
Probing the Quantum Nature of 
Gravity Through Classical Motion

University of Genova
13th March 2025

Angelo Bassi
University of Trieste & INFN - Italy



Is Gravity Quantum? 
Very hard question: Does the graviton exist? 
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Is Gravity Quantum? 
Very hard question: Does the graviton exist? 

This is what high-energy people mean with quantum. 
Roughly speaking, it requires reaching the Planck scale.

Less hard, but still hard question: Can the (static) 
gravitational field be in a superposition of states? 
Equivalently, does the Newtonian field enter the 
Schrödinger equation as the Coulomb field does?

I will focus on this second question
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Is Gravity Quantum (less hard question)? 
Experimentally: we do not know. 

We only now that matter reacts to an external classical 
gravitational potential as predicted by the Schrödinger 
equation (COW experiment, atom interferometry). We do 
not know what the gravitational field generated by a 
superposition is like. 
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Is Gravity Quantum (less hard question)? 
Experimentally: we do not know. 

We only now that matter reacts to an external classical 
gravitational potential as predicted by the Schrödinger 
equation (COW experiment, atom interferometry). We do 
not know what the gravitational field generated by a 
superposition is like. 

Theoretically: we do not know.

The general sentiment is that gravity should be quantum, 
like all other forces. Yet all attempts at quantizing gravity 
did not reach the expected results. Models of classical 
gravity exist (SN equation, LOCC models)

Schrödinger-Newton equation
L. Diosi. Physics Letters A 105, 199 (1984)

R. Penrose, Foundations of Physics 44 557 (2014)
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LOCC models
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A. Tilloy, L. Diosi, Physical Review D 93, 024026 (2016)
B. J. Oppenheim, C. Sparaciari, B. Soda, Z. Weller-Davies. Nat. Comm. 14, 7910 (2023)



Testing the quantum nature of gravity
The main argument: a LOCC (local operation and classical communication) cannot
generate entanglement. 

R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Reviews of Modern Physics 81, 865 (2009)

CLASSICAL CHANNEL

LOCAL OPERATION LOCAL OPERATION 

Therefore, is entanglement is detected (and assuming locality), the interaction must 
be quantum.
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Understanding gravity in the framework of quantum mechanics is one of the great challenges in
modern physics. Along this line, a prime question is to find whether gravity is a quantum entity
subject to the rules of quantum mechanics. It is fair to say that there are no feasible ideas yet
to test the quantum coherent behaviour of gravity directly in a laboratory experiment. Here, we
introduce an idea for such a test based on the principle that two objects cannot be entangled without
a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by
the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers
can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder
forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity
as a quantum coherent mediator, through simple correlation measurements between two spins: one
embedded in each test mass. Fundamentally, the above entanglement is shown to certify the presence
of non-zero o↵-diagonal terms in the coherent state basis of the gravitational field modes.

Quantizing gravity is one of the most intensively pur-
sued areas of physics1,2. However, the lack of empirical
evidence for quantum aspects of gravity has lead to a
debate on whether gravity is a quantum entity. This
debate includes a significant community who subscribe
to the breakdown of quantum mechanics itself at scales
macroscopic enough to produce prominent gravitational
e↵ects3–6, so that gravity need not be a quantized field
in the usual sense. Indeed it is quite possible to treat
gravity as a classical agent at the cost of including ad-
ditional stochastic noise7. Moreover, oft-cited necessi-
ties for quantum gravity (e.g. the Big Bang singularity)
can be averted by modifying the Einstein action such
that gravity becomes weaker at short distances and small
time scales 8. Thus it is crucial to test whether funda-
mentally gravity is a “quantum” entity. Proposed tests
of this question have traditionally focussed on specific
models, phenomenology and cosmological observations
(e.g.2,9–12) but are yet to provide conclusive evidence.
More recently, the idea of laboratory probes, proposed
originally by Feynman13, have started to take hold, but
the existing ideas emphasize looking for stochastic fluc-
tuations in the gravitational force14–16. Here we open up
an alternative direction: probing the quantum coherent
aspect of gravity, which seems to o↵er an unambiguous,
and much more prominent, witness of quantum gravity
than existing laboratory based proposals.

We show that the growth of entanglement between two
mesoscopic test masses in adjacent matter-wave inter-
ferometers (Fig.1(b)) can be used to certify the “quan-
tum” character of the mediator (gravitons) of the gravita-

tional interaction – in the same spirit as a Bell-inequality
certifies the “non-local” character of quantum mechan-
ics and in the same vein that quantum entanglement
can enable the probing of unknown processes17,18. We
make two striking observations that make the test for
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FIG. 1. Adjacent interferometers to test the quantum na-
ture of gravity: (a) Two test masses held adjacently in super-
position of spatially localized states |Li and |Ri. (b) Adjacent
Stern-Gerlach interferometers in which initial motional states |Cij
of masses are split in a spin dependent manner to prepare states
|L, "ij + |R, #ij (j = 1, 2). Evolution under mutual gravitational
interaction for a time ⌧ entangles the test masses by imparting
appropriate phases to the components of the superposition. This
entanglement can only result from the exchange of quantum medi-
ators – if all interactions aside gravity are absent, then this must
be the gravitational field (labelled h00 where hµ⌫ are weak per-
turbations on the flat space-time metric ⌘µ⌫). This entanglement
between test masses evidencing quantized gravity can be verified
by completing each interferometer and measuring spin correlations.
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lates our locality assumption. Note that we have, for present
purposes, ignored the possibility of using non-local features
of the geometry of spacetime, such as closed time-like curves
[24]. It is not excluded that by allowing such features one
might be able to establish entanglement nonetheless via local
interactions with C. Note also that it would not be possible
to apply, in this context, well-known results of quantum in-
formation theory, such as the fact that Local Operations and
Classical Communication cannot increase the entanglement
between two spatially separated parties [25]. This is because
those results assume that all the systems involved obey quan-
tum theory. Here, instead, the gravitational field cannot be
assumed to obey quantum theory (the experiment is precisely
designed to assess whether it does!). This is why one must
resort to the more general argument we propose.

We turn now to our experimental proposal – see figure 1.
Two quantum systems Q1 and Q2 with equal mass m are en-
tangled only via the gravitational field – which plays the role
of the system C. Our argument implies that the entanglement
between Q1 � Q2 is an indirect witness of non-classicality of
gravity – i.e., of the non-commutativity of the observables on
the gravitational field. Specifically, each mass is in one of
two Mach-Zehnder interferometers, each located so that both
masses are subject to the same Earth’s gravitational field (for
example parallel to the Earth’s surface). The lower interfer-
ometer arm is indicated by 0 and the upper arm by 1. Each
mass is put in the state 1p

2
(|0i + |1i) by the first beam-splitter.
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FIG. 1: Entanglement-based witness of quantum gravity with two
equal masses. Each mass m individually undergoes Mach-Zehnder-
type interference, and interacts with the other mass via gravity. BS
indicates a beam splitter; M indicates a mirror; Di with i = 0, 1 in-
dicates the detector on path i. L is the length of the lower arms of
each interferometer. The distance between the lower arms of the two
interferometers is d1 and the distance between the upper arm of one
interferometer and the lower arm of the other interferometer is d2.
See full description in the text.

Since the masses on di↵erent paths interact via the gravita-

tional field, the state of the composite system becomes, before
they enter their respective final beam-splitters:

1
2
|0i �|0i + exp (i�1) |1i� +

1
2

exp(i�1) |1i �|0i + exp (i(��)) |1i� . (1)

where �1 and �2 are the relative phases acquired by the masses
due to the gravitational potential generated when they are,
respectively, at distance d1 and d2 from one another; �� =
�2 � �1 is their di↵erence. We suppose that the gravitational
interaction of the masses on the two most distant arms is
negligible. Supposing that the dominant contribution to the
gravitational interaction is Newtonian, and that the general-
relativistic contributions are negligible, the value of the phase
is �i =

m
2
G

~di

�t; where G is the gravitational coupling con-
stant; �t = L

v
is the time spent by each mass on the horizontal

arm of the interferometer, of length L; and v is their velocity.
However, the conclusion as for the quantisation of the gravita-
tional field would be the same no matter what type of field me-
diates the entanglement. It is remarkable, thought, that even
the Newtonian contribution already demonstrates the quantum
nature of gravity.

Depending on the particles’ mass, the distance between the
two interferometers and the length of the arms, the above state
is entangled to a di↵erent degree. The mutual interaction of
each of the masses acts as a measurement of which-path they
are on: depending on the phases, that interaction may com-
pletely destroy the interference e↵ect of each mass, showing
maximal entanglement.

In each of the interferometers, the probabilities p↵ for the
mass to emerge on path ↵ = 0, 1 are:

p0 =
1
2

 
cos2 �1

2
+ cos2 ��

2

!
, p1 =

1
2

 
sin2 �1

2
+ sin2 ��

2

!

(2)
There are two extreme regimes. One is when the two

masses are maximally entangled by the action of the gravi-
tational field, in which case p0 = p1 =

1
2 . This happens

when �1 = 2n⇡, �� = ⇡ for some integer n. The other ex-
treme is when the two masses are not entangled and undergo,
separately, an ordinary interference experiment: that happens
when �1 = �� = 2n⇡. In this case, each mass emerges on path
0 of the interferometer. For a fixed mass, by varying the arms’
distance or their length, it is in principle possible to interpo-
late between those two cases, thus demonstrating all degrees
of entanglement, ranging from no entanglement to maximum.
By our argument, this entanglement is a witness that the grav-
itational field that mediated the interaction must be quantum.

Feasibility considerations suggest that the experiment can
be realised with existing technologies. The two masses could
be massive molecules, as in [23], two split Bose-condensates
[27], or two nano-mechanical oscillators [26]. For example,
two coupled nano-mechanical oscillators of mass 10�12 kg in-
teracting for a �t = 10�6 s would achieve the extreme phase

C. Marletto, V. Vedral, PRL 119, 240402 (2017)
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quantum gravity accessible with feasible advances in in-
terferometry: (i) For mesoscopic test masses ⇠ 10�14

kgs (with which intereference experiments might soon be
possible19) separated by ⇠ 100 µm, the quantum me-
chanical phase E⌧

~ induced by their gravitational inter-
action (with E being their gravitational interaction en-
ergy, and ⌧ ⇠ 1s their interaction time) is significant
enough to generate an observable entanglement between
the masses; (ii) If we use test masses with embedded
spins and a Stern-Gerlach scheme21,22 to implement our
interferometry, then, at the end of the interferometry,
the gravitational interaction of the test masses actually
entangles their spins which are readily measured in com-
plementary bases (necessary in order to witness entangle-
ment). To identify “which” quantum aspect of gravity is
responsible for the aforementioned entanglement, we use
the linearized quantized version of Einstein’s theory of
gravity23 to find that o↵-diagonal terms in the coherent
state basis of the gravitational field modes (a uniquely
quantum attribute) is necessary. In particular, if, after
including a quantized gravitational field in our calcula-
tions explicitly, we make it “classical” – i.e., suppress by
hand the o↵-diagonal terms in the coherent state basis of
the gravitational field modes, we automatically destroy
the generation of entanglement between the masses.

