shared in the enclosing parallel region.  

double  ave=0.0, A[MAX];    int i;
#pragma omp parallel for reduction (+:ave)
 for (i=0;i< MAX; i++) {
         ave + = A[i];
  } 
  ave = ave/MAX; 
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OpenMP: Reduction operands/initial-values
• Many different associative operands can be used with reduction:
• Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
* 1

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0
| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

OpenMP includes user defined reductions 
and array-sections as reduction variables 

(we just don’t cover those topics here)
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Exercise: PI with loops

• Go back to the serial pi program and parallelize it with a loop construct
• Your goal is to minimize the number of changes made to the serial program.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();  
int omp_get_thread_num();
double omp_get_wtime();
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Example: PI with a loop and a reduction
#include <omp.h>
void main ()
{
     long num_steps = 100000; 
     double pi, sum = 0.0; 
     double step = 1.0/(double) num_steps;

      #pragma omp parallel for reduction(+:sum)
      for (int i=0;i< num_steps; i++){
 double x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
      }
      pi = step * sum;
}



Results*: PI with a loop and a reduction

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st 
SPMD

1st 
SPMD 
padded

SPMD 
critical

PI Loop

1 1.86 1.86 1.87 1.91
2 1.03 1.01 1.00 1.02
3 1.08 0.69 0.68 0.80
4 0.97 0.53 0.53 0.68
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…. Let’s pause a moment and consider 
one of the fundamental issues EVERY 
parallel programmer must grapple with

66
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Load Balancing
• A parallel job isn’t done until the last thread is 

finished

• Example:  Partition a problem into equal sized 
chunks but for work that is unevenly distributed 
spatially.
– Thread 2 has MUCH more work.  The uneven distribution of 

work will limit performance.

• A key part of parallel programming is to design how 
you partition the work between threads so every 
thread has about the same amount of work.  This 
topic is referred to as Load Balancing.

0 1 2 3 4
Thread IDs … box height ∝ amount of work
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Load Balancing
• A parallel job isn’t done until the last thread is finished

• The work in our problem is unevenly distributed spatially.

• A key part of parallel programming is to design how you 
partition the work between threads so every thread has 
about the same amount of work.  

• This topic is referred to as Load Balancing.

• In this case we adjusted the size of each chunk to 
equalize the work assigned to each thread.
– Getting the right sized chunks for a variable partitioning (as done 

here) can be really difficult. 0 1 2 3 4
Thread IDs … box height ∝ amount of work
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Load Balancing
• A parallel job isn’t done until the last thread is finished

• An easier path to Load Balancing.
– Over-decompose the problem into small, fine-grained chunks
– Spread the chunks out among the threads (in this case using a cyclic 

distribution)
– The work is spread out and statistically, you are likely to get a good 

distribution of work

 

0
1
2
3

Colors mapped to 4 different Threads
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Load Balancing
• A parallel job isn’t done until the last thread is finished

• An easier path to Load Balancing.
– Over-decompose the problem into small, fine-grained chunks
– Spread the chunks out among the threads (in this case using a cyclic 

distribution)
– The work is spread out and statistically, you are likely to get a good 

distribution of work

• Vocabulary review
– Load Balancing … giving each thread work sized so all threads 

take the same amount of time
– Partitioning or decomposition … breaking up the problem 

domain into partitions (or chunks) and assigning different partitions 
to different threads.

– Granularity … the size of the block of work.  Find grained (small 
chunks) vs coarse grained (large chunks)

– Over-decomposition … when you decompose your problem into 
partitions such that there are many more partitions than threads to 
do the work 

0
1
2
3

Colors mapped to 4 different Threads
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Loop Worksharing Constructs:  The schedule clause
• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

• Example:
– #pragma omp for schedule(dynamic, 10)

Schedule Clause When To Use
STATIC Pre-determined and predictable 

by the programmer

DYNAMIC Unpredictable, highly variable 
work per iteration

Least work at runtime : 
scheduling done at 
compile-time

Most work at runtime : 
complex scheduling 
logic used at run-time
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Loop Worksharing Constructs:  The schedule clause
• The schedule clause … most common cases:

#pragma omp parallel for schedule (static)

Int small = 8; // loop iterations, i.e., width of boxes in the figure

#pragma omp parallel for schedule (static, small)

Thread IDs



We’ll finish with loops by looking one 
more time at synchronization overhead

73
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The nowait clause
• Barriers are really expensive.  You need to understand when they are implied 

and how to skip them when it’s safe to do so. 
double A[big], B[big], C[big];

#pragma omp parallel 
{
 int id=omp_get_thread_num();
 A[id] = big_calc1(id);
#pragma omp barrier 
#pragma omp for 
 for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait
 for(i=0;i<N;i++){ B[i]=big_calc2(C,  i); }
 A[id] = big_calc4(id);
}

implicit barrier at the end 
of a parallel region

implicit barrier at the end of a for 
worksharing construct

no implicit barrier 
due to nowait
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Data Environment:   Default storage attributes

• Shared memory programming model: 
–Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called from parallel 

regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.
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double A[10];
     int main() {
 int index[10];
    #pragma omp parallel  
       work(index);
 printf(“%d\n”, index[0]);
   }

extern double A[10];
void work(int *index) {
  double temp[10];
  static int count;
  ...
}

Data Sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are 
shared by all threads.

temp is local to each 
thread
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Data Sharing:  Changing storage attributes

• One can selectively change storage attributes for constructs using the 
following clauses (note: list is a comma-separated list of variables)

–shared(list)
–private(list)
–firstprivate(list)

• These can be used on parallel and for constructs … other than shared 
which can only be used on a parallel construct

• Force the programmer to explicitly define storage attributes
–default (none) default() can only be used 

on parallel constructs
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Data Sharing: Private clause

int N = 1000;
extern void init_arrays(int N, double *A, double *B, double *C);

void example () {
  int i, j;
  double A[N][N], B[N][N], C[N][N];
  init_arrays(N, *A, *B, *C);

  #pragma omp parallel for private(j)
  for (i = 0; i < 1000; i++)
      for( j = 0; j<1000; j++)
                C[i][j] = A[i][j] + B[i][j];
}

• private(var)  creates a new local copy of var for each thread.

