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Introduction



't Hooft-Veltman (1972)

QF Ts require regularization and renormalization.
Dimensional regularization is the most popular scheme because:

e |tis efficiently applicable to high order calculations
e |t regulates both UV and IR divergences

e |t is a mass-independent scheme

e |tis compatible with gauge invariance



Definition

1) Extend to d-dimensions (formally, d is complex!) 4'di”C”Si°”S
1

/ (d-4)-dimensions

S D /d4:1:' %@Lgb@“gb — /ddx 5 2O + %@g§b8ﬂ¢

2) Compute amplitudes in d-dimensions: they are meromorphic functions of d=4-¢.

VAR

eiFreg [SC] — Dg €ZS[€+§C]+ZSC1S [5"‘50]
1PI

Removes all 1/€ poles

3) Take the 4-dimensional limit where d — 4 and all evanescent terms disappear

_ Systematically
F C — LIM Fre C .
e d—4 Treg|&e applicable at all loops!



Why does it work?

L = (0¢)° + Yiy" 0,0 — yipd — A" 9] = 9

For d<4 all couplings are relevant:
control on UV divergences
—Y
} Analogously, d>4 all couplings are irrelevant:
control on IR divergences

Complex d regulates
both UV and IR divergences!



It IS @ mass-independent scheme:
Great for Effective Field Theories!!!

d°k
No power-law divergences / (2m)? (k%) = 0
— no contamination from higher-dimensional operators 6 ¢6 7@ 5)\¢4
A2

— RG evolution constrained by dimensional analysis



Respects QCD and QED

1

L =iy (0, — iT A ) — ~FL FAM

By extending this theory to d dimensions we have
d-dimensional gauge-invariance and
d-dimensional Lorentz invariance



Chirality?!

The notion of chirality does not exist at arbitrary d.
The Y5 problem:

{/Y,uv /75} =0

1r (%ﬂv%ﬁﬁ%) — _47;6;“/@6 = (d _ 4)Tr (’YM’YV’YO/Yﬁ’Y5) =0

1r (F1F2) — T (Fgrl)

d=4 is "singular”: we cannot
analytically continue these properties!



't Hooft-Veltman (1972)

Solution!

Levi-Civita and Y5 are 4-dimensional objects

2 0 v_a. B
Vs = r€arag? VY
_ie____ﬁﬁaé {_ }:O |
Y = Ji€asapV 1 7Y |, e ys is not
Y, 1 b = 29, va,7v5] =0 anti-commuting

Breitenlohner and Maison showed that the above definition implies a
consistent regularization at all orders in perturbation

Breitenlohner-Maison (1977)



A nuisance !

Consider a chiral transformation
) — "5

G Peta
S = /ddx @M“é’uw = [ d% W?jvﬁﬁﬁw + @mﬂ@ﬂw]

l l

/ d%r Wmﬁ O + et mﬂf)ﬁw]

Chiral symmetries are explicitly broken, even if gauged!!!



A classical anomaly!

Unavoidable: d-dim kinetic term mixes L with R — explicit breaking of chiral symmetry.
Evanescent: the anomaly must vanish as d — 4.



Is it strange that chiral symmetries are broken by the classical action”
No, it had to be this way!

eir[gc] — Df €ZS[€+€C]
1P1

Let us prove Ward identities: & = e *¢

oiT[€e] — DE ¢ S[E+E€L] DE ¢ S[¢'+¢!]
1PI1 1P1



Crucially, in Dimensional Regularization the measure is always invariant:

Df/ _ eifddx onpf

J = Tr[T]6D(0)

(@) d°F Dr =1
’ <O>:/(2w)d_0=> .y | |
PN DE etSlEtHEe]+idS[E+ee]

1PI



1) Anomalies (ex: chiral anomaly in QCD) < non-invariance of the regularised action

sT7e.] — dupr DE 0S4 &
o Jip1 DE er5letee

At infinitesimal level the variation of the 1P| effective action is given by the matrix elements of
the classical anomaly (Quantum Action Principle)

— Symmetries of the classical action hold at all orders (4-dim Lorentz, vector-like, CP, P).
— What happens to anomalous symmetries?
Spurious (gauge, non-abelian axial) or Physical (abelian axial, scale invariance)




2) For axial symmetries 03 is evanescent (¢), the anomaly must be multiplied by 1/¢ div:
— it is finite and local — may be removed by a counterterm.