Our proposal relies on a simple assumption: the grav-
itational interaction between two masses is mediated by
a gravitational field (in other words, it is not a direct
interaction-at-a-distance). Once we make this assump-
tion, we use a central principle of quantum information
theory: entanglement between two systems cannot be
created by Local Operatons and Classical Communica-
tion (LOCC)24. Translating to our setting, any external
fields (including the gravitational fields of other masses)
acting on the test masses can only make local operations
(LO) on their states, while a classical gravitational field
propagating between the masses can only give a classi-
cal communication (CC) channel between them. These
LOCC processes cannot entangle the states of the masses.
Thus it immediately follows that if the mutual gravita-
tional interaction entangles the state of two masses, then
the mediating gravitational field is necessarily quantum
mechanical in nature. One physical way to understand
this is a through comparison to trapped ion quantum
computation, where to entangle two ions a quantum bus,
namely a quantized vibrational mode, is necessary – a
classical bus does not serve the purpose. Our scheme is
thus an explicit realization of the general idea that the
entanglement of two accessible quantum systems medi-
ated by a third “inaccessible” system, can be used to
evidence the quantum character of the mediator18. It
follows Feynman’s prescription13 that in a two mass sce-
nario, one should analyse the “channel provided by grav-
itational field itself via the quantum mechanical ampli-
tudes” – the inescapable conclusion of such a treatment
is the creation of entanglement between masses.

Entanglement due to gravitational interaction:- We
first consider a schematic version that clarifies how the

states of two neutral test masses 1 and 2 (masses m1

and m2), each held steadily in a steady superposition
of two spatially separated states |Li and |Ri as shown
in Fig.1(a) for a time ⌧ , get entangled. We will de-
scribe later how this will be achieved following the scheme
shown in Fig.1(b). Imagine the centres of |Li and |Ri to
be separated by a distance �x, while each of the states
|Li and |Ri are localized Gaussian wavepackets whose
widths are much less than �x so that we can assume
hL|Ri = 0. There is a separation d between the cen-
tres of the superpositions as shown in Fig.1(a) so that
even for the closest approach of the masses (d��x), the
short-range Casimir-Polder force is negligible. Distinct
components of the superposition have distinct gravita-
tional interaction energies as the masses are separated by
di↵erent distances and thereby will have di↵erent rates
of phase evolution. Under these circumstances, the time
evolution of the joint state of the two masses is purely
due to their mutual gravitational interaction, and given
by

| (t = 0)i12 =
1
p
2
(|Li1 + |Ri1)

1
p
2
(|Li2 + |Ri2)

(1)

! | (t = ⌧)i12 =
e
i�

p
2
{|Li1

1
p
2
(|Li2 + e

i��LR |Ri2)

+ |Ri1
1
p
2
(ei��RL |Li2 + |Ri2)} (2)

where ��RL = �RL � �,��LR = �LR � �, and

�RL ⇠
Gm1m2⌧

~(d��x)
, �LR ⇠

Gm1m2⌧

~(d+�x)
, � ⇠

Gm1m2⌧

~d .

One can now think of each mass as an e↵ective “orbital
qubit” with its two states being the spatial states |Li

and |Ri, which we can call orbital states or spatial bins.
Essentially we have dichotomized the motional state of
the masses so that these can be treated as encoding a
qubit in their spatial degree of freedom. As long as
1p
2
(|Li2 + e

i��LR |Ri2) and 1p
2
(ei��RL |Li2 + |Ri2) are

not the same state (which is very generic, happens for
any ��LR + ��RL 6= 2n⇡, with integral n), it is clear
that the state | (t = ⌧)i12 cannot be factorized and is
thereby in an entangled state of the two orbital qubits.
Witnessing this entanglement between the spatial states
of the masses then su�ces to prove that a quantum field
must have mediated the entanglement between them as
a classical field cannot entangle the states of spatially
separated objects. In fact, the entanglement between
the massive orbital qubits increases monotonically over
��LR + ��RL evolving from 0 to ⇡, with the entan-
glement being maximal for ⇡. Thus it is worth seeking
conditions such that

��LR +��RL ⇠ O(1) (3)

so that the entanglement between the states of the masses
is significant and can be easily witnessed.
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quantum gravity accessible with feasible advances in in-
terferometry: (i) For mesoscopic test masses ⇠ 10�14

kgs (with which intereference experiments might soon be
possible19) separated by ⇠ 100 µm, the quantum me-
chanical phase E⌧

~ induced by their gravitational inter-
action (with E being their gravitational interaction en-
ergy, and ⌧ ⇠ 1s their interaction time) is significant
enough to generate an observable entanglement between
the masses; (ii) If we use test masses with embedded
spins and a Stern-Gerlach scheme21,22 to implement our
interferometry, then, at the end of the interferometry,
the gravitational interaction of the test masses actually
entangles their spins which are readily measured in com-
plementary bases (necessary in order to witness entangle-
ment). To identify “which” quantum aspect of gravity is
responsible for the aforementioned entanglement, we use
the linearized quantized version of Einstein’s theory of
gravity23 to find that o↵-diagonal terms in the coherent
state basis of the gravitational field modes (a uniquely
quantum attribute) is necessary. In particular, if, after
including a quantized gravitational field in our calcula-
tions explicitly, we make it “classical” – i.e., suppress by
hand the o↵-diagonal terms in the coherent state basis of
the gravitational field modes, we automatically destroy
the generation of entanglement between the masses.

Our proposal relies on a simple assumption: the grav-
itational interaction between two masses is mediated by
a gravitational field (in other words, it is not a direct
interaction-at-a-distance). Once we make this assump-
tion, we use a central principle of quantum information
theory: entanglement between two systems cannot be
created by Local Operatons and Classical Communica-
tion (LOCC)24. Translating to our setting, any external
fields (including the gravitational fields of other masses)
acting on the test masses can only make local operations
(LO) on their states, while a classical gravitational field
propagating between the masses can only give a classi-
cal communication (CC) channel between them. These
LOCC processes cannot entangle the states of the masses.
Thus it immediately follows that if the mutual gravita-
tional interaction entangles the state of two masses, then
the mediating gravitational field is necessarily quantum
mechanical in nature. One physical way to understand
this is a through comparison to trapped ion quantum
computation, where to entangle two ions a quantum bus,
namely a quantized vibrational mode, is necessary – a
classical bus does not serve the purpose. Our scheme is
thus an explicit realization of the general idea that the
entanglement of two accessible quantum systems medi-
ated by a third “inaccessible” system, can be used to
evidence the quantum character of the mediator18. It
follows Feynman’s prescription13 that in a two mass sce-
nario, one should analyse the “channel provided by grav-
itational field itself via the quantum mechanical ampli-
tudes” – the inescapable conclusion of such a treatment
is the creation of entanglement between masses.

Entanglement due to gravitational interaction:- We
first consider a schematic version that clarifies how the

states of two neutral test masses 1 and 2 (masses m1

and m2), each held steadily in a steady superposition
of two spatially separated states |Li and |Ri as shown
in Fig.1(a) for a time ⌧ , get entangled. We will de-
scribe later how this will be achieved following the scheme
shown in Fig.1(b). Imagine the centres of |Li and |Ri to
be separated by a distance �x, while each of the states
|Li and |Ri are localized Gaussian wavepackets whose
widths are much less than �x so that we can assume
hL|Ri = 0. There is a separation d between the cen-
tres of the superpositions as shown in Fig.1(a) so that
even for the closest approach of the masses (d��x), the
short-range Casimir-Polder force is negligible. Distinct
components of the superposition have distinct gravita-
tional interaction energies as the masses are separated by
di↵erent distances and thereby will have di↵erent rates
of phase evolution. Under these circumstances, the time
evolution of the joint state of the two masses is purely
due to their mutual gravitational interaction, and given
by

| (t = 0)i12 =
1
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(|Li1 + |Ri1)
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(|Li2 + |Ri2)
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, �LR ⇠
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One can now think of each mass as an e↵ective “orbital
qubit” with its two states being the spatial states |Li

and |Ri, which we can call orbital states or spatial bins.
Essentially we have dichotomized the motional state of
the masses so that these can be treated as encoding a
qubit in their spatial degree of freedom. As long as
1p
2
(|Li2 + e

i��LR |Ri2) and 1p
2
(ei��RL |Li2 + |Ri2) are

not the same state (which is very generic, happens for
any ��LR + ��RL 6= 2n⇡, with integral n), it is clear
that the state | (t = ⌧)i12 cannot be factorized and is
thereby in an entangled state of the two orbital qubits.
Witnessing this entanglement between the spatial states
of the masses then su�ces to prove that a quantum field
must have mediated the entanglement between them as
a classical field cannot entangle the states of spatially
separated objects. In fact, the entanglement between
the massive orbital qubits increases monotonically over
��LR + ��RL evolving from 0 to ⇡, with the entan-
glement being maximal for ⇡. Thus it is worth seeking
conditions such that

��LR +��RL ⇠ O(1) (3)

so that the entanglement between the states of the masses
is significant and can be easily witnessed.
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Idea: superpositions are not necessary to detect entanglement. Any quantum state will 
do.
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FIG. 1. Proposed experimental setup. Two masses, placed
at a distance L, are either trapped with harmonic potentials
at all times or released after cooling has been achieved. The
particles are assumed to be cooled down near the ground state
of their trapping potentials. We study entanglement gener-
ated in both scenarios and note that it can be probed with
weak light fields. Our model includes gravitational coupling
(dominant), noise, damping, decoherence and Casimir forces.

lators, with the same shape, mass m, and vibrational
frequency !. The two oscillators and the gravitational
interaction between them give rise to the total Hamilto-
nian H = H0 +Hg, where

H0 =
p
2
A

2m
+

1

2
m!

2
x
2
A +

p
2
B

2m
+

1

2
m!

2
x
2
B (1)

and Hg describes the gravitational term. If the harmonic
traps are removed the corresponding Hamiltonian sim-
plifies to H0 = (p2A + p

2
B)/2m. Before we proceed with

detailed calculations, we shall discuss generic features of
the gravitational term and the conditions required for the
creation of entanglement.

In general, the gravitational term Hg depends on the
geometry of the objects. Various configurations have
been analysed in the Supplementary Information accom-
panying this paper. The results of such analysis suggest
that spherical masses give rise to the highest amount of
generated entanglement. The Newtonian gravitational
energy of this setting is the same as if the two objects
were point-like masses, that is Hg = �Gm

2
/(L + xB �

xA), where L is the distance between the objects at equi-
librium and xA (xB) is the displacement of mass A (B)
from equilibrium. By expanding the energy in the limit
xA � xB ⌧ L, which is well justified for oscillators that
are cooled down close to their ground state, one gets

Hg = �
Gm

2

L

✓
1 +

(xA � xB)

L
+

(xA � xB)2

L2
+ · · ·

◆
.

(2)
The first term is a rigid energy o↵set, while the second
is a bi-local term and cannot thus give rise to quantum
entanglement. The third term, which is proportional to
(xA � xB)2, is the first that couples the masses. When
written in second quantisation, it becomes apparent that
this term includes contributions responsible for the cor-
related creation of excitations in both oscillators. In the
quantum optics language, this is commonly referred to
as a “two-mode squeezing” operation, which can in prin-
ciple entangle the masses provided a su�cient strength

of their mutual coupling. Based on this observation we
provide an intuitive argument setting the scales of exper-
imentally relevant parameters, which will then be proven
rigorously.