OpenMP makes the loop 
control index on the 
parallel loop (i) private by 
default … but not for the 
second loop (j)



incr = 0;
#pragma omp parallel for private(incr)
for (i = 0; i <= MAX; i++) {
 if ((i%2)==0) incr++;
 A[i] = incr;
}
printf(“ incr= %d\n”, incr);
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Data Sharing: Private clause

• private(var)  creates a new local copy of var for each thread.
– The value of the private copies is uninitialized
– The value of the original variable is unchanged after the region

incr is 0 here

When you need 
to refer to the 

variable incr that 
exists prior to the 
construct, we call 

it the original 
variable.

incr was not 
initialized



Firstprivate clause

• Variables initialized from a shared variable
• C++ objects are copy-constructed
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incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {
 if ((i%2)==0) incr++;
 A[i] = incr;
}

Each thread gets its own copy of 
incr with an initial value of 0

81
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Data sharing: 
A data environment test
• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C private to each thread or shared inside the parallel region?
• What are their initial values inside and values after the parallel region?

variables:  A = 1,B = 1, C = 1
#pragma omp parallel private(B)  firstprivate(C)

Inside this parallel region ...
l “A” is shared by all threads; equals 1
l “B” and “C” are private to each thread.

– B’s initial value is undefined
– C’s initial value equals  1

Following the parallel region ...
l B and C revert to their original values of 1
l A is either 1 or the value  it was set to inside the parallel region
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Exercise: Mandelbrot set area

• The supplied program (mandel.c) 
computes the area of a Mandelbrot set. 

• The program has been parallelized with 
OpenMP, but we were lazy and didn’t do it 
right.

• Find and fix the errors. 

• Once you have a working version,  try to 
optimize the program.

This exercise come from Mark Bull of EPCC (at University of Edinburgh)

Image Source: Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC 
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

The Mandelbrot set … The points, c, for which the 
following iterative map converges

𝑧!"# = 𝑧!$ + 𝑐

With zn and c as complex numbers and z0 = 0. 



The Mandelbrot Set  Area Program (original code)
#include <omp.h>
# define NPOINTS 1000
# define MXITR 1000
void testpoint(double, double);
int numoutside = 0;
int main(){
   int i, j;
   int num=0;
   double C_real, C_imag;
   double area, error, eps  = 1.0e-5;
#pragma omp parallel for private(eps)
   for (i=0; i<NPOINTS; i++) {
     for (j=0; j<NPOINTS; j++) {
       C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
       C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
       testpoint(C_real, C_imag);
     }
   }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
   error=area/(double)NPOINTS;
}
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void testpoint(double C_real, double C_imag){
       double zr, zi;
       int iter;
       double temp;

       zr=C_real;     zi=C_imag;
       for (iter=0; iter<MXITR; iter++){
         temp = (zr*zr)-(zi*zi)+C_real;
         zi = zr*zi*2+C_imag;
         zr = temp;
         if ((zr*zr+zi*zi)>4.0) {
                  numoutside++;
                  break;  // exit the loop
         }
       }
       return 0;
}



The Mandelbrot Set  Area Program
#include <omp.h>
# define NPOINTS 1000
# define MXITR 1000
void testpoint(double, double);
Int numoutside = 0;
int main(){
   int i, j;
   int num=0;
   double C_real, C_imag;
   double area, error, eps  = 1.0e-5;
#pragma omp parallel for private(j, C_real, C_imag)
   for (i=0; i<NPOINTS; i++) {
     for (j=0; j<NPOINTS; j++) {
       C_real = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
       C_imag = 1.125*(double)(j)/(double)(NPOINTS)+eps;
       testpoint(C_real, C_imag);
     }
   }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
   error=area/(double)NPOINTS;
}
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void testpoint(double C_real, double C_imag){
       double zr, zi;
       int iter;
       double temp;

       zr=C_real;     zi=C_imag;
       for (iter=0; iter<MXITR; iter++){
         temp = (zr*zr)-(zi*zi)+C_real;
         zi = zr*zi*2+C_imag;
         zr = temp;
         if ((zr*zr+zi*zi)>4.0) {
           #pragma omp critical
                  numoutside++;
           break;  // exit the loop
         }
       }
       return 0;
}

• eps was not initialized
• Data race on j, C_real, and C_imag
• Protect updates of numoutside
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Data Sharing: Default clause
• default(none): Forces you to define the storage attributes for variables that 

appear inside the static extent of the construct … if you fail the compiler will complain.   
Good programming practice!

• You can put the default clause on parallel and parallel + workshare constructs. 

The full OpenMP specification has other versions of the default clause, but they 
are not used very often so we skip them in the common core

#include <omp.h>
int main()
{
     int i, j=5;      double x=0.0, y=42.0;
     #pragma omp parallel for default(none) reduction(*:x)
     for (i=0;i<N;i++){
         for(j=0; j<3; j++)
               x+= foobar(i, j, y);
     }
     printf(“ x is %f\n”,(float)x);
}

The static 
extent is the 
code in the 

compilation unit 
that contains 
the construct.

The compiler would 
complain about j and y, 
which is important since 

you don’t want j to be 
shared
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Irregular Parallelism
• Let’s call a problem “irregular” when one or both of the following hold:

– Data Structures are sparse or involve indirect memory references
– Control structures are not basic for-loops

• Example: Traversing Linked lists:

• Using what we’ve learned so far, traversing a linked list in parallel using OpenMP 
is difficult.

p = listhead ;
while (p) { 
  process(p);
  p=p->next;
} 
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Exercise: Traversing linked lists  
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();  
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the while loop that is timed inside main().  You 
don’t need to make any changes to the “list functions”
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Linked Lists with OpenMP:  My solution
• See the file solutions/linked_notasks.c

while (p != NULL) {
  p = p->next;
       count++;
 }
 struct node *parr = (struct node*) malloc(count*sizeof(struct node));
 p = head;
 for(i=0; i<count; i++) {
       parr[i] = p;
       p = p->next;
    }
 #pragma omp parallel 
 {
      #pragma omp for schedule(static,1)
      for(i=0; i<count; i++)
         processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop
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Linked Lists with OpenMP (without tasks)

while (p != NULL) {
  p = p->next;
       count++;
 }
 struct node *parr = (struct node*) malloc(count*sizeof(struct node));
 p = head;
 for(i=0; i<count; i++) {
       parr[i] = p;
       p = p->next;
    }
 #pragma omp parallel 
 {
      #pragma omp for schedule(static,1)
      for(i=0; i<count; i++)
         processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2

Number of 
threads

Schedule
Default Static,1

1 48 seconds 45 seconds

2 39 seconds 28 seconds

With so much 
code to add 
and three 

passes through 
the data, this is 

really ugly.