When a consistent regularization breaks a symmetry, we have a spurious anomaly

/ Spurious anomaly

é’Freg | (n) — A‘ (1)

We can define a symmetric 1P| effective action as

Liny [fc”(n) — Freg [&H(n) T Asftin [€C]|(n)

S(AS™ () = —Aln)



An appropriate counterterm exists as long as

Dabc — tr(Tg{Tg, TE}) — tr(Tﬁ{Tg, chz}) — O . Georgi-Glashow (1972)

No new anomalies emerge in perturbation theory (even beyond renormalizable). see, e.g., Gomis-Weinberg (1995)
Luscher (1999)

Breaking due to Dim-Reg is artificial => the anomaly can be removed via counterterms.
Tonin et al. (1977)



Another “nuisance’!

Consider a chiral gauge theory
Different by def.

ALy (T P, + Th Pr)t

3

1
Pr = —(1 —~s5) These are still projectors,

% But they do not commute with the
Pr — 5(1 + 75) Lorentz generators.

d-dimensional Lorentz is broken
Only 4-dimensional Lorentz is preserved (real world)



Implications

The BMHYV (Breitenlohner, Maison, 't Hooft, Veltman) prescription is perfectly consistent but

More care in loop computations
Rather annoying procedure
(Only chiral symmetry, Lorentz is fine)

1) ¥5 Is not always anti-commuting/

2) We have to add appropriate counterterms order by order/
3) The constraining power of symmetries is lost in intermediate steps

A nuisance: ‘)

Symmetry is no more of any guidance?!



Many alternatives have been proposed to avoid these implications:

None of them has a definition of y-
None of them has been shown to be consistent at all orders

Most popular:

Naive Dimensional Regularization: y5 is anti-commuting, but diagrams are treated differently.

Kreimer's scheme (KKS): y5 is anti-commuting, but the trace is not cyclic.

. They differ by
O Nalve an evanescent term

; — Compensated by loops
{Vu Vs } a5, BMHV (Comp y loops)

They are supposed to be a “trick” to avoid the introducing the counterterms. o)
You can “use them if you know what you are doing” (Altarelli?) Do we?!




Alternatives imply ambiguities:

1) At 4-loops (!!!) the QCD beta function in the SM can acquire different values... é‘;&i@fﬁ;@mkemer 2016

2) In QCD, the Chern-Simons current mixes with the axial current at 2-loops  cren (2023
(must add a new counterterm anyway!)

3) Disagreement already at 1-loop in the evaluation of g, (deep inelastic scattering) /2"

(Private communication)

We cannot implement these alternative
prescriptions on a code and be done with it!



Implications

The BMHYV (Breitenlohner, Maison, 't Hooft, Veltman) prescription is perfectly consistent but

1),

“ o A » s N . .. . - . - _ . ] . » . ) - ) ) l ) o N | N | /
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) We have to add approprlate oounterterms order by order
) The oonstralnlng power of symmetrles |s Iost n mtermedlate steps
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Spurious axial-invariance



Explicitly broken symmetries are still useful,
If we know how they are broken.

In massive QCD, the chiral SU(3); X SU(3), symmetry can be restored
treating the quark mass as a field (spurion)

M — LMRT

We can do the same In
Dimensional Regularization



Under a (global) chiral symmetry

Pry = LPy | vy — Py
Prt) — RPRY Pyah — Py (RVLPr, + LT RPR)

We therefore introduce a new field (spurion) €2 that transforms as

Q0 — LOQR!