B. Calculations of entanglement: Oscillators
In order to achieve considerable entanglement, we should
ensure that the coupling (third term) in Eq. (2) is com-
parable to the energy ~! of each oscillator, that is
Gm

2(xA � xB)2/L3
⇠ ~!. As we assume that the oscil-

lators are near their ground state, we estimate their dis-
placements by the ground state extension, (xA � xB)2 ⇠

2~/m!. We thus introduce the (dimensionless) figure of
merit

⌘ ⌘
2Gm

!2L3
. (3)

We should have ⌘ ⇠ 1 in order for the oscillators to be
significantly entangled. This sets the requested values of
the experimentally relevant parameters m, !, and L.
In what follows we will demonstrate the following re-

sults, which embody the key findings of our investiga-
tion: (i) Starting from the ground state of each oscillator
and assuming (for the sake of argument) only negligi-
ble environmental noise, the maximum entanglement (as
quantified by the logarithmic negativity [25, 26]) gener-
ated during the dynamics is given by E

max
th ⇡ ⌘/ ln 2.

Moreover, the time taken for entanglement to reach such
maximum value is t

max
th = ⇡/2(1 � ⌘)!; (ii) Single-

mode squeezing of the initial ground state of each oscil-
lator substantially enhances the gravity-induced entan-
glement. The corresponding maximum entanglement be-
comes Emax

sq ⇡ |sA + sB |/ ln 2, where sj (j = A,B) is the

degree of squeezing of the j
th oscillator, and we assume

⌘ ⌧ sA, sB . In this case, the maximum entanglement
is reached in a time t

max
sq = ⇡/2⌘!; (iii) Weaker entan-

glement is generated with increasing temperature of the
masses or coupling to the environment.
As the third term in Eq. (2) is already very small un-

der usual experimental conditions,1 we neglect all terms
of order higher than the second in the displacement from
equilibrium. We note Ref. [27] for similar treatment of
linearised central-potential interactions. By taking the
total Hamiltonian with a suitably truncated gravitational
term Hg, one gets a set of Langevin equations in Heisen-
berg picture

Ẋj = ! Pj (j = A,B),

ṖA = �! (1� ⌘)XA � !⌘XB � � PA + ⇠A + ⌫,

ṖB = �! (1� ⌘)XB � !⌘XA � � PB + ⇠B � ⌫,

(4)

1
Note that the ratio between any two consecutive terms in Eq. (2)

is given by (xA � xB)/L ⇠
p

~/m!L2. For instance, taking

m = 100 µg, ! = 100 kHz, and L = 0.1 mm gives this ratio

⇠ 10
�12

, and for macroscopic values m = 1 kg, ! = 0.1 Hz, and

L = 1 cm the ratio is ⇠ 10
�15

.



Challenges
S. Rijavec, M. Carlesso, A. Bassi, V. Vedral, C. Marletto, NJP 23, 043040 (2021)

Figure of merit

Performing these experiments would 
Improve tests of the CSL collapse model 
by 13 orders of magnitude with respect 
to state of the art.
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M. Carlesso, S. Donadi, L. Ferialdi, M. Paternostro, H. Ulbricht, A. Bassi, 
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Tests not involving entanglement

Not perfectly. There is bound, which can be used to discriminate a unitary evolution 
from a LOCC. 

Still, the protocol requires the preparation and control of the quantum state of a
massive system. 

L. Lami, J.S. Pedernales, M.B. Plenio, PRX 14, 021022 (2024)

U

LOCC

How well can a LOCC simulate a unitary evolution?



Probing the Quantum Nature of Gravity 
through Diffusion

O. Angeli, S. Donadi, G. Di Bartolomeo, J.L. Gaona-Reyes, A.Vinante, A.Bassi, ArXiv 2501.13030

The main result: Any consistent coupling of classical gravity with quantum matter must 
induce diffusion on the system.



Probing the Quantum Nature of Gravity 
through Diffusion

O. Angeli, S. Donadi, G. Di Bartolomeo, J.L. Gaona-Reyes, A.Vinante, A.Bassi, ArXiv 2501.13030

The main result: Any consistent coupling of classical gravity with quantum matter must 
induce diffusion on the system.

Consequence: One does not need to control the quantum state of a system. It suffices 
to monitor the classical motion of the center of mass to check the presence of 
gravitational-induced diffusion.

Though challenging, this type of experiments is significantly easier to perform.



Probing the Quantum Nature of Gravity 
through Diffusion

O. Angeli, S. Donadi, G. Di Bartolomeo, J.L. Gaona-Reyes, A.Vinante, A.Bassi, ArXiv 2501.13030

The assumptions are:

1. Matter is quantum
2. Gravity is classical
3. Gravity is local
4. Classical systems follow (almost) Newton’s law 

2+3 → Gravity is a LOCC → it cannot entangle
2 → no faster than light signaling



Quantum Gravity through Diffusion

2

FIG. 1: Gedanken experiment. Pairs of spin 1/2 particles
(represented by the red spheres) are generated from a source
S in a spin-singlet state, with one particle traveling toward
Alice and the other toward Bob. Alice performs her spin
measurements first and is free to choose the direction of

measurement. On Bob’s side, a Stern-Gerlach apparatus with
the magnetic field directed along the z direction interacts

with the incoming particles; beyond it, a probe (represented
by the blue sphere) detects the gravitational pull exerted by
the outgoing particles. When Alice measures the spin along

the z-axis, Bob’s particles have 50% chance of going upward
and a 50% chance of going downward when passing through
the Stern-Gerlach apparatus; accordingly, the probe moves

half of the times upward and the other half downward. When
Alice measures the spin along the x-axis, Bob’s particles

always end up in spatial superposition of states, when exiting
the Stern-Gerlach apparatus. If gravity is classical, the probe

cannot be driven in a superposition state and, to avoid the
possibility of faster-than-light signaling, it must again move

upward half of the times and downward the other half.

tion iii) the probe, which is also assumed to be in a classical
state, will be pulled upwards or downwards, each case occur-
ring again with probability 1/2.

If Alice measures the spin e.g. along the x direction, then
Bob’s particles will end up in one of two eigenstates of ŜB

x
and, thus, in one of the two superposition of spin states along
the z direction

���+1Bz
↵
±
���1Bz

↵�
/
p
2, which results, after

passing through the Stern-Gerlach apparatus, in one of the two
superposition states

�
|+ 1Bz i|upB

z i± |� 1Bz i|downB
z i

�
/
p
2,

where |upB
z i (|downB

z i) describes the particle moving up-
wards (downwards). The question is what can we say about
the gravitational field generated by these delocalized states.
To avoid superluminal signaling, the classical gravitational
field has to be such that the probe reacts as in the previous
case, otherwise Bob would be able to realize from a distance
what Alice measured: the probe must be deflected either up-
wards or downwards, each with probability 1/2.

Suppose that, in a specific run of this second type of exper-
iment, the probe is attracted upwards along z. Then, the state
of Bob’s spin particle must collapse to |+ 1Bz i|upB

z i because,
if it did not, Bob could further measure its position and there
would be a 1/2 probability of finding it in the down state; this
would mark a difference with respect to the case where Alice
measured the spin along the z direction, opening the way to
superluminal signaling. Hence, when the probe moves guided
by the gravitational field generated by Bob’s delocalized par-
ticle, the state of the latter must collapse accordingly in space.
Furthermore, as we show in Appendix A, the requirement of
no signaling also implies that this collapse must be random.

Note that if the gravitational interaction is quantum-
mechanical, there is no need to appeal to the collapse of the
wave function, as the measurement of the gravitational field
by the probe (or the measurement of the probe’s position af-
ter the interaction with the spin particle) would automatically
collapse the particle’s state, since probe and particle would
be gravitationally entangled with each other. A classical in-
teraction does not allow for the generation of entanglement,
therefore the collapse must be caused by something else, not
by (measuring) the probe.

It has been shown [18] that a stochastic dynamics, which is
invariant under space translations, and encodes the collapse of
the wave function, must increase the variance of the momen-
tum distribution, i.e. it is diffusive. The fundamental reason
is that, at the statistical level, the way the collapse acts cannot
depend on the state of the system, otherwise it would generate
a nonlinear dynamics which, again, would lead to superlumi-
nal signaling [19]; then, being blind to the state of the sys-
tem, the collapse unavoidably changes the latter, in particular
by shifting its center in space: this shift is random and, over
time, amounts to a diffusion process. We thus arrive at the
conclusion that the three assumptions above imply that grav-
ity must come with a diffusion mechanism acting on matter.
As a matter of fact, all models in the literature which assume
that gravity is classical [20–23], as well as those where gravity
plays a role in the emergence of classicality [24–26] and more
general arguments [27] are in agreement with our general con-
clusion, except for the Schrödinger-Newton equation [28, 29],
which however allows for superluminal signalling [30].

III. EXPERIMENTAL SIGNATURES OF CLASSICAL

GRAVITY

A diffusive dynamics for the statistical operator ⇢̂ of two
gravitationally interacting systems deviates from being uni-
tary. For systems moving at non-relativistic speeds, which is
the case we are considering here, the gravitational interaction
and the corresponding diffusive effects can be considered in-
stantaneous; this allows to work in the Markovian limit, where
the evolution of the statistical operator ⇢̂(t) is described by a
Lindblad master equation [31, 32]. In the following, we con-
sider the setup shown in Fig. 2, where two systems are sepa-
rated by a distance much larger than the spatial extent of their
wave functions, and their positions and momenta deviate only
slightly from their equilibrium values. In this regime, both the
unitary and Lindblad terms can be linearized. By requiring,
in accordance with assumption iii) that the evolution repro-
duces the (linearized) Newtonian interaction, the evolution of
the statistical operator is given by the following equation:

d⇢̂(t)

dt
= � i

~ [Ĥ, ⇢̂(t)]� 1

2

4X

ij=1

�ij [ĉi, [ĉj , ⇢̂(t)]] , (1)

where ĉ
T = (x̂1, x̂2, p̂1, p̂2) and, assuming the systems to

have the same mass m and frequency !, the Hamiltonian is

Ĥ =
p̂
2
1

2m
+

p̂
2
2

2m
+

1

2
m⌦2

x̂
2
1 +

1

2
m⌦2

x̂
2
2 +Kx̂1x̂2, (2)

The setup: Alice and Bob sharing pairs of particles in the singlet spin state

Gravitational probe

<latexit sha1_base64="l5pV6iBob0mlE69mvWqAzbWBDNA="></latexit>
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Spin particles

Alice: she can perform spin measurements, along z or x.
Bob: his spin particles pass through a Stern-Gerlach (with magnetic filed aligned along z) after which a 
probe tests the gravitational field generated by the spin particle.



Quantum Gravity through Diffusion
Alice measures the spin along z.
At Bob’s side, beyond the Stern-Gerlach:

OR OR
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Alice measures the spin along z.
At Bob’s side, beyond the Stern-Gerlach:

OR OR ± ?

