
Introduction to Intel

Threading Building Blocks

Andrea Bocci
CERN

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 2 / 15

parallelism with Intel TBB

● Intel Threading Building Blocks
● now part of the oneAPI ecosystem: oneTBB
● including the official documentation and reference
● migrating from the original TBB to oneTBB requires some small changes

● why TBB ?
● scalability and load balancing
● composability
● multiple levels of parallelism

– task-based parallelism: parallel_invoke, parallel_pipeline, various graph types

– fork-join parallelism: parallel_for, various parallel algorithms

● access to low level interface
– task_group, task_arena, observers, etc.

https://creativecommons.org/licenses/by-sa/4.0/
https://oneapi-src.github.io/oneTBB/
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/nested-index.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide/Task_API.html#using-oneapi-tbb-parallel-invoke
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Working_on_the_Assembly_Line_pipeline.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Flow_Graph.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/parallel_for_os.html
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Migration_Guide/Task_API.html#using-oneapi-tbb-task-group
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/task_scheduler/task_arena/task_arena_cls.html#task-arena

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 3 / 15

Pro TBB

● Pro TBB (2019)
● Voss, Asenjo, Reinders
● https://doi.org/10.1007/978-1-4842-4398-5
● open access book

● all examples in the book are on GitHub
● https://github.com/Apress/pro-TBB

● the book describes the old TBB API
● prior to the migration to oneTBB
● use the oneTBB branch !

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1007/978-1-4842-4398-5
https://github.com/Apress/pro-TBB/tree/oneTBB
https://github.com/Apress/pro-TBB/tree/oneTBB

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 4 / 15

setting up oneTBB

● the latest version of oneTBB is installed on the ESC machines under:
/opt/intel/oneapi/tbb/latest

● make it available to the compiler and to the program at run time:

● check that it worked:

● we need gcc 14 for some of the exercises
● load the gcc 14 environment:

$ source /opt/intel/oneapi/tbb/latest/env/vars.sh

$ echo $TBBROOT
/opt/intel/oneapi/tbb/2022.2/env/..

$ source scl_source enable gcc-toolset-14
$ gcc –version
gcc (GCC) 14.2.1 20250110 (Red Hat 14.2.1-7)
...

https://creativecommons.org/licenses/by-sa/4.0/

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 5 / 15

tbb::parallel_for

● parallel_for is the simplest parallel algorithm

● step is optional, defaults to 1
● func can be a lambda !

● replace

● with

for (Index i = first; i < last; i += step) {
 // … loop body …
}

tbb::parallel_for<Index>(first, last, step, [&](Index i){
 // … loop body …
});

template<typename Index, typename Func>
void parallel_for(Index first, Index last, Index step, const Func& func);

https://creativecommons.org/licenses/by-sa/4.0/
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/parallel_for_os.html

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 6 / 15

saxpy with TBB

● hands-on/tbb/03_tbb_parallel_for_saxpy/test.cc:
● generate a random scalar number x
● generate two vectors of 100’000’000 random numbers A and B
● measure how log it takes to apply the “saxpy” kernel to the vectors

– (single precision) A x + B

● use tbb::parallel_for to speed up the operations

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc24/blob/main/hands-on/tbb/03_tbb_parallel_for_saxpy/test.cc

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 7 / 15

parallel_for partitioner

● parallel_for
● splits the input range in chunks
● executes the loop body over each chunk in parallel

● a partitioner specifies a strategy for splitting into chunks and executing the loop:
● static_partitioner

– split the work in chunks of approximately equal size, to keep all threads busy

– may be more efficient if all items take approximately the same time

● auto_partitioner (default)
– similar approach, but may split the work further if some items take longer than others

● affinity_partitioner
– similar approach, tries to maintain cache affinity across multiple loops

● simple_partitioner
– split the input range as much as possible

– useful with a blocked_range to process 1-, 2-, or 3-dimensional chunks

https://creativecommons.org/licenses/by-sa/4.0/
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms/partitioners/static_partitioner.html
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms/partitioners/auto_partitioner.html
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms/partitioners/affinity_partitioner.html
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms/partitioners/simple_partitioner.html
https://uxlfoundation.github.io/oneAPI-spec/spec/elements/oneTBB/source/algorithms/blocked_ranges/blocked_range_cls.html

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 8 / 15

saxpy with different partitioners

● try to use the various partitioners
● what gives the best performance ?
● what is a good chunk size for the simple_partitioner ?
● does the affinity_partitioner make sense in this case ?

https://creativecommons.org/licenses/by-sa/4.0/

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 9 / 15

Art @ ESC24 !

https://creativecommons.org/licenses/by-sa/4.0/

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 10 / 15

dependencies

● stb_image.h and stb_image_write.h reading and writing image files

● {fmt} for formatted output
● c++20 includes std::format
● {fmt} includes a lot more !

● both libraries can be used in header-only mode
● increases compilation times
● easier to set up

all: test

stb:
 git clone https://github.com/nothings/stb.git

fmt:
 git clone https://github.com/fmtlib/fmt.git

test: test.cc Makefile stb fmt
 g++ -std=c++20 -O3 -g -Istb -Ifmt/include -Wall -march=native -ltbb $< -o $@

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/nothings/stb/blob/master/stb_image.h
https://github.com/nothings/stb/blob/master/stb_image_write.h
https://github.com/fmtlib/fmt

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 11 / 15

● libsixel
● provides encoder/decoder implementation for DEC SIXEL graphics, and some converter programs
● lets you display graphical images directly on the terminal

– if your terminal supports it

● needs to be build and installed

an alternative graph library

git clone git@github.com:saitoha/libsixel.git build/libsixel
cd build/libsixel
./configure --without-libcurl --without-jpeg --without-png \
 --without-pkgconfigdir --without-bashcompletiondir \
 --without-zshcompletiondir --disable-python \
 --prefix=$(realpath ../../libsixel)
make -j8 install
cd ../../
rm -rf build

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/saitoha/libsixel

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 12 / 15

● hands-on/tbb/04_images/test.cc:
● read one image from a file
● display the image on the terminal
● make a 0.5×0.5 smaller copy of the image
● convert the image to gray scale
● make tinted copies
● combine the gray scale and tinted images into

a single image with the same size as the original
● display the image on the terminal
● write the image to a file

● hands-on/tbb/04_images_libsixel/test.cc
● libsixel version, otherwise same functionality

our task list

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc25/blob/main/hands-on/tbb/04_images/test.cc
https://github.com/infn-esc/esc25/blob/main/hands-on/tbb/04_images_libsixel/test.cc

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 13 / 15

multiple levels of parallelism

● with TBB we can easily (?) express multiple levels of parallelism
● algorithmic parallelism: parallelise the inner loops in the various algorithms

– scaling

– gray scaling

– tinting

– very dependent on the algorithms

● task-based parallelism: parallelise the different tasks working on the same data
– apply the different tints can be done in parallel

– writing to disk in parallel to displaying on the terminal

– very dependent on the workflow

● data parallelism: process multiple images in parallel
– weak scaling

– often the most efficient approach for large datasets

● composability: you can also apply all of them to the same problem !

https://creativecommons.org/licenses/by-sa/4.0/

October 6 , 2025ᵗʰ Introduction to parallelism in C++ with Intel Threading Building Blocks 14 / 15

● hands-on/tbb/:

hands-on exercises

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/infn-esc/esc25/tree/main/hands-on/tbb

questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