We have thus formally recovered the axial symmetries:
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In the end what matters

IS the 4-dimensional limit \I

Pryp — L(Z)Pry - Dy — Py
Priy — R(Z)Pry PyHah — " (RTLP + LTRPR)

Under a local chiral symmetry

We therefore introduce a new field (spurion) €2 that transforms as

QO — L(Z)QR(z)

We have thus formally recovered the axial symmetries:

WW“D w + ww (Q‘LPL + QPR)a v 3

- ‘-" _ - c “ae - - _\- e




Finally, the regularised action is written as

Dynamical fields

l

1 _ .
SHelE O] = Shos + Svuk - 5 / d®x {iy" Dgtp + iy™ (QTPp, + QPr)9s1 + hel

) Yukawa Si;ctor The standard BMHYV action iIs
Pure boson part (No issues) recovered setting 2 = 1.
(No issues)

Conserved global symmetries:

— S0(1,3)xS0O(d-4). There is no need of Lorentz-restoring counterterms.
— Spurious CP and P (under which generators transform)
— Spurious chiral rotations

What do we gain?!



See, e.g. Abbott

Adopting the background gauge (with gauge-covariant gauge-fixing),
all symmetries are linearly realized by construction:

D¢ S EEFE
1PI
— the divergences are symmetric

— the associated counterterms are symmetric
— the symmetry-restoring counterterms are symmetric

Alternatively:

Gauge-fixing leaves BRST = (non-linear) Slavnov-Taylor Identities.  Martin-sanchezRuiz (2000)
SanchezRuiz (2003)

BeluscaMaito et al. (2020-2021)



ot linv[€e,2] — D¢ eiSReg[&Lfc,QHSﬁiV[§+§C,Q]+Sf§“[§+§C,Q]
1PI

The "Divergent counterterms™ are derived as usual:
Non-symmetric divergent 1Pl diagrams have external £2’s

The “Finite counterterms” are defined so that the result
is symmetric even if 2 = 1. How is it done concretely?



lteratively:
Assume we have found the symmetry-restoring counterterm at order h”l:w

e Tl — [ Dg @S B le+Ee A4S [6+€0, Q) +SE" (€0 AUl (1)
1P1

F[fca 1]|(n) é\

This Is the object that standard BMHV gives.

It has a spurious anomaly /\
O(I'[Ee, Ulny) = Aln)

Fimv [567 1”(n) = F[fC? 1] |(n) T ASCP;:cin [fa 1]|(n)

We want to find this j



On the other hand, with €2 turned on, all chiral symmetries are preserved:

No dependence on £2 ) K This is invariant ONLY because of €2
5(F§72[€C]|(n)) =0 5(FQ [gca QH(n)) =0

The & variation is compensated by that of €2

They are separately invariant under the symmetries of the theory



What does this mean for the 2 = 1 theory?!

e

0(Lec, 1| (n)) = 6(Talée, 1| (n)) = Al(n) = —0(ASE™ e, 1| ()

The “symmetry-restoring counterterm” is just the opposite of
the (2-dependent part of the 1P| action

- B . S A il S e
- - _ . - . L - - = 4 . - - .
3 A X s Sl g2 - ) A > T e &
& S i S

ASc]:?tin [gca 1”(%) = —I'g [5‘37 1”(n) ' 

Finv [gca 1”(77,) — F@[SCH(”’J)

S EETE T Gy T ST T e T A R FR T T B AT AT e e 5
- —‘ﬁ." _ _ . -." . & . D .. . - o -'»__ . - N e-n" . _.:‘



Symmetry-restoring
counterterms at 1-loop



Consider a general renormalizable gauge theory with scalars and fermions:

L = LBos + Lyuk + LKin

Los =~ FAFA + (Du0)}(D*6)a — V(0)

Ly = —Y5¥; PrY ¢, + he

1 — — .
Lxin = 5 { Wiy Dp¥ + Uiy (QT P + QPr)O,V + hel

The non-symmetric counterterms (Finite and Divergent) are found among
the operators involving €2 (analogy with pions in QCD!)



’Lj—

Operators with vectors D4 1

o
X

and no Levi-Civita (LzzQRA7 Q) 5

i(Lzz DFQDYQ + Rz DFQTDYQ) 167
(DzQDEQTD; QDO + D QT DFQD; QT DY Q)
(DzQDz QT DEQDYQT)
(D
<

S 4+
S|’_‘ = D=

Dz DFQD; D”QT)
Dz DzQDFD*QT)

o

$*D P2 Operators with
UAATAQID QT PLY + Pec. (UTAQT®QTAPL W + P.c]+h.c. | —2 | fermions

UyAY Qi Dz QYT PL¥ + P.c.