Alice measures the spin along x.
At Bob’s side, beyond the Stern-Gerlach:



Quantum Gravity through Diffusion
Alice measures the spin along z.
At Bob’s side, beyond the Stern-Gerlach:

To avoid signaling, the probe must react in the same way in both cases.

OR OR ± OR

Alice measures the spin along x.
At Bob’s side, beyond the Stern-Gerlach:



Quantum Gravity through Diffusion
The superposition must collapse to the state towards 
which the probe is moving, otherwise Bob could further 
measure its position and there would be a 1/2 
probability of finding it in the opposite state. or±



Quantum Gravity through Diffusion
The superposition must collapse to the state towards 
which the probe is moving, otherwise Bob could further 
measure its position and there would be a 1/2 
probability of finding it in the opposite state. or

or

±



Quantum Gravity through Diffusion
The collapse must be random. Suppose it is 
not, so that we have for example:

+

-

State of the spin particle in the two cases, 
before the collapse
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+

The + state is equivalent to: 
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where now the spin state belongs to Alice. 
By applying a Z gate to her spin, she can
turn it into

-
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Alice thus can decide from a distance the 
the reaction of Bob’s gravitational probe.



Quantum Gravity through Diffusion
First Conclusion: Coupling quantum matter with 
classical gravity, avoiding superluminal signaling, must 
collapse quantum superpositions.  



Quantum Gravity through Diffusion
First Conclusion: Coupling quantum matter with 
classical gravity, avoiding superluminal signaling, must 
collapse quantum superpositions.  

But any such dynamics is diffusive.

Reason: to avoid signaling, the collapse must be blind 
to the state of the system (mathematically, a linear 
operator on the density matrix ), and as such it 
changes it, in particular by randomly shifting it in 
space.  

S. Donadi, L. Ferialdi, A. Bassi, PRL130, 230202 (2023)

collapse

The centers has shifted
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±
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Because of the collapse, the superposition state changes 

This change encodes also the shift of the center of mass 



Quantum Gravity through Diffusion

±

<latexit sha1_base64="VD06JHTYoj+5oiaRVaA9NEcL1FE=">AAACEHicbVC7TsNAEDzzDOZloITiRISgiuwUQImgoQwSeUixFa2PJTlxfuhuDUJRGj6Br6CFig7R8gcU/At2cAEJU41mdrU7E6ZKGnLdT2tmdm5+YbGyZC+vrK6tOxubLZNkWmBTJCrRnRAMKhljkyQp7KQaIQoVtsObs8Jv36I2Mokv6T7FIIJ+LK+lAMqlnrPjd21fDxLua9kfEGid3PFC2Lf9oOdU3Zo7Bp8mXkmqrESj53z5V4nIIoxJKDCm67kpBUPQJIXCke1nBlMQN9DHbk5jiNAEw3GKEd/LDFDCU9RcKj4W8ffGECJj7qMwn4yABmbSK8T/vG5G18fBUMZpRhiL4hBJheNDRmiZ14P8SmokguJz5DLmAjQQoZYchMjFLO/LzvvwJtNPk1a95h3WvIt69eS0bKbCttkuO2AeO2In7Jw1WJMJ9sCe2DN7sR6tV+vNev8ZnbHKnS32B9bHNxHqnCY=</latexit>

⇢ ! ⇢0

Because of the collapse, the state superposition changes 

This change encodes also the shift of the center of mass 
OR

The same must happen for localized states, otherwise Alice and Bob can signal 
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Quantum Gravity through Diffusion
Second Conclusion: any consistent classical/quantum coupling must be 
random and diffusive

This conclusion matches with results in the literature 

Schrödinger-Newton equation
L. Diosi. Physics Letters A 105, 199 (1984)
R. Penrose, Foundations of Physics 44 557 (2014)

LOCC models
D. Kafri, J.M. Taylor, and G.J. Milburn, NJP 16, 065020 (2014)
A. Tilloy, L. Diosi, Physical Review D 93, 024026 (2016)
B. J. Oppenheim, C. Sparaciari, B. Soda, Z. Weller-Davies. Nat. Comm. 14, 7910 (2023)

Based on a continuous measurement + 
feedback scheme, which is diffusive

Deterministic classical gravity, but 
allows for signaling
M. Bahrami, A. Großardt, S. Donadi, A. Bassi, NJP 16, 115007 (2014)



Application to a optomechanical setup
Under the previous assumptions (+ Markovianity and linearization), the general for the considered 
setup is 

3

with ⌦ :=
p
!2 �K/m the renormalized frequency of the

oscillators and K := 2Gm
2
/d

3 the coupling constant of the
linearized Newtonian interaction between the two systems at
distance d. The matrix �, which is always positive semi-
definite but in general complex, becomes real after requiring
that the average values of the positions and momenta repro-
duce the (linearized) Newtonian interaction. See Appendix B
for further details.

FIG. 2: Setup of the experiment. We consider two particles
confined in harmonic traps with a renormalized frequency ⌦,
separated by a distance d much larger than the spatial extent
of their wave functions, denoted by a. The dynamics of these

two systems is described by Eq. (1).

The Newtonian interaction term Kx̂1x̂2 in the Hamiltonian
generates entanglement between the particles, while the non-
unitary Lindblad terms counteract it: only if the latter are
sufficiently strong, entanglement will not be generated. Ac-
cordingly, we derive in Appendix C a lower bound on the
diagonal elements of � by using the separability criterion of
positivity under partial transposition, introduced by Peres for
finite-dimensional systems [33] and later generalized by Si-
mon for Gaussian states of continuous-variable systems [34].
This yields the following necessary condition:

�11 + �22 +m
2⌦2(�33 + �44) �

2Gm
2

~d3 . (3)

Similar bounds have been derived within the context of
non-entangling Lindblad dynamics [35].

The question now moves to finding an efficient strategy to
measure the presence or lack of the extra diffusion associated
to classical gravity: if no extra diffusion compatible with the
bound in Eq. (3) is detected, one can conclude that gravity
cannot be classical. On the other hand, since the above con-
dition is only necessary, the detection of extra diffusion does
not necessarily imply that gravity is classical, but still would
be a remarkable result.

Diffusion leads to an increase of the variance of the position
of the oscillators. While in principle this could be detected by
direct observation, it can be captured more efficiently in the
frequency domain by measuring the two-frequency correla-
tion function of the Fourier transform of the position x̃1(!) of
one of the two particles. The correlation function is directly
related to the density noise spectrum (DNS), which is defined

as Sx1x1(!)�(! +⌦) = hx̃1(!)x̃1(⌦) + x̃1(⌦)x̃1(!)i/2 and
collects all noisy properties of the motion of the particle’s po-
sition. In addition to the gravity related noise, we also in-
clude in our calculation a thermal noise with temperature T

and damping rate ⌘, to capture the effects of the other sources
of decoherence. Then the position DNS, which is calculated
in Appendix D, at the resonant frequency ⌦, is given by:

Sx1x1(⌦) =
~2

[K2 +m2⌘2⌦2]
⇥

h
�11+m

2⌦2
�33+

⌘m

~ ⌦ coth
⇣ ~⌦
2kbT

⌘
+m

2
⌘
2
�33�2m⌘�13

i
.

(4)

The reason why only a few matrix elements of � appear in
Eq. (4) is that when the oscillators have the same mass and
frequency, symmetries emerge, in particular �11 = �22 and
�33 = �44; which also simplify the bound in Eq. (3) to
�11 +m

2⌦2
�33 � Gm2

~d3 . Considering setups with high qual-
ity factor, we can safely neglect the last two terms in Eq. (4).
Then a necessary condition for this setup to detect gravity in-
duced diffusion is that the thermal fluctuations (third term in
Eq. (4)) are lower than the noisy terms related to gravity (first
two terms in Eq. (4)). This condition, keeping into account
the bound in Eq. (3) is fulfilled when:

⌘m

~ ⌦ coth
⇣ ~⌦
2kbT

⌘
 Gm

2

~d3 . (5)

We now discuss the experimental requirements to detect the
classical noise implied by Eq. (5). Consider two identical
spherical masses with radius R and density ⇢, placed at a dis-
tance d = 2R�, where � > 1. In the limiting case � = 1
the two masses will touch each other. By writing the mass
m = 4⇡/3⇢R3 and taking the classical limit for the occupa-
tion number kBT � ~⌦, Eq. (5) can be cast in the following
form which contains only frequencies:

12

⇡
�
3⌦�  !

2
G (6)

where we have introduced the phonon heating rate � = ⌘nT ,
where nT = kBT/~⌦ is the mean thermal occupation num-
ber, and we have defined the frequency !G =

p
G⇢, which

characterizes the gravitational interaction between masses
with density ⇢.

Note that Eq. (6) is independent of the radius R and is
therefore scale invariant. Since gravitational interaction is eas-
ily overwhelmed by electromagnetic forces at the microscale,
this clearly favors macroscopic experiments, for which the
short distance condition � ⇡ 1 can be approached. More-
over, the maximum density of solid-state materials given by
Osmium ⇢ = 2.26⇥104 Kg/m3, implies that !G = 1.1 mHz
at most, setting a strong condition on �. For example, for
⌦/2⇡ = 0.1 mHz, which may be achieved by a torsion pen-
dulum, and setting � = 1 and Osmium as a material, we find
� = 0.6 mHz. Such low heating rate translates to a ratio
Q/T = 2 ⇥ 1014 K�1: even at the very low temperature
T = 10 mK, mechanical quality factors as large as 1012 would

2

FIG. 1: Gedanken experiment. Pairs of spin 1/2 particles
(represented by the red spheres) are generated from a source
S in a spin-singlet state, with one particle traveling toward
Alice and the other toward Bob. Alice performs her spin
measurements first and is free to choose the direction of

measurement. On Bob’s side, a Stern-Gerlach apparatus with
the magnetic field directed along the z direction interacts

with the incoming particles; beyond it, a probe (represented
by the blue sphere) detects the gravitational pull exerted by
the outgoing particles. When Alice measures the spin along

the z-axis, Bob’s particles have 50% chance of going upward
and a 50% chance of going downward when passing through
the Stern-Gerlach apparatus; accordingly, the probe moves

half of the times upward and the other half downward. When
Alice measures the spin along the x-axis, Bob’s particles

always end up in spatial superposition of states, when exiting
the Stern-Gerlach apparatus. If gravity is classical, the probe

cannot be driven in a superposition state and, to avoid the
possibility of faster-than-light signaling, it must again move

upward half of the times and downward the other half.

tion iii) the probe, which is also assumed to be in a classical
state, will be pulled upwards or downwards, each case occur-
ring again with probability 1/2.

If Alice measures the spin e.g. along the x direction, then
Bob’s particles will end up in one of two eigenstates of ŜB

x
and, thus, in one of the two superposition of spin states along
the z direction

���+1Bz
↵
±
���1Bz

↵�
/
p
2, which results, after

passing through the Stern-Gerlach apparatus, in one of the two
superposition states

�
|+ 1Bz i|upB

z i± |� 1Bz i|downB
z i

�
/
p
2,

where |upB
z i (|downB

z i) describes the particle moving up-
wards (downwards). The question is what can we say about
the gravitational field generated by these delocalized states.
To avoid superluminal signaling, the classical gravitational
field has to be such that the probe reacts as in the previous
case, otherwise Bob would be able to realize from a distance
what Alice measured: the probe must be deflected either up-
wards or downwards, each with probability 1/2.

