CERN

Ing Bul
A N\ ‘

Threadi

NS

SCIENTIFIC

COMPUTING
SCHOOL

\
EFFICIENT

* Intel Threading Building Blocks
* now part of the oneAPI ecosystem: oneTBB
* including the and
* migrating from the original TBB to oneTBB requires

« whyTBB?
* scalability and load balancing
* composability
* multiple levels of parallelism

- task-based parallelism:
- fork-join parallelism:

e access to low level interface

= ! , observers, etc.

October 6t, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/
https://oneapi-src.github.io/oneTBB/
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/nested-index.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide/Task_API.html#using-oneapi-tbb-parallel-invoke
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Working_on_the_Assembly_Line_pipeline.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Flow_Graph.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/parallel_for_os.html
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide/Task_API.html#using-oneapi-tbb-task-group
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/task_scheduler/task_arena/task_arena_cls.html#task-arena

h‘ . ,,_'I =
P | BB h L= - §= = EFFICIENT
13 - = T SCIENTIFIC
ro L '_ \ COMPUTING
5 ¢ o
4 ~ o

* ProTBB (2019)
* Voss, Asenjo, Reinders

* open access book

Pro TB B * allexamples in the book are on GitHub

C++ Parallel Programming with
Threading Building Blocks

* the book describes the old TBB API

e prior to the migration to oneTBB
 usethe branch!

Apress

October 6t, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1007/978-1-4842-4398-5
https://github.com/Apress/pro-TBB/tree/oneTBB
https://github.com/Apress/pro-TBB/tree/oneTBB

SetUngLﬂ)OneTBBgagﬁ;&fr ; fggy
the latest version of oneTBB is installed on the ESC machines under:
/opt/intel/oneapi/tbb/latest

* make it available to the compiler and to the program at run time:

S source /Jopt/intel/oneapi/tbb/latest/env/vars.sh

 checkthatit worked:

S echo $TBBROOT
/opt/intel/oneapi/tbb/2022.2/env/..

* we need gcc 14 for some of the exercises
* load the gcc 14 environment:

S source scl _source enable gcc-toolset-14
$ gcc -version
gcc (GCC) 14.2.1 20250110 (Red Hat 14.2.1-7)

October 6th, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks 4/15

https://creativecommons.org/licenses/by-sa/4.0/

)

EFFICIENT
SCIENTIFIC
COMPUTING

SCHOOL

« parallel for isthe simplest parallel algorithm

template<typename Index, typename Func>
void parallel_for(Index first, Index last, Index step, const Func& func);

 stepisoptional, defaults to 1
 funccanbe alambda!
* replace

for (Index 1 = first; 1 < last; 1 += step) {
// .. Loop body ..
}

* with

tbb::parallel_for<Index>(first, last, step, [&](Index 1){
// .. Loop body ..
1)

October 6th, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/parallel_for_os.html

. BN [T A oa o \
° " x e, B ey~
| T R i B : EFFICIENT
s s N ; SCIENTIFIC
Saxpy WI G N il)5 !) COMPUTING

5

Ly

generate a random scalar number x
generate two vectors of 100°000'000 random numbers A and B

measure how log it takes to apply the “saxpy” kernel to the vectors
~— (single precision) A x + B

template <typename T=
void axpy(Ta, T x, Ty, T& z) {
Z=a * ¥ +y¥;

}

template <typename T=>
void seqguential axpy(T a, std::vector<T> const& x, std::vector<T> const& y, std::vector<T>& z) {

std::size t size = x.size{);
for (std::size t 1 = 8; 1 < size; ++1i) {
axpy(a, x[1], y[i], z[i]);
}
}

use tbb: :parallel_for to speed up the operations

October 6t, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks 6/15

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/blob/main/hands-on/tbb/03_tbb_parallel_for_saxpy/test.cc

EFFICIENT
SCIENTIFIC

COMPUTING
SCHOOL

« parallel_for
* splits the input range in chunks
* executes the loop body over each chunk in parallel

» apartitioner specifies a strategy for splitting into chunks and executing the loop:

split the work in chunks of approximately equal size, to keep all threads busy
- may be more efficient if all items take approximately the same time