N|—= =

¢* ¢*D
(®DzQT®DAQT + h.c.
((@Q1)2D;z QDO + h.c.
(9DTD; QDO + 10 D;QF DAQ)
(PQT Dz QPTQDHQOT)
<
<
<

Operators with scalars
and no fermions

_|_

o
o
<
K
A
_|_
-
®
|
S )

-
I
W= O WIN W Wk W W

Dz ®DFQTOO + D 0QT®DAQT) + hee. | -
Dz ®QTDEOAT) + h.c. -
oD ,0TQDAO + 81D 80T D) i

Annoying
But systematic

ijPa




Operators with Levi-Civita

As in the chiral Lagrangian, the only term involving Levi-Civita is the Wess-Zumino-Witten term:

Fin _n 4 . poafB _
St [g’ﬂ]‘wzw 4872 {/d v Zaap - }

e (OO L-L-OR- R-R-Q' L

Z5ai = (—Q'0aLyLaQR; + Q0 Ry RaQ'L;
— 0aRyY LaQR5 + 0pLyQRaN L
+iQT L Ly LaQRg — iQR; Ry Ra Q' L

2
+ 5 LiQRQ LR + O(09)),

Here n=1 cannot be affected by radiative corrections: exact at all orders



In the Standard Model (excluding H, for simplicity):

— QCD & QED are vector-like and manifest

— no terms with Levi-Civita, peculiarity of SU(2)xU(1)

— Contains all interactions that respect QCD & QED but violate SU(2)xU(1)

vvDD: D, W, D'W " 0, 2,0" 7"

VVVD: iFWiW,  iDFWWFZY iDYW,WFzh iD,W,WTZY +he

VVVV: (W, Wtz (W, W) (WIWTY) (Z,2")° (wWrzmyw,zv)y (W W) (Z,2")
ffW: W, fuy"Prfa Wi fu"Prfs 4he

ffz:  Z.y"Puf  Zufy"Prf  +he



Example, fermion-gauge counterterms
in the Standard Model:

3

9—1¢2 . _
1(gi7r2 { 3672 [UL'YMW:dL + dpy*W, UL]
9—to oy
79¢ [uL7 Z;/U'L _ dL7 Z,udL]
1—1¢2 N . _
4 Ly W er + ey W, vi]
1—1t2 .
| » v Z, v — ey Zer ]

= [uRv“W dR+dRq/“W uR]

Cornella-Feruglio-LV (2022)



Spurious d-dimensional Lorentz



Technically, the SU(N); X SU(N)p X U(1), symmetry is broken by yH
an invariant tensor of H = SU(3); , »: ¥ = hy*h".

The axial part is recovered introducing a coset representative
VQ = I\/QhT = h/QRT
and defining o = QTPL + 1/ L2 Pp, so that

oylc = Q'P, + QP

IS covariant.



Technically, the SO(1,d — 1) — SO(1,3) X SO(d — 4) symmetry is broken by s,
an invariant tensor of H = SO(1,3): vs = S(A,)ysS~1(Ay).

Lorentz is recovered introducing a coset representative
Q' — AQ'A;I(IT)

and defining I's = S(Q)y:S~1(Q") = S(A'sS~I(A), so that

1 1
P =5 (1=T5), Pp=—(1+Ts) and T = VI P, +1/Q2,

are covariant.

The following fermionic action is fully symmetric:

sl B
/ddl’ §\I/]E”Y’MZZDM\I/] —I—Y;CJL-\IJiPR\Pj¢a —I—hC




Conclusions

M BMHYV is the only rigorous approach: safely automatized

™ A spurious symmetry can be restored — some order!

M Outcome:
* Very efficient way of determining the symmetry-restoring counterterms
* Some of these counterterms are 1-loop exact
Kk

M Much still to be done...