Suppose that, in a specific run of this second type of exper-
iment, the probe is attracted upwards along z. Then, the state
of Bob’s spin particle must collapse to |+ 1Bz i|upB

z i because,
if it did not, Bob could further measure its position and there
would be a 1/2 probability of finding it in the down state; this
would mark a difference with respect to the case where Alice
measured the spin along the z direction, opening the way to
superluminal signaling. Hence, when the probe moves guided
by the gravitational field generated by Bob’s delocalized par-
ticle, the state of the latter must collapse accordingly in space.
Furthermore, as we show in Appendix A, the requirement of
no signaling also implies that this collapse must be random.

Note that if the gravitational interaction is quantum-
mechanical, there is no need to appeal to the collapse of the
wave function, as the measurement of the gravitational field
by the probe (or the measurement of the probe’s position af-
ter the interaction with the spin particle) would automatically
collapse the particle’s state, since probe and particle would
be gravitationally entangled with each other. A classical in-
teraction does not allow for the generation of entanglement,
therefore the collapse must be caused by something else, not
by (measuring) the probe.

It has been shown [18] that a stochastic dynamics, which is
invariant under space translations, and encodes the collapse of
the wave function, must increase the variance of the momen-
tum distribution, i.e. it is diffusive. The fundamental reason
is that, at the statistical level, the way the collapse acts cannot
depend on the state of the system, otherwise it would generate
a nonlinear dynamics which, again, would lead to superlumi-
nal signaling [19]; then, being blind to the state of the sys-
tem, the collapse unavoidably changes the latter, in particular
by shifting its center in space: this shift is random and, over
time, amounts to a diffusion process. We thus arrive at the
conclusion that the three assumptions above imply that grav-
ity must come with a diffusion mechanism acting on matter.
As a matter of fact, all models in the literature which assume
that gravity is classical [20–23], as well as those where gravity
plays a role in the emergence of classicality [24–26] and more
general arguments [27] are in agreement with our general con-
clusion, except for the Schrödinger-Newton equation [28, 29],
which however allows for superluminal signalling [30].
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and the corresponding diffusive effects can be considered in-
stantaneous; this allows to work in the Markovian limit, where
the evolution of the statistical operator ⇢̂(t) is described by a
Lindblad master equation [31, 32]. In the following, we con-
sider the setup shown in Fig. 2, where two systems are sepa-
rated by a distance much larger than the spatial extent of their
wave functions, and their positions and momenta deviate only
slightly from their equilibrium values. In this regime, both the
unitary and Lindblad terms can be linearized. By requiring,
in accordance with assumption iii) that the evolution repro-
duces the (linearized) Newtonian interaction, the evolution of
the statistical operator is given by the following equation:
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FIG. 1: Gedanken experiment. Pairs of spin 1/2 particles
(represented by the red spheres) are generated from a source
S in a spin-singlet state, with one particle traveling toward
Alice and the other toward Bob. Alice performs her spin
measurements first and is free to choose the direction of

measurement. On Bob’s side, a Stern-Gerlach apparatus with
the magnetic field directed along the z direction interacts

with the incoming particles; beyond it, a probe (represented
by the blue sphere) detects the gravitational pull exerted by
the outgoing particles. When Alice measures the spin along

the z-axis, Bob’s particles have 50% chance of going upward
and a 50% chance of going downward when passing through
the Stern-Gerlach apparatus; accordingly, the probe moves

half of the times upward and the other half downward. When
Alice measures the spin along the x-axis, Bob’s particles

always end up in spatial superposition of states, when exiting
the Stern-Gerlach apparatus. If gravity is classical, the probe

cannot be driven in a superposition state and, to avoid the
possibility of faster-than-light signaling, it must again move

upward half of the times and downward the other half.

tion iii) the probe, which is also assumed to be in a classical
state, will be pulled upwards or downwards, each case occur-
ring again with probability 1/2.

If Alice measures the spin e.g. along the x direction, then
Bob’s particles will end up in one of two eigenstates of ŜB
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Note that if the gravitational interaction is quantum-
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the wave function, must increase the variance of the momen-
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nal signaling [19]; then, being blind to the state of the sys-
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by shifting its center in space: this shift is random and, over
time, amounts to a diffusion process. We thus arrive at the
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ity must come with a diffusion mechanism acting on matter.
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that gravity is classical [20–23], as well as those where gravity
plays a role in the emergence of classicality [24–26] and more
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with ⌦ :=
p
!2 �K/m the renormalized frequency of the

oscillators and K := 2Gm
2
/d

3 the coupling constant of the
linearized Newtonian interaction between the two systems at
distance d. The matrix �, which is always positive semi-
definite but in general complex, becomes real after requiring
that the average values of the positions and momenta repro-
duce the (linearized) Newtonian interaction. See Appendix B
for further details.

FIG. 2: Setup of the experiment. We consider two particles
confined in harmonic traps with a renormalized frequency ⌦,
separated by a distance d much larger than the spatial extent
of their wave functions, denoted by a. The dynamics of these

two systems is described by Eq. (1).

The Newtonian interaction term Kx̂1x̂2 in the Hamiltonian
generates entanglement between the particles, while the non-
unitary Lindblad terms counteract it: only if the latter are
sufficiently strong, entanglement will not be generated. Ac-
cordingly, we derive in Appendix C a lower bound on the
diagonal elements of � by using the separability criterion of
positivity under partial transposition, introduced by Peres for
finite-dimensional systems [33] and later generalized by Si-
mon for Gaussian states of continuous-variable systems [34].
This yields the following necessary condition:

�11 + �22 +m
2⌦2(�33 + �44) �

2Gm
2

~d3 . (3)

Similar bounds have been derived within the context of
non-entangling Lindblad dynamics [35].

The question now moves to finding an efficient strategy to
measure the presence or lack of the extra diffusion associated
to classical gravity: if no extra diffusion compatible with the
bound in Eq. (3) is detected, one can conclude that gravity
cannot be classical. On the other hand, since the above con-
dition is only necessary, the detection of extra diffusion does
not necessarily imply that gravity is classical, but still would
be a remarkable result.

Diffusion leads to an increase of the variance of the position
of the oscillators. While in principle this could be detected by
direct observation, it can be captured more efficiently in the
frequency domain by measuring the two-frequency correla-
tion function of the Fourier transform of the position x̃1(!) of
one of the two particles. The correlation function is directly
related to the density noise spectrum (DNS), which is defined

as Sx1x1(!)�(! +⌦) = hx̃1(!)x̃1(⌦) + x̃1(⌦)x̃1(!)i/2 and
collects all noisy properties of the motion of the particle’s po-
sition. In addition to the gravity related noise, we also in-
clude in our calculation a thermal noise with temperature T

and damping rate ⌘, to capture the effects of the other sources
of decoherence. Then the position DNS, which is calculated
in Appendix D, at the resonant frequency ⌦, is given by:

Sx1x1(⌦) =
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The reason why only a few matrix elements of � appear in
Eq. (4) is that when the oscillators have the same mass and
frequency, symmetries emerge, in particular �11 = �22 and
�33 = �44; which also simplify the bound in Eq. (3) to
�11 +m

2⌦2
�33 � Gm2

~d3 . Considering setups with high qual-
ity factor, we can safely neglect the last two terms in Eq. (4).
Then a necessary condition for this setup to detect gravity in-
duced diffusion is that the thermal fluctuations (third term in
Eq. (4)) are lower than the noisy terms related to gravity (first
two terms in Eq. (4)). This condition, keeping into account
the bound in Eq. (3) is fulfilled when:
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~ ⌦ coth
⇣ ~⌦
2kbT

⌘
 Gm

2

~d3 . (5)

We now discuss the experimental requirements to detect the
classical noise implied by Eq. (5). Consider two identical
spherical masses with radius R and density ⇢, placed at a dis-
tance d = 2R�, where � > 1. In the limiting case � = 1
the two masses will touch each other. By writing the mass
m = 4⇡/3⇢R3 and taking the classical limit for the occupa-
tion number kBT � ~⌦, Eq. (5) can be cast in the following
form which contains only frequencies:

12

⇡
�
3⌦�  !

2
G (6)

where we have introduced the phonon heating rate � = ⌘nT ,
where nT = kBT/~⌦ is the mean thermal occupation num-
ber, and we have defined the frequency !G =

p
G⇢, which

characterizes the gravitational interaction between masses
with density ⇢.

Note that Eq. (6) is independent of the radius R and is
therefore scale invariant. Since gravitational interaction is eas-
ily overwhelmed by electromagnetic forces at the microscale,
this clearly favors macroscopic experiments, for which the
short distance condition � ⇡ 1 can be approached. More-
over, the maximum density of solid-state materials given by
Osmium ⇢ = 2.26⇥104 Kg/m3, implies that !G = 1.1 mHz
at most, setting a strong condition on �. For example, for
⌦/2⇡ = 0.1 mHz, which may be achieved by a torsion pen-
dulum, and setting � = 1 and Osmium as a material, we find
� = 0.6 mHz. Such low heating rate translates to a ratio
Q/T = 2 ⇥ 1014 K�1: even at the very low temperature
T = 10 mK, mechanical quality factors as large as 1012 would
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FIG. 1: Gedanken experiment. Pairs of spin 1/2 particles
(represented by the red spheres) are generated from a source
S in a spin-singlet state, with one particle traveling toward
Alice and the other toward Bob. Alice performs her spin
measurements first and is free to choose the direction of

measurement. On Bob’s side, a Stern-Gerlach apparatus with
the magnetic field directed along the z direction interacts

with the incoming particles; beyond it, a probe (represented
by the blue sphere) detects the gravitational pull exerted by
the outgoing particles. When Alice measures the spin along

the z-axis, Bob’s particles have 50% chance of going upward
and a 50% chance of going downward when passing through
the Stern-Gerlach apparatus; accordingly, the probe moves

half of the times upward and the other half downward. When
Alice measures the spin along the x-axis, Bob’s particles

always end up in spatial superposition of states, when exiting
the Stern-Gerlach apparatus. If gravity is classical, the probe

cannot be driven in a superposition state and, to avoid the
possibility of faster-than-light signaling, it must again move

upward half of the times and downward the other half.

tion iii) the probe, which is also assumed to be in a classical
state, will be pulled upwards or downwards, each case occur-
ring again with probability 1/2.

If Alice measures the spin e.g. along the x direction, then
Bob’s particles will end up in one of two eigenstates of ŜB
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z i) describes the particle moving up-
wards (downwards). The question is what can we say about
the gravitational field generated by these delocalized states.
To avoid superluminal signaling, the classical gravitational
field has to be such that the probe reacts as in the previous
case, otherwise Bob would be able to realize from a distance
what Alice measured: the probe must be deflected either up-
wards or downwards, each with probability 1/2.