There has got 
to be a better 
way to do this

• See the file solutions/linked_notasks.c



What are Tasks?

• Tasks are independent units of work

• Tasks are composed of:
– code to execute
– data to compute with

• Threads are assigned to perform the work of each 
task.
– The thread that encounters the task construct may execute 

the task immediately.
– The threads may defer execution until later

Serial Parallel

96



What are Tasks?

• The task construct includes a structured block of code

• Inside a parallel region, a thread encountering a task 
construct will package up the code block and its data 
for execution

• Tasks can be nested: i.e., a task may itself generate 
tasks.

Serial Parallel

A common Pattern is to have one thread create the tasks while the 
other threads wait at a barrier and execute the tasks

97
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Single Worksharing Construct

• The single construct denotes a block of code that is executed by only one thread 
(not necessarily the primary* thread).

• A barrier is implied at the end of the single block (can remove the barrier with a 
nowait clause).

#pragma omp parallel  
{ 
 do_many_things();
      #pragma omp single
 {     exchange_boundaries();   }
 do_many_other_things();

} 

*This used to be called the “master thread”.  The term “master” has been deprecated in OpenMP 5.1 and replaced with the term “primary”.    



Task Directive

#pragma omp parallel
{ 
  #pragma omp single
   { 
  #pragma omp task
     fred(); 
  #pragma omp task
     daisy(); 
  #pragma omp task
     billy(); 
   } 
}

One Thread 
packages tasks

Create some threads

Tasks executed by 
some thread in some 
order

All tasks complete before this barrier is released

#pragma omp task [clauses]

                     structured-block    
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Exercise: Simple tasks
• Write a program using tasks that will “randomly” generate one of two strings:

– “I think “ “race” “car”  “s are fun”
– “I think “ “car” “race”  “s are fun”

• Hint: use tasks to print the indeterminate part of the output (i.e. the “race” or “car” parts).    

• This is called a “Race Condition”.  It occurs when the result of a program depends on 
how the OS schedules the threads.

• NOTE: A “data race” is when threads “race to update a shared variable”.  They produce 
race conditions.  Programs containing data races are undefined (in OpenMP but also 
ANSI standards C++’11 and beyond).

#pragma omp parallel
#pragma omp task
#pragma omp single

100This exercise comes from Ruud van der Pas of Oracle



Racey Cars: Solution
#include <stdio.h>
#include <omp.h>
int main()
{  printf("I think");

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
printf(" car");

#pragma omp task
printf(" race");

}
}
printf("s");
printf(" are fun!\n");

} 101



Data Scoping with Tasks
• Variables can be shared, private or firstprivate with respect to task

• These concepts are a little bit different compared with threads:
– If a variable is shared on a task construct, the references to it inside the construct 

are to the storage with that name at the point where the task was encountered

– If a variable is private on a task construct, the references to it inside the construct 
are to new uninitialized storage that is created when the task is executed

– If a variable is firstprivate on a construct, the references to it inside the construct are 
to new storage that is created and initialized with the value of the existing storage of 
that name when the task is encountered

102 102
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Data Scoping Defaults
• The behavior you want for tasks is usually firstprivate, because the task may not be 

executed until later (and variables may have gone out of scope)
– Variables that are private when the task construct is encountered are firstprivate by default

• Variables that are shared in all constructs starting from the innermost enclosing parallel 
construct are shared by default

#pragma omp parallel shared(A) private(B)
{
   ...
#pragma omp task
   {
       int C;
       compute(A, B, C);
   }
}

A is shared
B is firstprivate
C is private

103
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Exercise: Traversing linked lists  
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp single
#pragma omp task
int omp_get_num_threads();  
int omp_get_thread_num();
double omp_get_wtime();
private(), firstprivate()

• Hint: Just worry about the contents of main().  You 
don’t need to make any changes to the “list functions”
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Parallel Linked List Traversal
#pragma omp parallel
{ 
  #pragma omp single
   { 
    p = listhead ;
    while (p) { 
       #pragma omp task firstprivate(p)       
             {         
               process (p);
             }
       p=next (p) ;
     } 
   } 
}

makes a copy of p 
when the task is 
packaged

Only one thread 
packages tasks

105
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When/Where are Tasks Complete?
• At thread barriers (explicit or implicit)

– all tasks generated inside a region must complete at the next barrier encountered by the threads
in that region.  Common examples:
– Tasks generated inside a single construct:  all tasks complete before exiting the barrier on the 

single.
– Tasks generated inside a parallel region: all tasks complete before exiting the barrier at the end of 

the parallel region.   

• At taskwait directive
– i.e. Wait until all tasks defined in the current task have completed.  

#pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to “descendants” .
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Example
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#pragma omp parallel
{ 
  #pragma omp single 
   { 
  #pragma omp task
     fred(); 
  #pragma omp task
     daisy(); 
     #pragma omp taskwait
  #pragma omp task
     billy(); 
   } 
}

fred() and daisy() 
must complete before 
billy() starts, but 
this does not include 
tasks created inside 
fred() and daisy()

All tasks including those created 
inside fred() and daisy() must 
complete before exiting this barrier
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Example
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#pragma omp parallel
{ 
  #pragma omp single nowait 
   { 
  #pragma omp task
     fred(); 
  #pragma omp task
     daisy(); 
     #pragma omp taskwait
  #pragma omp task
     billy(); 
   } 
}

The barrier at the end of the 
single is expensive and not 
needed since you get the 
barrier at the end of the 
parallel region.   So use 
nowait to turn it off.

All tasks including those created 
inside fred() and daisy() must 
complete before exiting this barrier

108



Example: Fibonacci numbers

• Fn = Fn-1 + Fn-2

• Inefficient O(2n) recursive 
implementation!

int fib (int n)
{
   int x,y;
   if (n < 2) return n;

   x = fib(n-1);
   y = fib (n-2);
   return (x+y);
}

int main()
{
   int NW = 5000;
   fib(NW);
}
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Parallel Fibonacci

110

• Binary tree of tasks

• Traversed using a recursive 
function

• A task cannot complete until all 
tasks below it in the tree are 
complete (enforced with taskwait)

• x,y are local, and so by default 
they are  private to current task

– must be shared on child tasks so they 
don’t create their own firstprivate 
copies at this level! 

int fib (int n)
{   int x,y;
   if (n < 2) return n;

#pragma omp task shared(x)
   x = fib(n-1);
#pragma omp task shared(y)
   y = fib (n-2);
#pragma omp taskwait
   return (x+y);
}

Int main()
{  int NW = 5000;
   #pragma omp parallel
   { 
       #pragma omp single
             fib(NW);
   }
} 110



Divide and Conquer

• Split the problem into smaller sub-problems; continue until the sub-problems can be 
solved directly

n 3 Options for parallelism:
¨ Do work as you split 

into sub-problems
¨ Do work only at the 

leaves
¨ Do work as you 

recombine

subproblem

subsolution

subproblem subproblem

problem

solution

subsolution subsolution

subproblem

subsolution

subproblem subproblem

subsolution subsolution

merge

merge merge

split

splitsplit

solve solvesolvesolve
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Exercise: PI with tasks

• Go back to the original pi.c program
– Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

• Hint: first create a recursive pi program and verify that it works.  Think about the 
computation you want to do at the leaves.  If you go all the way down to one 
iteration per leaf-node, won’t you just swamp the system with tasks?