. (default)
- similar approach, but may split the work further if some items take longer than others

- similar approach, tries to maintain cache affinity across multiple loops

- split the input range as much as possible
- useful with a to process 1-, 2-, or 3-dimensional chunks

October 6t, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms/partitioners/static_partitioner.html
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms/partitioners/auto_partitioner.html
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms/partitioners/affinity_partitioner.html
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms/partitioners/simple_partitioner.html
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms/blocked_ranges/blocked_range_cls.html

SCIENTIFIC

COMPUTING
SCHOOL

\
EFFICIENT

* try to use the various partitioners
» what gives the best performance ?
* whatis agood chunk size for the simple partitioner?
 doesthe affinity_partitioner make sense in this case ?

October 6t, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/

\
EFFICIENT

SCIENTIFIC

COMPUTING
SCHOOL

October 6th, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/

EFFICIENT
SCIENTIFIC

COMPUTING
SCHOOL

and

for fFormatted output
 c++20includes std::format
 {fmt}includes a lot more'!

* both libraries can be used in header-only mode
* increases compilation times
* easiertosetup

test.cc Makefile stb fmt

October 6th, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks 10/15

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/nothings/stb/blob/master/stb_image.h
https://github.com/nothings/stb/blob/master/stb_image_write.h
https://github.com/fmtlib/fmt

\
NT

3
'

an alternative graph library= 1} & .

* provides encoder/decoder implementation for DEC SIXEL graphics, and some converter programs

* lets you display graphical images directly on the terminal
- ifyour terminal supports it

needs to be build and installed

git clone

cd build/libsixel

./configure --without-libcurl --without-jpeg --without-png \
--without-pkgconfigdir --without-bashcompletiondir \
--without-zshcompletiondir --disable-python \
--prefix=

make -j8 install

cd ../../
rm -rf build

[2825-18-86 87:25:28) abocci@esc25-al00-1:

&

October 6t, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/saitoha/libsixel

)

SCHOOL

our task list, “ i@l E - (E

* hands-on/tbb/04 images/test.cc:
* read oneimage from a file

» display the image on the terminal

* make a 0.5x0.5 smaller copy of the image
* convert the image to gray scale

* make tinted copies

 combine the gray scale and tinted images into
a single image with the same size as the original

» display the image on the terminal
* write the image to afile

* hands-on/tbb/04 images libsixel/test.cc
* libsixel version, otherwise same functionality

October 6th, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc25/blob/main/hands-on/tbb/04_images/test.cc
https://github.com/infn-esc/esc25/blob/main/hands-on/tbb/04_images_libsixel/test.cc

EFFICIENT
SCIENTIFIC

COMPUTING
SCHOOL

» with TBB we can easily (?) express multiple levels of parallelism

* algorithmic parallelism: parallelise the inner loops in the various algorithms
- scaling
- grayscaling
= ##Linting
- very dependent on the algorithms
* task-based parallelism: parallelise the different tasks working on the same data
- apply the different tints can be done in parallel
- writing to disk in parallel to displaying on the terminal
- very dependent on the workflow

» data parallelism: process multiple images in parallel
- weak scaling

- often the most efficient approach for large datasets

 composability: you can also apply all of them to the same problem!

October 6t, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks

https://creativecommons.org/licenses/by-sa/4.0/

EFFICIEN
SCIENTIFIC

COMPUTING
SCHOOL

Last commit message Last commit date

03_tbb_parallel_for_saxpy Import TBB hands-on from ESC24 and update for gec 14
04_images mport TBB hands-on from ESC24 an

04_images_libsixel id alternative image display using libsixel
05_tbb_parallel for images mport TBB hands f 1 E5C24 and update fo
06_tbb_graph Impart TBB hands-on from ESC24 and update fc
07_tbb_parallel_for_local Import TBB hands-on from ESC24 and update fo
08_tbb_hierarchical Import TBB hands-on from ESC24 and update for gece 14

.clang-format Import TBB hands-on from ESC24 and update for g

.gitignore Import TBB hands-on from ESC24 and update for gec 1

October 6th, 2025 Introduction to parallelism in C++ with Intel Threading Building Blocks 14 /15

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc25/tree/main/hands-on/tbb

questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