Suppose that, in a specific run of this second type of exper-
iment, the probe is attracted upwards along z. Then, the state
of Bob’s spin particle must collapse to |+ 1Bz i|upB

z i because,
if it did not, Bob could further measure its position and there
would be a 1/2 probability of finding it in the down state; this
would mark a difference with respect to the case where Alice
measured the spin along the z direction, opening the way to
superluminal signaling. Hence, when the probe moves guided
by the gravitational field generated by Bob’s delocalized par-
ticle, the state of the latter must collapse accordingly in space.
Furthermore, as we show in Appendix A, the requirement of
no signaling also implies that this collapse must be random.

Note that if the gravitational interaction is quantum-
mechanical, there is no need to appeal to the collapse of the
wave function, as the measurement of the gravitational field
by the probe (or the measurement of the probe’s position af-
ter the interaction with the spin particle) would automatically
collapse the particle’s state, since probe and particle would
be gravitationally entangled with each other. A classical in-
teraction does not allow for the generation of entanglement,
therefore the collapse must be caused by something else, not
by (measuring) the probe.

It has been shown [18] that a stochastic dynamics, which is
invariant under space translations, and encodes the collapse of
the wave function, must increase the variance of the momen-
tum distribution, i.e. it is diffusive. The fundamental reason
is that, at the statistical level, the way the collapse acts cannot
depend on the state of the system, otherwise it would generate
a nonlinear dynamics which, again, would lead to superlumi-
nal signaling [19]; then, being blind to the state of the sys-
tem, the collapse unavoidably changes the latter, in particular
by shifting its center in space: this shift is random and, over
time, amounts to a diffusion process. We thus arrive at the
conclusion that the three assumptions above imply that grav-
ity must come with a diffusion mechanism acting on matter.
As a matter of fact, all models in the literature which assume
that gravity is classical [20–23], as well as those where gravity
plays a role in the emergence of classicality [24–26] and more
general arguments [27] are in agreement with our general con-
clusion, except for the Schrödinger-Newton equation [28, 29],
which however allows for superluminal signalling [30].

III. EXPERIMENTAL SIGNATURES OF CLASSICAL

GRAVITY

A diffusive dynamics for the statistical operator ⇢̂ of two
gravitationally interacting systems deviates from being uni-
tary. For systems moving at non-relativistic speeds, which is
the case we are considering here, the gravitational interaction
and the corresponding diffusive effects can be considered in-
stantaneous; this allows to work in the Markovian limit, where
the evolution of the statistical operator ⇢̂(t) is described by a
Lindblad master equation [31, 32]. In the following, we con-
sider the setup shown in Fig. 2, where two systems are sepa-
rated by a distance much larger than the spatial extent of their
wave functions, and their positions and momenta deviate only
slightly from their equilibrium values. In this regime, both the
unitary and Lindblad terms can be linearized. By requiring,
in accordance with assumption iii) that the evolution repro-
duces the (linearized) Newtonian interaction, the evolution of
the statistical operator is given by the following equation:
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FIG. 1: Gedanken experiment. Pairs of spin 1/2 particles
(represented by the red spheres) are generated from a source
S in a spin-singlet state, with one particle traveling toward
Alice and the other toward Bob. Alice performs her spin
measurements first and is free to choose the direction of

measurement. On Bob’s side, a Stern-Gerlach apparatus with
the magnetic field directed along the z direction interacts

with the incoming particles; beyond it, a probe (represented
by the blue sphere) detects the gravitational pull exerted by
the outgoing particles. When Alice measures the spin along

the z-axis, Bob’s particles have 50% chance of going upward
and a 50% chance of going downward when passing through
the Stern-Gerlach apparatus; accordingly, the probe moves

half of the times upward and the other half downward. When
Alice measures the spin along the x-axis, Bob’s particles

always end up in spatial superposition of states, when exiting
the Stern-Gerlach apparatus. If gravity is classical, the probe

cannot be driven in a superposition state and, to avoid the
possibility of faster-than-light signaling, it must again move

upward half of the times and downward the other half.

tion iii) the probe, which is also assumed to be in a classical
state, will be pulled upwards or downwards, each case occur-
ring again with probability 1/2.

If Alice measures the spin e.g. along the x direction, then
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x
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���+1Bz
↵
±
���1Bz

↵�
/
p
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|+ 1Bz i|upB

z i± |� 1Bz i|downB
z i

�
/
p
2,
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z i (|downB

z i) describes the particle moving up-
wards (downwards). The question is what can we say about
the gravitational field generated by these delocalized states.
To avoid superluminal signaling, the classical gravitational
field has to be such that the probe reacts as in the previous
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what Alice measured: the probe must be deflected either up-
wards or downwards, each with probability 1/2.

Suppose that, in a specific run of this second type of exper-
iment, the probe is attracted upwards along z. Then, the state
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z i because,
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ticle, the state of the latter must collapse accordingly in space.
Furthermore, as we show in Appendix A, the requirement of
no signaling also implies that this collapse must be random.
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collapse the particle’s state, since probe and particle would
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teraction does not allow for the generation of entanglement,
therefore the collapse must be caused by something else, not
by (measuring) the probe.

It has been shown [18] that a stochastic dynamics, which is
invariant under space translations, and encodes the collapse of
the wave function, must increase the variance of the momen-
tum distribution, i.e. it is diffusive. The fundamental reason
is that, at the statistical level, the way the collapse acts cannot
depend on the state of the system, otherwise it would generate
a nonlinear dynamics which, again, would lead to superlumi-
nal signaling [19]; then, being blind to the state of the sys-
tem, the collapse unavoidably changes the latter, in particular
by shifting its center in space: this shift is random and, over
time, amounts to a diffusion process. We thus arrive at the
conclusion that the three assumptions above imply that grav-
ity must come with a diffusion mechanism acting on matter.
As a matter of fact, all models in the literature which assume
that gravity is classical [20–23], as well as those where gravity
plays a role in the emergence of classicality [24–26] and more
general arguments [27] are in agreement with our general con-
clusion, except for the Schrödinger-Newton equation [28, 29],
which however allows for superluminal signalling [30].
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tary. For systems moving at non-relativistic speeds, which is
the case we are considering here, the gravitational interaction
and the corresponding diffusive effects can be considered in-
stantaneous; this allows to work in the Markovian limit, where
the evolution of the statistical operator ⇢̂(t) is described by a
Lindblad master equation [31, 32]. In the following, we con-
sider the setup shown in Fig. 2, where two systems are sepa-
rated by a distance much larger than the spatial extent of their
wave functions, and their positions and momenta deviate only
slightly from their equilibrium values. In this regime, both the
unitary and Lindblad terms can be linearized. By requiring,
in accordance with assumption iii) that the evolution repro-
duces the (linearized) Newtonian interaction, the evolution of
the statistical operator is given by the following equation:
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It destroys entanglement

To avoid entanglement, the Lindblad terms must be stronger than the Newtonian 
interaction. For Gaussian states one finds  
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c̄i can be written compactly by introducing the symplectic ma-
trix J :

[c̄i, c̄j ] = iJij , J =


0 I2

�I2 0

�
. (14)

Furthermore, by denoting by Vij(t) = h{(c̄i � hc̄ii)(c̄j �
hc̄ji}i/2 the covariance matrix of a bipartite system, the cru-
cial consequence of the non commutativity of the operators
c̄is, i.e. Heisenberg’s uncertainty principle, can be expressed
as the matrix inequality [101]:

V (t) +
i

2
J � 0 , (15)

which has to be satisfied by any quantum dynamics.
Partial transposition has the physical interpretation of a par-

tial time reversal, which, for continuous variables, can be re-
cast geometrically as a partial reflection in phase space. The
PPT condition amounts to requiring that separable quantum
state is mapped into a valid, i.e. positive, quantum state by
this reflection. This is equivalent to the request that the par-
tially transposed state satisfies Heisenberg’s uncertainty prin-
ciple (15) [102]. Introducing the matrix ⇤ = diag[1, 1, 1,�1]

which codifies the partial reflection in phase space with re-
spect to the second party, the PPT condition can thus be writ-
ten concisely as a matrix inequality:

⇤V (t)⇤+
i

2
J � 0 () V (t) +

i

2
⇤J⇤ � 0 , (16)

which must hold for any separable state with covariance V (t).
The covariance matrix under the evolution (13) evolves ac-

cording to

dV (t)

dt
= JHV (t)� V (t)HJ � J �̄J , (17)

and it explicitly depends on the matrix �̄. Therefore the valid-
ity of the PPT condition over time (16) implicitly sets restric-
tions on the elements of �̄, which govern the diffusion.

To obtain the corresponding bounds, we require that the
ground states of the two oscillators do not immediately en-
tangle after a time " > 0, as would otherwise happen in ab-
sence of diffusion, due to the Newtonian interaction. Taking
as initial covariance matrix V0 = I4/2, by Taylor expanding
the PPT condition we obtain:

0  1

2
z†
⇣
I4 + i⇤J⇤

⌘
z + "z†

dV (t)

dt

����
t=0

z, 8z 2 C4

(18)
The first term on the right hand side is non-negative by con-
struction and independent of both �̄ and K; however, by
choosing z0 = (a,�b, ia, ib), with a, b 2 C, it vanishes iden-
tically. Therefore, requiring that the separability of the ground
state is preserved implies the positivity of the time derivative
of the covariance, dV

dt |t=0, on the subset of vectors z0. Insert-
ing the above choice for z0 in the inequality (18), one obtains
a set of conditions which amount to:

2K sin↵

m
p
⌦1⌦2

Tr[�̄] + 2(�̄12 � �̄34) cos↵

� 2(�̄14 + �̄23) sin↵ , (19)

where ↵ 2 [0, 2⇡) is simply the phase difference between a
and b. The strongest of these conditions is set by maximizing
the l.h.s. of the above equation, obtaining:

Tr[�̄]� 2(�̄14 + �̄23) �
2K

m
p
⌦1⌦2

. (20)

Finally, by exploiting the positivity of the �̄ matrix, which
implies |Re(�̄ij)|  �̄ii+�̄jj

2 , one arrives at the weaker, but
more useful, bound:

Tr[�̄] � K

m
p
⌦1⌦2

=
2Gm

d3
p
⌦1⌦2

, (21)

which, when written in terms of the dimensional matrix ele-
ments of �, reads:

⌦2�11 +⌦1�22 +⌦1⌦2(⌦1�33 +⌦2�44) �
2Gm2

~d3
p

⌦1⌦2 .

(22)
Eq. (22) has an explicit dependence on the frequencies of the
oscillators, that is, on the specific setup that has been cho-
sen. This is expected: depending on the configuration of the
two masses, the minimum noise required to keep them un-
entangled changes. Since gravity is supposed to be univer-
sal and therefore independent of the choice of experimen-
tal setup, the gravitational diffusion coefficients �ij are in-
dependent of the frequencies and depend only on the masses
and distances involved—a reasonable expectation in the non-
relativistic limit [133]. This implies that gravity should re-
spect the bound (22) for any values of ⌦1,⌦2. Noting that
for equal masses, under the above assumption, �11 = �22 and
�33 = �44, by varying the frequencies we arrive at the simple
bound:

�11 +m2!2�33 � Gm2

~d3 , (23)

valid for any frequency !.
The physical meaning of equation (23) is straightforward:

in order to prevent entanglement generation, the total deco-
herence rate, i.e. the sum of the diagonal entries of �, has
to be large enough to counteract the entangling Newtonian
interaction, whose strength is given by K and, hence, G.
Similar bounds have been derived within the context of non-
entangling Lindblad dynamics [103]. If no extra diffusion
compatible with the bound in Eq. (23) is detected, one can
conclude that gravity cannot be classical. On the other hand,
since the above condition is only necessary for separability,
the detection of extra diffusion does not imply the classicality
of gravity. Still, it would mark a striking departure from the
strictly unitary evolution predicted by the Newtonian poten-
tial.