Results*: Pi with tasks

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.  

threads 1st SPMD SPMD 
critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52
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Using Tasks

• Don’t use tasks for things already well supported by OpenMP
–e.g. standard do/for loops
– the overhead of using tasks is greater

• Don’t expect miracles from the runtime
–best results usually obtained where the user controls the number 

and granularity of tasks

115
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The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for the application programmers more versed in their area 

of science than computer science.

• The complexity has grown considerably over the years!

Supports general 
multithreading, but 
the emphasis was 
on parallel loops

Tasks added to OpenMP ... 
supports irregular parallelism

Beyond the common 
core with NUMA and 

GPU systems

Target constructs added 
to OpenMP ... supports 
host-device model

Affinity and Places added 
to handle NUMA systems

NUMA: non-uniform 
memory architecture

The comnon core … 
focused on SMP 

systems

SMP: symmetric multiprocessing 



OpenMP basic definitions: the solution stack
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NUMA Systems: You must optimize code for their complex memory subsystems
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• A floating-point operation takes O(~1 ns). 
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ns: nanosecond

- L1 Cache ~1.5 ns
- L2 Cache reference ~5 ns

- L3  Cache reference ~25 ns
- Near memory DRAM access ~100ns

- Near memory DRAM access ~100ns
- Far memory DRAM access  ~200 ns

• The key to performance is to minimize memory movement …. get the memory movement right and the “rest” is easy 

Dual Socket node with Intel® XeonTM E5-2698v3 CPUs
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Example: use  all available memory
• Stream memory bandwidth benchmark running on a two socket Intel® XeonTM X5675 with 12 threads on 12 cores
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Example: use  all available memory
• Stream memory bandwidth benchmark running on a two socket Intel® XeonTM X5675 with 12 threads on 12 cores
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But how did we make sure we got one thread per core?

How do you control the how threads are mapped onto cores/hardware-
threads/sockets?

You can fill all the cores in the node and disable simultaneous 
multithreading (to enable the multiple hardware threads per core) but you 
usually cannot control SMT settings on a node … and sometimes on large 

scale nodes, there are more cores than you need.



NUMA nodes and the places we can put threads

122

• OpenMP defines the concept of places on a NUMA node where threads can execute.

• The idea is to map the OS defined virtual cores onto places visible to OpenMP for threads assignment

• The first step is to understand the OS defined virtual cores (also known as virtual processing units or PUs)
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Discover the OS view of virtual cores

Machine (126GB total)
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• Portable Hardware Locality tools …. hwloc-ls, lstopo, Numactl  and others 
depending on the system.    Generates text or graphical output depending on 
how the tools are configured on your system.  

Graphical output for a dual Socket node with Intel® XeonTM E5-2698v3 CPUs
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PU: processor unit. The smallest physical execution unit that hwloc recognizes.
Based on content from 
Yun (Helen) He from NERSC )



Using OMP_PLACES to select where to run code
• After using a tool to learn the logical core IDs 

(processor units or PUs) use environment 
variables to define where threads can be 
scheduled to execute. 

124

> export OMP_PLACES=“{0, 3, 15, 12, 19,  16, 28, 31}” 
> export NUM_THREADS= 6

#pragma omp parallel
{
    // do a bunch of cool stuff

}



Using OMP_PLACES to select where to run code
• After using a tool to learn the logical core IDs 

(processor units or PUs) use environment 
variables to define where threads can be 
scheduled to execute. 

125

> export OMP_PLACES=“{0, 3, 15, 12, 19,  16, 28, 31}” 
> export NUM_THREADS= 6

#pragma omp parallel
{
    // do a bunch of cool stuff

}

Programmers can use OMP_PLACES for detailed control over the execution-
units threads utilize.   BUT …

• The rules for mapping onto physical execution units are complicated.
• PLACES expressed as numbers is non-portable

There has to be an easier and more portable way to describe places



Hardware Abstraction: OMP_PLACES 

● OMP_PLACES environment variable
○ controls thread allocation
○ defines a series of places to which the threads are assigned

● It can be an abstract name or a specific list
○ threads: each place corresponds to a single hardware thread 
○ cores: each place corresponds to a single core (which may have one or more 

hardware threads) 
○ sockets: each place corresponds to a single socket (consisting of one or more cores) 
○ a list with explicit place values of CPU ids, such as: 

■ export OMP_PLACES=“ {0:4:2},{1:4:2}”  (equivalent to “{0,2,4,6},{1,3,5,7}”)

● Examples:
○ export OMP_PLACES=threads
○ export OMP_PLACES=cores



Thread Affinity … mapping threads to places
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Thread affinity to places: OMP_PROC_BIND
● Controls thread affinity within and between OpenMP places
● Allowed values:

○ true: the runtime will not move threads around between processors
○ false: the runtime may move threads around between processors
○ close: bind threads close to the primary* thread
○ spread: bind threads as evenly distributed as possible (i.e., spread them out)
○ primary: bind threads to the same place as the primary thread

● The values primary*, close, and spread imply the value true

Examples: 
export OMP_PROC_BIND=spread

*Primary thread: this is the thread with ID=0 that encountered the parallel construct and created the team of threads



Thread affinity to places: OMP_PROC_BIND
● Controls thread affinity within and between OpenMP places
● Allowed values:

○ true: the runtime will not move threads around between processors
○ false: the runtime may move threads around between processors
○ close: bind threads close to the primary* thread
○ spread: bind threads as evenly distributed (spreaded) as possible
○ primary: bind threads to the same place as the primary thread

● The values primary*, close, and spread imply the value true

Example … using clauses on a parallel construct: 
#pragma omp parallel num_threads(4) proc_bind(spread)

*Primary thread: this is the thread with ID=0 that encountered the parallel construct and created the team of threads



Consider 4 cores total, 2 hardware threads per core, 
4 OpenMP threads

● none: no affinity setting

● close: Bind threads as close to each other as possible

● spread: Bind threads as far apart as possible 

  

● primary: bind threads to the same place as the primary thread

Examples: OMP_PROC_BIND 

OMP_PLACES={0,1},{2,3},{4,5},{6,7}

We define places explicitly with the IDs of the OS 
virtual cores (the PUs).