The question now moves to finding an efficient strategy to
measure the presence or lack of the diffusion quantified by
Eq. (23).
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Consider the density noise spectrum of one of the two particles

To see the extra diffusion, the thermal noise should be lower than the gravity-induced 
noise, giving (for high quality factors):  
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with ⌦ :=
p
!2 �K/m the renormalized frequency of the

oscillators and K := 2Gm
2
/d

3 the coupling constant of the
linearized Newtonian interaction between the two systems at
distance d. The matrix �, which is always positive semi-
definite but in general complex, becomes real after requiring
that the average values of the positions and momenta repro-
duce the (linearized) Newtonian interaction. See Appendix B
for further details.

FIG. 2: Setup of the experiment. We consider two particles
confined in harmonic traps with a renormalized frequency ⌦,
separated by a distance d much larger than the spatial extent
of their wave functions, denoted by a. The dynamics of these

two systems is described by Eq. (1).

The Newtonian interaction term Kx̂1x̂2 in the Hamiltonian
generates entanglement between the particles, while the non-
unitary Lindblad terms counteract it: only if the latter are
sufficiently strong, entanglement will not be generated. Ac-
cordingly, we derive in Appendix C a lower bound on the
diagonal elements of � by using the separability criterion of
positivity under partial transposition, introduced by Peres for
finite-dimensional systems [33] and later generalized by Si-
mon for Gaussian states of continuous-variable systems [34].
This yields the following necessary condition:

�11 + �22 +m
2⌦2(�33 + �44) �

2Gm
2

~d3 . (3)

Similar bounds have been derived within the context of
non-entangling Lindblad dynamics [35].

The question now moves to finding an efficient strategy to
measure the presence or lack of the extra diffusion associated
to classical gravity: if no extra diffusion compatible with the
bound in Eq. (3) is detected, one can conclude that gravity
cannot be classical. On the other hand, since the above con-
dition is only necessary, the detection of extra diffusion does
not necessarily imply that gravity is classical, but still would
be a remarkable result.

Diffusion leads to an increase of the variance of the position
of the oscillators. While in principle this could be detected by
direct observation, it can be captured more efficiently in the
frequency domain by measuring the two-frequency correla-
tion function of the Fourier transform of the position x̃1(!) of
one of the two particles. The correlation function is directly
related to the density noise spectrum (DNS), which is defined

as Sx1x1(!)�(! +⌦) = hx̃1(!)x̃1(⌦) + x̃1(⌦)x̃1(!)i/2 and
collects all noisy properties of the motion of the particle’s po-
sition. In addition to the gravity related noise, we also in-
clude in our calculation a thermal noise with temperature T

and damping rate ⌘, to capture the effects of the other sources
of decoherence. Then the position DNS, which is calculated
in Appendix D, at the resonant frequency ⌦, is given by:

Sx1x1(⌦) =
~2

[K2 +m2⌘2⌦2]
⇥

h
�11+m

2⌦2
�33+

⌘m

~ ⌦ coth
⇣ ~⌦
2kbT

⌘
+m

2
⌘
2
�33�2m⌘�13

i
.

(4)

The reason why only a few matrix elements of � appear in
Eq. (4) is that when the oscillators have the same mass and
frequency, symmetries emerge, in particular �11 = �22 and
�33 = �44; which also simplify the bound in Eq. (3) to
�11 +m

2⌦2
�33 � Gm2

~d3 . Considering setups with high qual-
ity factor, we can safely neglect the last two terms in Eq. (4).
Then a necessary condition for this setup to detect gravity in-
duced diffusion is that the thermal fluctuations (third term in
Eq. (4)) are lower than the noisy terms related to gravity (first
two terms in Eq. (4)). This condition, keeping into account
the bound in Eq. (3) is fulfilled when:

⌘m

~ ⌦ coth
⇣ ~⌦
2kbT

⌘
 Gm

2

~d3 . (5)

We now discuss the experimental requirements to detect the
classical noise implied by Eq. (5). Consider two identical
spherical masses with radius R and density ⇢, placed at a dis-
tance d = 2R�, where � > 1. In the limiting case � = 1
the two masses will touch each other. By writing the mass
m = 4⇡/3⇢R3 and taking the classical limit for the occupa-
tion number kBT � ~⌦, Eq. (5) can be cast in the following
form which contains only frequencies:

12

⇡
�
3⌦�  !

2
G (6)

where we have introduced the phonon heating rate � = ⌘nT ,
where nT = kBT/~⌦ is the mean thermal occupation num-
ber, and we have defined the frequency !G =

p
G⇢, which

characterizes the gravitational interaction between masses
with density ⇢.

Note that Eq. (6) is independent of the radius R and is
therefore scale invariant. Since gravitational interaction is eas-
ily overwhelmed by electromagnetic forces at the microscale,
this clearly favors macroscopic experiments, for which the
short distance condition � ⇡ 1 can be approached. More-
over, the maximum density of solid-state materials given by
Osmium ⇢ = 2.26⇥104 Kg/m3, implies that !G = 1.1 mHz
at most, setting a strong condition on �. For example, for
⌦/2⇡ = 0.1 mHz, which may be achieved by a torsion pen-
dulum, and setting � = 1 and Osmium as a material, we find
� = 0.6 mHz. Such low heating rate translates to a ratio
Q/T = 2 ⇥ 1014 K�1: even at the very low temperature
T = 10 mK, mechanical quality factors as large as 1012 would
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V. EXPERIMENTAL SIGNATURES OF CLASSICAL
GRAVITY

Diffusion leads to an increase in the variance of the posi-
tion of the two oscillators; we now investigate its detectability.
While the gravitational noise affects both systems, detecting it
requires monitoring only the position of one of them. There-
fore, we focus on a setup as shown in Fig. 3, in which one
mass is fixed, acting solely as a source of gravitational attrac-
tion and, correspondingly, as a source of gravitational noise
for the other oscillating mass.

Diffusion can be captured efficiently in the frequency do-
main by measuring the two-frequency correlation function of
the Fourier transform of the position x̃(!) of the oscillat-
ing particle. The correlation function is directly related to
the density noise spectrum (DNS) [104], which is defined
as Sx1x1(!)�(! + ⌫) = hx̃1(!)x̃1(⌫) + x̃1(⌫)x̃1(!)i/2 and
collects all noisy properties of the motion of the particle’s
position. The calculation of the DNS is more conveniently
performed in the Heisenberg picture, since the master equa-
tion (11) is statistically equivalent to a set of Heisenberg-
Langevin equations for the position and momentum operators
of the two systems [134]. Having one mass fixed at an aver-

age distance distance d from the other one, the equations of
motion for the latter are:

dx̂

dt
= p̂/m+ ~w3

dp̂

dt
= �m⌦

2x̂�K(d+ x̂)� ⌘p̂+ ⇠̂(t)� ~w1(t) , (24)

where wi(t) are white noises, whose correlations encode
the gravitational diffusion coefficients: E[wi(t)wj(t0)] =

�ij�(t � t0). In addition to the gravity related noise, we have
also included in our analysis a thermal noise ⇠̂(t) with tem-
perature T and correlation [104]

E[h⇠̂j(t)⇠̂j(t0)i] =
~⌘jmj

2⇡
⇥

Z
d!e�i!(t�t0)


1 + coth

✓
~!

2kBT

◆�

(25)

and damping rate ⌘, which encode the effects of the other
sources of decoherence. Solving the equations (24) in the fre-
quency space, a straightforward calculation leads to

Sxx(!) =
~2

���m(⌦2 � !2 � i⌘!) +K
���
2

h
�11 +m2!2�33 +

⌘m!

~

⇣
1 + coth

✓
~!
2kbT

◆⌘
+m2⌘2�33 � 2m⌘�13

i
. (26)

Considering setups with high quality factor, we can safely
neglect the last two terms in Eq. (26). Then a necessary condi-
tion for this setup to detect the gravity induced diffusion is that
the thermal fluctuations (third term in Eq. (26)) are lower than
the noisy terms related to gravity (first two terms in Eq. (26)).
This condition, on resonance ! = ⌦, keeping into account the
bound in Eq. (23) and neglecting the vacuum contribution of
the environment, is fulfilled when:

⌘m

~ ⌦ coth

⇣ ~⌦
2kbT

⌘
 Gm2

~d3 . (27)

We now discuss the experimental requirements needed to
satisfy the above inequality. First, consider the simplest case
of two identical spherical masses with radius R and density ⇢,
placed at a distance d = 2R�, where � > 1. In the limiting
case � = 1 the two masses touch each other. By writing the
mass m = 4⇡/3⇢R3 and taking the classical limit kBT �
~⌦ for the occupation number, Eq. (27) can be cast in the
following form, which contains only frequencies:
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⇡
�3

⌦�  !2
G (28)

where we have introduced the phonon heating rate � = ⌘nT ,
where nT = kBT/~⌦ is the mean thermal occupation num-
ber, and we have defined the frequency !G =

p
G⇢, which

characterizes the gravitational interaction between masses
with density ⇢. Note that Eq. (28) is independent of the radius
R and is therefore scale invariant.

Since the gravitational interaction is easily overwhelmed by
electromagnetic forces at the microscale, this clearly favors
macroscopic experiments, for which the short distance condi-
tion � ⇡ 1 can be approached, allowing an electromagnetic
shield to be placed between the masses. The maximum den-
sity of solid-state materials given by Osmium ⇢ = 2.26⇥ 10

4

Kg/m3, implies that !G = 1.1 mHz at most, setting a quite
tight condition on �. For example, for ⌦/2⇡ = 0.1 mHz,
achievable, for instance, by a torsion pendulum, and setting
� = 1 and Osmium as a material, we find �  0.6 mHz
to satisfy Eq. (28). This heating rate translates into a ratio
Q/T = 2⇥ 10

14 K�1 where Q is the mechanical quality fac-
tor: even at T = 10 mK, a Q factor as large as 2⇥10

12 would
be required. We therefore arrive at the general conclusion that
an experiment designed to detect the gravitational noise must
be macroscopic and have a characteristic frequency ⌦ and a
heating rate � lower than 1 mHz. This fully justifies the clas-
sical limit for nT .

At this point, we note that condition (28) is in principle con-
servative. If thermal noise is the only relevant source of noise
in addition to the gravitational one, it can be accurately char-
acterized, for example, by a set of measurements as a function



Since gravitational interaction is easily overwhelmed by electromagnetic forces at the 
microscale, this clearly favors macroscopic experiments. 