We do not control where the initial thread is placed.  
We will assume it is placed on HT1 or Core 0.

For this example, we have 4 place partitions.

With close, threads placed in consecutive 
locations

With spread, threads placed in first place of 
each partition

PU: processor unit. The smallest physical execution unit that hwloc recognizes.

Node Core 0 Core 1 Core 2 Core 3

HT0 HT1 HT0 HT1 HT0 HT1 HT0 HT1

PU 0 PU 1 PU 2 PU 3 PU 4 PU 5 PU 6 PU 7

Thread 0 1 2 3

Node Core 0 Core 1 Core 2 Core 3

HT0 HT1 HT0 HT1 HT0 HT1 HT0 HT1

PU 0 PU 1 PU 2 PU 3 PU 4 PU 5 PU 6 PU 7

Thread 0 1 2 3



OMP_PROC_BIND Choices for STREAM Benchmark
OMP_NUM_THREADS=32
OMP_PLACES=threads

OMP_PROC_BIND=close
Threads 0 to 31 bind to cores 
(0,32),(1,33),(2,34),…(15,47).  All threads are in the 
first socket.  The second socket is idle.  Not optimal.

OMP_PROC_BIND=spread
Threads 0 to 31 bind to cores 0,1,2,… to 31.  Both 
sockets and memory are used to maximize memory 
bandwidth.

Blue:  OMP_PROC_BIND=close
Red:   OMP_PROC_BIND=spread
Both with First Touch

Stream is a well known memory bandwidth benchmark 
based on simple vector operations on huge vectors

Threads beyond 32 land in  
the second NUMA domain

Based on content from  Yun (Helen) He from NERSC )



Aligning memory to threads … First touch
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Memory Affinity: Exploiting “First Touch” page mapping policy

Red:  step 1.1 + step 2.  Memory from Numa Domain 0 only
Blue: step 1.2 + step 2.  Memory used from both NUMA domains

Step 1.1 Initialization by primary thread only 
  for (j=0; j<VectorSize; j++) { 
         a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

  Step 1.2 Initialization by all threads
 #pragma omp parallel for 
  for (j=0; j<VectorSize; j++) { 
        a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

• The OS maps pages of memory based on a first touch policy.

• Hence, Affinity to memory is not defined when memory is 
allocated … it is defined when the memory is initialized. 

• The result is memory is local to the thread which initializes it. 

OMP_PLACES=threads
OMP_PROC_BIND=close

A dual Socket node with Intel® XeonTM E5-2698v3 CPUs
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Step 2 Compute
  #pragma omp parallel for
  for (j=0; j<VectorSize; j++)
        a[j]=b[j]+d*c[j];

Numa 
Domain 0

Numa 
Domain 1

M
em

or
y 

1

M
em

or
y 

0

Based on content from  Yun (Helen) He from NERSC )



Example: working with the First Touch Policy
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Example: use  all available memory
• Stream memory bandwidth benchmark running on a two socket Intel® XeonTM X5675 with 12 threads on 12 cores
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Memory Memory

Based on content from Christian Terboven (RWTH/AACHEN) and Michael Klemm (OpenMP) 

copy scale add triad

18.8
 GB/s

18.5
 GB/s

18.1
 GB/s

18.2
 GB/s

copy scale add triad

41.3
GB/s

39.3 
GB/s

40.3 
GB/s

40.4
GB/s

3 arrays in one NUMA domain

Arrays split between both NUMA 
domains

Rember this slide?

Arrays A, B, and C 
initialized on 

primary thread 

Arrays A, B, and C 
initialized in parallel

But its not just any “in parallel”.  You want to initialize the arrays with the same “parallel 
for schedule” that will be used when the threads do the computations with A, B, and C



Nested parallelism

135



Process and Thread Affinity in Nested OpenMP

export OMP_MAX_ACTIVE_LEVELS=2
export OMP_NUM_THREADS=4,4
export OMP_PLACES=cores
export OMP_PROC_BIND=spread,close
./a.out

spread 

close 

Running on a system with 2 sockets, 4 cores per socket, 4 hardware-threads per core
#pragma omp parallel 
      #pragma omp parallel 

initial 

Consider a 
program with 

nested parallel 
regions

Cyclic distribution between “close” cores Distribution across four hardware threads

export OMP_MAX_ACTIVE_LEVELS=2
export OMP_NUM_THREADS=4,4
export OMP_PLACES=threads
export OMP_PROC_BIND=spread,close
./a.out

spread 

close 

initial 

Socket 0 Socket 0 Socket 1Socket 1

Based on content from  Yun (Helen) He from NERSC )



Wrapping up our discussion of taking NUMA 
features of a system into account in your 

multithreaded programs …
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Getting the affinity right can have serious impacts on performance
Application Benchmark Performance for a number of benchmarks at NERSC

Lower is better

Results running on the Cori system at 
NERSE which has dual Socket nodes with 

Intel® XeonTM E5-2698v3 CPUs
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Based on content from  Yun (Helen) He from NERSC (National Energy Research Supercomputing Center)



Finding the best strategy for thread affinity
• Experiment to find the best combinations of OMP_PLACES and OMP_PROC_BIND.  
– Using the environment variables makes it easy to try many options

• The best approach depends on the system but also on the features of an application
– Putting threads for apart … on different sockets
– May improve aggregate memory bandwidth available to an application
– May improve combined cache size for the application
– May increase synchronization overhead

– Putting threads close together … on adjacent cores that may share some caches
– May reduce synchronization overhead
– May decrease memory bandwidth and total cache size

• Vendors have their own constructs for controlling NUMA features of a system.
– Avoid vendor-specific constructs if you can … use portable OMP_PLACES and OMP_PROC_BIND
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Introduction to GPU programming
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A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing 
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit
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The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < N) c[i] = a[i] + b[i];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // Use thread blocks with 256 threads each
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

142

Assume a GPU with 
unified shared memory 

… allocate on host, 
visible on device too

int main() {
   int N = . . . ;
   float *a, *b, *c;
   
   a* =(float *) malloc(N * sizeof(float));

   // ... allocate other arrays (b and c)
   // and fill with data

   for (int i=0;i<N; i++)
      c[i] = a[i] + b[i]; 

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA



How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

143

// Compute sum of order-N matrices: C = A + B
void __global__
matAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < N && j<N) c[i][j] == a[i][j] + b[i][j];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // define threadBlocks and the Grid
      dim3 dimBlock(4,4); 
   dim3 dimGrid(4,4);

  // Launch kernel on Grid 
    matAdd <<< dimGrid,dimBlock>>> (a, b, c, N);
}

1. Write kernel code for the 
scalar work-items 2. Map work-items onto an 

N dim index space. 
4. Run on hardware 

designed around the 
same SIMT 

execution model

3. Map data structures 
onto the same index 

spaceThis is CUDA code
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SIMT: One instruction stream maps onto many Processing Elements
• SIMT model: Individual scalar instruction streams are grouped together for SIMD execution on hardware

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

ld x
mul a
ld y
add
st y

A stream of 
Scalar 

instructions 
from a single 

work-item

set of work-items executing together: a warp
(analogous to the width of a CPU SIMD unit)

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st ySIMD execution scheduled 
across a fixed number of 

Processing Elements

GPU nomenclature is really messed up.    (sorry about that … we tried to unify around OpenCL but failed).

Instruction stream at finest grain Work-item,      CUDA Thread

Blocks for scheduling work-items work-group,     thread block

Execution width for work-items Subgroup,      warp

Finest grained processing element (PE) in a GPU SIMD Lane,   Processing Element,    CUDA Core

Block of PEs driven by a single Instruction sequencer multithreaded SIMD processor, compute unit, Streaming multiprocessor

These names are particularly awful 
since they conflict with established 

names from CPU Computing.
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CPU/GPU execution models 

For a CPU, the 
threads are all 
active and able 

to make forward 
progress.

For a GPU, any 
given work-group 

might be in the 
queue waiting to 

execute.



Programming a GPU with OpenMP



Running code on the GPU:  
The target construct and default data movement

Host thread
Generating Task

Initial task

Target task

#pragma omp target
{
      target region, 
can use A, B and N
    

}

Device Initial 
thread

Host thread
waits for the 

task region to 
complete

float A[N], B[N]; A, B and N 
mapped to the 

device

the arrays 
A and B 

mapped back to 
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and statically allocated 
arrays are moved onto the device 

by default before execution

Only the statically allocated arrays 
are moved back to the host after 

the target region completes
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Default Data Sharing: example
int main(void) {
   int N = 1024;
   double A[N], B[N];

   #pragma omp target 
   {

      for (int ii = 0; ii < N; ++ii) {

         A[ii] = A[ii] + B[ii];

      }

   } // end of target region
}

1. Variables created in host 
memory.

2. Scalar N and stack arrays 
A and B are copied to device 

memory. Execution 
transferred to device.

3. ii is private on the device 
as it’s declared within the 

target region

4. Execution on the device.

5. stack arrays A and B are 
copied from device memory 

back to the host. Host 
resumes execution.
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Now let’s run code in parallel on the device
int main(void) {
   int N = 1024;
   double A[N], B[N];

   #pragma omp target 
   {
      #pragma omp loop
      for (int ii = 0; ii < N; ++ii) {

         A[ii] = A[ii] + B[ii];

      }

   } // end of target region
}

The loop construct tells the compiler: 
“this loop will execute correctly if 

the loop iterations run in any order.  
You can safely run them 

concurrently.  And the loop-body 
doesn’t contain any OpenMP 

constructs.  So do whatever you 
can to make the code run fast”
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The loop construct is a declarative construct.   You 
tell the compiler what you want done but you DO 
NOT tell it how to “do it”.     This is new for OpenMP



Solution: Simple vector add in OpenMP on GPU
int main()
{
  float a[N], b[N], c[N], res[N];
  int err=0;

 // fill the arrays
 #pragma omp parallel for
 for (int i=0; i<N; i++){

   a[i] = (float)i;
   b[i] = 2.0*(float)i;
   c[i] = 0.0;
   res[i] = i + 2*i;
 }

 // add two vectors
 #pragma omp target

   #pragma omp loop

 for (int i=0; i<N; i++){
   c[i] = a[i] + b[i];
 }

// test results
#pragma omp parallel for reduction(+:err)
for(int i=0;i<N;i++){

  float val = c[i] - res[i];
  val = val*val;
  if(val>TOL) err++;
}

 printf("vectors added with %d errors\n", err);
return 0;

}



No single processor is best at everything
• The idea that you should move everything to the GPU makes no sense

• Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

Where are Tasks running? 

On a CPU

On an Accelerator

Ru
n 

Ti
m

e

CPU only

Offload

Heterogeneous 
Computing



5-point stencil: the heat program

• The heat equation models changes in temperature over time.

• We’ll solve this numerically on a computer using an explicit finite difference discretisation.
• 𝑢 = 𝑢 𝑡, 𝑥, 𝑦  is a function of space and time.
• Partial differentials are approximated using diamond difference formulae:

𝜕𝑢
𝜕𝑡

≈
𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦

𝑑𝑡

𝜕$𝑢
𝜕𝑥$ 	≈

𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)
𝑑𝑥$

– Forward finite difference in time, central finite difference in space.

𝜕𝑢
𝜕𝑡 − 𝛼∇

!𝑢 = 0



5-point stencil: the heat program

• Given an initial value of 𝑢, and any boundary conditions, we can calculate the value of 𝑢	at time 
t+1 given the value at time t.

• Each update requires values from the north, south, east and west neighbours only:

• Computation is essentially a weighted average of each cell and its neighbouring cells.
• If on a boundary, look up a boundary condition instead.



Heat diffusion problem: 5-point stencil code 
const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;

  // malloc and initialize u_tmp and u (code not shown)

  for (int t = 0; t < nsteps; ++t) { 

     for (int i = 0; i < n; ++i) {
       for (int j = 0; j < n; ++j) {
         u_tmp[i+j*n] =  r2 * u[i+j*n]         +
             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +
             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +
             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);
        }
      }
    // Pointer swap to get ready for next step
    tmp = u;
    u = u_tmp;
    u_tmp = tmp;
 }

}

Loop over time steps

Loop over NxN spatial domain

Update the 5-point 
stencil. Boundary 
conditions on the 
edges of the domain 
are fixed at zero. 

Serial CPU code



Heat diffusion problem: 5-point stencil code 
const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;

  // malloc and initialize u_tmp and u (code not shown)

  for (int t = 0; t < nsteps; ++t) { 

     #pragma omp parallel for collapse(2)
     for (int i = 0; i < n; ++i) {
       for (int j = 0; j < n; ++j) {
         u_tmp[i+j*n] =  r2 * u[i+j*n]         +
             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +
             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +
             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);
        }
      }
    // Pointer swap to get ready for next step
    tmp = u;
    u = u_tmp;
    u_tmp = tmp;
 }

}

Parallel CPU code, n=4000

Intel® XeonTM  Gold 5218 @ 2.3 Ghz, 8 cores.    
Nvidia HPC Toolkit compiler             nvc –fast –fopenmp heat.c 

0

2
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8

0 2 4 6 8 10

heat problem,  n=4000 

Threads

Sp
ee

du
p

1 thread 1.80 secs

8 threads 0.290 secs



Heat diffusion problem: 5-point stencil code 
const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;

  // malloc and initialize u_tmp and u (code not shown)

  for (int t = 0; t < nsteps; ++t) { 
    #pragma omp target map(tofrom: u[0:n*n], u_tmp[0:n*n])
    #pragma omp loop

     for (int i = 0; i < n; ++i) {
       for (int j = 0; j < n; ++j) {
         u_tmp[i+j*n] =  r2 * u[i+j*n]         +
             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +
             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +
             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);
        }
      }
    // Pointer swap to get ready for next step
    tmp = u;
    u = u_tmp;
    u_tmp = tmp;
 }

}

Parallel GPU code, n=4000

GPU Solver time = 1.40 secs

This isn’t much better than the 
runtime for a single CPU (1.8 secs) 
and worse than 8 cores on a CPU 
(0.29 secs).

Why is the performance so bad?

NVIDIA T4 GPU, 16 Gbyte, Turing Arch.
Nvidia HPC Toolkit compiler
nvc -fast -mp=gpu -gpu=cc75 heat.c

When you map pointers between the host and the 
device, OpenMP remembers the address.   

Swapped addresses on the hosts swaps 
addresses on the device



Heat diffusion problem: 5-point stencil code 
const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;

  // malloc and initialize u_tmp and u (code not shown)

  for (int t = 0; t < nsteps; ++t) { 
    #pragma omp target map(tofrom: u[0:n*n], u_tmp[0:n*n])
    #pragma omp loop

     for (int i = 0; i < n; ++i) {
       for (int j = 0; j < n; ++j) {
         u_tmp[i+j*n] =  r2 * u[i+j*n]         +
             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +
             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +
             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +
             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);
        }
      }
    // Pointer swap to get ready for next step
    tmp = u;
    u = u_tmp;
    u_tmp = tmp;
 }

}

Parallel GPU code, n=4000

At the beginning of each 
iteration, copy 

(2*N2)*sizeof(TYPE) bytes
to the device

At the end of  each iteration, copy
(2*N2)*sizeof(TYPE) bytes

from the device

With a runtime of 1.4 secs (worse than the 
CPU time) we see that Data Movement 

dominates performance. 

We need to create a data region on the GPU 
that is distinct from the target region.

That way,  we can keep the data on the device 
between target constructs



Target enter/exit data constructs

• Create a data region on the target device (a device data environment) with two 
standalone directives:

#pragma omp target enter data map(…)
#pragma omp target exit data map(…)

• The target enter data maps variables to the device data environment.

• The target exit data unmaps variables from the device data environment.

• Once created, subsequent target regions inherit the existing data environment.



Target enter/exit data example
void init_array(int *A, int *B, int N) {
   for (int i = 0; i < N; ++i) { A[i] = i;  B[i]=2*I;}

  #pragma omp target enter data map(to: A[0:N], B[0:N])
}

int main(void) {

   int N = 1024;
   int *A = malloc(sizeof(int) * N);
   int *B = malloc(sizeof(int) * N);
   init_array(A, B, N);

   #pragma omp target 
   #pragma omp loop
   for (int i = 0; i < N; ++i)
      A[i] = A[i] * B[i];

 #pragma omp target exit data map(from: A[0:N])
}



Heat diffusion problem: 5-point stencil code 
const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;
  // malloc and initialize u_tmp and u (code not shown)
  #pragma omp target enter data map(to: u[0:n*n], u_tmp[0:n*n])

  for (int t = 0; t < nsteps; ++t) { 
    #pragma omp target  
    #pragma omp loop

     for (int i = 0; i < n; ++i) {
       for (int j = 0; j < n; ++j) {
         u_tmp[i+j*n] =  r2 * u[i+j*n]         +
             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +
             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +
             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);
        }
      }
    // Pointer swap to get ready for next step
    tmp = u;
    u = u_tmp;

    u_tmp = tmp;
 }
 #pragma omp target exit data map(from: u[0:n*n])
}

Parallel GPU code, n=4000

Create a data region and 
map indicated data on entry

Exit the data 
region and map 
indicated data

NVIDIA T4 GPU, 16 Gbyte, Turing Arch.
Nvidia HPC Toolkit compiler
nvc -fast -mp=gpu -gpu=cc75 heat.c

GPU Solver time* = 0.42 secs

This is a general principal … 
if you want performance, you 

must optimize data 
movement.   

*includes time for target enter/exit data



Heat diffusion problem: 5-point stencil code 
const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;
  // malloc and initialize u_tmp and u (code not shown)
 

  for (int t = 0; t < nsteps; ++t) { 
 
    #pragma omp parallel for

     for (int i = 0; i < n; ++i) {
       for (int j = 0; j < n; ++j) {
         u_tmp[i+j*n] =  r2 * u[i+j*n]         +
             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +
             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +
             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);
        }
      }
    // Pointer swap for  next step
    tmp = u;
    u = u_tmp;

    u_tmp = tmp;
 }
 
}

Parallel CPU results, 
n=4000

Num threads ij loop order
1 1.512849
2 0.776229
4 0.400822
8 0.227317

Intel® XeonTM  Gold 5218 @ 2.3 Ghz, 8 cores.    
Nvidia HPC Toolkit compiler           nvc –fast –fopenmp heat.c 

C
PU

All times in seconds

This is the ij loop order.  

Let’s optimize the CPU code as well



Heat diffusion problem: 5-point stencil code 
const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;
  // malloc and initialize u_tmp and u (code not shown)
 

  for (int t = 0; t < nsteps; ++t) { 
 
    #pragma omp parallel for

     for (int j = 0; j < n; ++j) {
       for (int i = 0; i < n; ++i) {
         u_tmp[i+j*n] =  r2 * u[i+j*n]         +
             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +
             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +
             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);
        }
      }
    // Pointer swap for  next step
    tmp = u;
    u = u_tmp;

    u_tmp = tmp;
 }
 
}

Parallel CPU results, 
n=4000

Make j the outermost loop so adjacent loop 
iterations access adjacent memory locations.

Num threads ij loop order ji loop order
1 1.512849 0.262260
2 0.776229 0.132453
4 0.400822 0.064220
8 0.227317 0.046586

Intel® XeonTM  Gold 5218 @ 2.3 Ghz, 8 cores.    
Nvidia HPC Toolkit compiler           nvc –fast –fopenmp heat.c 

This is the ji loop order.  
Swap these loops to get 

the ij order. C
PU

All times in seconds

This is particularly important on a GPU …  you want memory 
coalesced with the GPUs processing elements (PE) … i.e., 

elements of u accessed by PEi should be adjacent to the elements 
of u accessed by PEi+1



Heat diffusion problem: 5-point stencil code 
const double r = alpha * dt / (dx * dx);

  const double r2 = 1.0 - 4.0*r;
  // malloc and initialize u_tmp and u (code not shown)
  #pragma omp target enter data map(to: u[0:n*n], u_tmp[0:n*n])

  for (int t = 0; t < nsteps; ++t) { 
    #pragma omp target  
    #pragma omp loop

     for (int j = 0; j < n; ++j) {
       for (int i = 0; i < n; ++i) {
         u_tmp[i+j*n] =  r2 * u[i+j*n]         +
             r * ((i < n-1) ? u[i+1+j*n]   : 0.0) +
             r * ((i > 0)   ? u[i-1+j*n]   : 0.0) +
             r * ((j < n-1) ? u[i+(j+1)*n] : 0.0) +

             r * ((j > 0)   ? u[i+(j-1)*n] : 0.0);
        }
      }
    // Pointer swap 
    tmp = u;
    u = u_tmp;

    u_tmp = tmp;
 }
 #pragma omp target exit data map(from: u[0:n*n])
}

Parallel CPU and GPU 
results, n=4000

Memory coalescence is important for CPUs and GPUs.

Note: collapse(2) did not help on the GPU or the CPU

NVIDIA T4 GPU, 16 Gbyte, Turing Arch.
Nvidia HPC Toolkit compiler. nvc -fast -mp=gpu heat.c

Num threads ij loop order ji loop order
1 1.512849 0.262260
2 0.776229 0.132453
4 0.400822 0.064220
8 0.227317 0.046586

Intel® XeonTM  Gold 5218 @ 2.3 Ghz, 8 cores.    
Nvidia HPC Toolkit compiler           nvc –fast –fopenmp heat.c 

This is the ji 
loop order.  

ij without timing 
enter and exit data

ij loop 
order

ji without timing 
enter and exit data

ji loop order

0.056830 0.417887 0.020123 0.358905

C
PU

G
PU

All times in seconds



Outline
• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Data Environment

• Memory Model

• Irregular Parallelism and Tasks
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OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution across threads.

void omp_set_thread_num()
int omp_get_thread_num()
int omp_get_num_threads()

Default number of threads and internal control variables.  
SPMD pattern: Create threads with a parallel region and split up the work using the number of 
threads and the thread ID.  

double omp_get_wtime() Speedup and Amdahl's law.    False sharing and other performance issues.

setenv OMP_NUM_THREADS  N Setting the internal control variable for the default number of threads with an environment 
variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions.    
Revisit interleaved execution. 

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])
schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute 

nowait Disabling implied barriers on workshare constructs, the high cost of barriers, and the flush 
concept (but not the flush directive).

#pragma omp single Workshare with a single thread.

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 21 items
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Resources
• The OpenMP Architecture review Board (ARB) has a wealth of helpful resources on its web site: www.openmp.org  
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Including a 
comprehensiv
e collection of 
examples of 

code using the 
OpenMP 

constructs

http://www.openmp.org/


To learn OpenMP:
• An exciting new book that Covers the 

Common Core of OpenMP plus a few key 
features beyond the common core that 
people frequently use

• It’s geared towards people learning 
OpenMP, but as one commentator put it 
… everyone at any skill level should 
read the memory model chapters.

• Available from MIT Press

170www.ompcore.com for code samples and the Fortran supplement

http://www.ompcore.com/


Books about OpenMP
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A great book that covers 
OpenMP features beyond 

OpenMP 2.5



Books about OpenMP
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The latest book on OpenMP … 

Released in November 2023.

A book about how to use OpenMP to 
program a GPU.



GPU programming with OpenMP
• There is much more … which you can learn about from our book

– Loop is a descriptive construct … you leave all the details to the runtime.  
Always start with Loop plus enter-data/exit-data since often that is all you 
need

– OpenMP includes constructs for detailed control of the GPU so you can do 
programing akin to that with CUDA.  I do not recommend this.  You 
maximize portability if you let the runtime system handle mapping code onto 
hardware details for you.  But if you want to control local memories, you may 
have no choice.

– The interop constructs let you call functions native to a particular  GPU (such 
as BLAS) from inside the OpenMP program.  They are a bit complicated to 
work with.  See our book to learn more.
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Learn all the details of GPU programming with 
OpenMP (up to version 5.2) .  Released in November  2023



Exercises to play with during consolidation
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Exercise: PI with tasks

• Go back to the original pi.c program
– Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

• Hint: first create a recursive pi program and verify that it works.  Think about the 
computation you want to do at the leaves.  If you go all the way down to one 
iteration per leaf-node, won’t you just swamp the system with tasks?
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Exercise: Traversing linked lists  
• Consider the program linked.c

– Traverses a linked list computing a sequence of Fibonacci numbers at each node.
• Parallelize this program selecting from the following list of constructs:

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();  
int omp_get_thread_num();
double omp_get_wtime();
schedule(static[,chunk]) or schedule(dynamic[,chunk])
private(), firstprivate(), default(none)

• Hint: Just worry about the while loop that is timed inside main().  You 
don’t need to make any changes to the “list functions”

You saw my solution to this 
problem (without using 

tasks).  Try and come up 
with some additional 

solutions.   There are many 
ways to do this, so get 

creative.