Measuring the extra diffusion

8

of temperature [105], and subtracted. One can therefore es-
timate the gravitational noise as a fraction of thermal noise,
which depends on the experiment accuracy and on the total
measurement time.

To this end, let us define a concrete measurement protocol.
The very low phonon heating rate suggests a strategy based
on measuring the reheating rate of the measured oscillator af-
ter cooling close to the ground state, which requires a nearly
quantum-limited displacement detection. We discuss later the
experimental feasibility. Importantly, reheating can be per-
formed in the absence of measurement, so we can neglect the
back-action noise from the measurement apparatus. We as-
sume that the reheating is performed in a time much shorter
than the resonator relaxation time ⌘�1 and that the procedure
is repeated and averaged many times. Under these conditions,
it can be shown [106] that the relative uncertainty in the deter-
mination of � is N/

p
�t where t is the total integration time

and N is the noise of the measurement apparatus expressed in
units of ~. N = 1 corresponds to a quantum-limited appara-
tus, which allows feedback cooling to the ground state.

The problem is now to distinguish the non thermal contri-
bution to � coming from gravity which, according to Eq. (28),
is given at the very least by:

�G =
⇡!2

G

12�3⌦
, (29)

from a thermal heating rate background:

�th = ⌘nT =
kBT

~Q . (30)

If we can characterize thermal noise with a relative uncer-
tainty r, we can distinguish a gravitational noise which is
r times smaller (�G = r�th) within an integration time
t = 1/(r�G). For example, for r = 0.01 and N = 1 we
obtain an integration time ⇠ 2 days. This, in turn, relaxes the
requirement on Q/T by a factor r.

Let us now discuss the feasibility of the proposed measure-
ment. A resonance frequency range below millihertz can be
readily achieved by torsion pendulums, suggesting as mea-
surement scheme a symmetrical torsion balance as depicted in
Fig. 3. Here, the first pair of masses can be thought as fixed, as
its role is only to produce the classical gravity noise, while the
second pair is a proper torsion pendulum; a summary of the
parameters required by the proposed implementation is shown
in Table I. Regarding its feasibility, the biggest challenge is the
extremely low level of dissipation and thermal noise required.
The longest damping time demonstrated so far in torsion pen-
dulums at f ⇠ 0.1 mHz is ⌧ ⇠ 10

8 s, with extrapolation up
to 3⇥10

9 [107], corresponding to a mechanical quality factor
Q ⇡ 10

6. On the other hand, under the optimistic assump-
tion previously discussed, namely that we could distinguish
gravity-induced noise as a fraction r = 0.01 of thermal noise
at T = 10 mK, we would still need Q = 2 ⇥ 10

10. This
means that current experiments are at least 4 orders of mag-
nitude away from the requirements; in the following, we will
argue that achieving the required numbers are indeed feasible.

FIG. 3: Implementation based on a torsion pendulum.
Two identical pairs of masses are arranged symmetrically,

facing each other. The left pair serves as the source of
gravitational noise and can be considered fixed, while the

right pair is part of a torsion pendulum with effective
frequency ⌦. A superconducting shield between the two

pairs suppresses any electromagnetic interaction. The masses
have radius R, density ⇢, and equilibrium separation d. The
relative displacement x of the pendulum masses is measured

by an apparatus with near-quantum-limited noise xn,
enabling preparation of the pendulum close to its ground state
via feedback cooling. The system is then allowed to evolve

without measurement (i.e., “in the dark”), and the mechanical
amplitude is probed after a fixed time. This measurement is

repeated multiple times over a total integration time t,
yielding the phonon heating rate �. Provided that the thermal

noise is sufficiently low, the heating rate produced by the
gravitational noise will eventually become detectable.

Most torsion pendulums so far have been operated at room
temperature, with only very few examples of cryogenics ones,
however limited to temperatures above 1 K and to metallic
torsion fibers [108–110]. However, strong suppression of me-
chanical losses is expected at millikelvin temperature: as a
matter of fact, already back to 1977, Braginsky, Thorne and
Caves envisioned precisely the possibility of testing a number
of (still untested) relativistic effects in laboratory using torsion
pendulums at millikelvin temperature [111]. In their vision-
ary work, they estimated that damping times longer than 10

13

s and quality factors Q ⇡ 10
10 should be achievable using

torsion pendulums comprising fused quartz or single-crystal
sapphire fibers at T < 100 mK. For amorphous solids, the
extrapolations rely on the well-known rapid decrease in the
losses of two-level systems with decreasing temperature, typ-
ically scaling as T 3. For single crystal sapphire oscillators,
Q factors close to 10

10 have been measured in mechanical

9

Parameters Value
⌦/2⇡ 10�4 Hz
⇢ 2.26⇥ 104 Kg/m3

R 3 cm
� ⇡ 1

T 0.01 K
Q 2⇥ 1010

N ⇡ 1

r 0.01

TABLE I: List of parameters for a torsion pendulum
implementation. The frequency ⌦, which is close to the

lowest values achievable by torsion pendulums, is
determined by Eq. (28), which requires ⌦ to be as low as

possible. The density ⇢ corresponds to that of osmium, the
heaviest solid material. The radius R of a single mass with
m = 2.55 kg is chosen as a trade-off: the masses must be

macroscopic to suppress the relative effect of
non-gravitational forces and to approach the condition � ⇡ 1,

while remaining compact enough to ensure compatibility
with a cryogenic apparatus. The temperature T is set to the
typical value achievable in a continuous dilution refrigerator
cryostat. The mechanical quality factor Q is assumed to be
achievable at T = 10 mK. The motional detector operates

near the quantum limit with N ⇡ 1, enabling preparation of
the pendulum close to its ground state. We assume the ability

to resolve a fraction r = 0.01 of the thermal noise.

modes at higher frequencies [107], in par with measurements
performed on other crystalline resonators [112, 113]. This
suggests that intrinsic dissipation of crystalline materials at
low temperature can be as low as required by our proposal.
We also point out that operation at millikelvin temperature
will in principle allow suppression of gas damping losses to
the desired levels [111].

In light of these considerations and the broader relevance
to a wide class of precision measurements beyond the specific
topic investigated in this article, a systematic study of dissipa-
tion in torsion pendulums at millikelvin temperatures is both
urgent and timely. Despite the proposal by Braginsky et al.
[111], we are not aware of any experimental attempts to con-
duct such investigations.

Achieving the required Q/T factor is a necessary but not
sufficient condition for conducting the experiment. Other crit-
ical factors include the thermalization of the fiber, the suppres-
sion of environmental noise sources, and the implementation
of a near-quantum-limited angular detector. To ensure that the
thermal noise of the pendulum follows Eq. (25), it is essential
that the temperature of the dissipative element—the fiber—
matches the bath temperature T . This condition is not triv-
ial, as thermalization via conduction in an insulating thin fiber
becomes negligible below 1 K. Consequently, the thermaliza-
tion of the pendulum fiber must rely on the weak conduction
channel provided by residual gas, while ensuring that the pres-
sure remains as low as 10�12 mbar to sufficiently suppress gas

damping [111]. Thus, thermalization of the pendulum is fea-
sible, provided that heat leakage is minimized. This imposes
a stringent constraint on the power dissipated by the measure-
ment apparatus.

Suppression of environmental noise is a well-known chal-
lenge in any precision measurement involving low-frequency
mechanical systems. The proposed experiment will need to
be conducted in an extremely quiet environment, such as a
deep underground site with minimal seismic and Newtonian
noise. If sufficient isolation cannot be achieved on Earth, an
alternative would be to consider performing the experiment
in space. In fact, the lowest acceleration noise to date below
10

�15 g/
p
Hz has been measured in space [114]. An interme-

diate option could be a future laboratory on the Moon, which
would benefit from the virtual absence of seismic and human-
generated noise.

Finally, let us consider the issue of the near-quantum-
limited readout. Optomechanical cavities can operate at the
standard quantum limit and even beyond in low-frequency
macroscopic mechanical resonators, as demonstrated by grav-
itational wave detectors [115]. However, the optical cav-
ity power required to reach the quantum limit is likely in-
compatible with the extremely low absorption levels that
can be tolerated by an apparatus at millikelvin temperature,
thermalized through residual gas. This issue can be cir-
cumvented by employing superconducting [116] or ferro-
magnetic [117] transduction, potentially coupled to a remote
quantum-limited SQUID. Microwave-operated SQUID-based
tunable resonators can, in principle, achieve quantum-limited
performance. While experimental demonstrations in low-
frequency mechanical resonators are still lacking, ongoing re-
search is progressing toward this milestone [118]. A neces-
sary prerequisite is the strong suppression of 1/f noise, a
well-known technical challenge but not a fundamental limi-
tation [119].

In parallel with standard torsion pendulums, other related
approaches could be explored. Levitated systems exhibit-
ing torsion-like behavior can be realized using the Meiss-
ner effect [120]. While current quantum magnetomechan-
ics experiments focus on smaller scales and higher frequen-
cies [117, 118], levitated systems with masses on the order of
kilograms could naturally exhibit libration frequencies in the
millihertz range and potentially achieve extremely low dissi-
pation levels, unconstrained by elastic losses in materials.

VI. CONCLUSION

If gravity is classical in the sense of being a LOCC, then
not only it cannot entangle initially separated quantum sys-
tems [26, 27], but—this is the first main result of this work—it
must also induce diffuse motion in those systems. This fun-
damental feature paves the way for a radically new and sig-
nificantly more accessible class of experiments aimed at test-
ing the nature of gravity. Instead of requiring the engineer-
ing and manipulation of quantum states of massive systems to
assess whether their evolution adheres to the unitary dynam-
ics predicted by quantum gravity or deviates from it, one can

Such parameters are achievable 
in ground-based massive 
cryogenic torsion pendulums, 
or in space experiments similar 
to LISA Pathfinder but 
performed in a cryogenic 
environment and vacuum



Since gravitational interaction is easily overwhelmed by electromagnetic forces at the 
microscale, this clearly favors macroscopic experiments. 

Measuring the extra diffusion
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of temperature [105], and subtracted. One can therefore es-
timate the gravitational noise as a fraction of thermal noise,
which depends on the experiment accuracy and on the total
measurement time.
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on measuring the reheating rate of the measured oscillator af-
ter cooling close to the ground state, which requires a nearly
quantum-limited displacement detection. We discuss later the
experimental feasibility. Importantly, reheating can be per-
formed in the absence of measurement, so we can neglect the
back-action noise from the measurement apparatus. We as-
sume that the reheating is performed in a time much shorter
than the resonator relaxation time ⌘�1 and that the procedure
is repeated and averaged many times. Under these conditions,
it can be shown [106] that the relative uncertainty in the deter-
mination of � is N/

p
�t where t is the total integration time

and N is the noise of the measurement apparatus expressed in
units of ~. N = 1 corresponds to a quantum-limited appara-
tus, which allows feedback cooling to the ground state.

The problem is now to distinguish the non thermal contri-
bution to � coming from gravity which, according to Eq. (28),
is given at the very least by:

�G =
⇡!2

G

12�3⌦
, (29)

from a thermal heating rate background:

�th = ⌘nT =
kBT

~Q . (30)

If we can characterize thermal noise with a relative uncer-
tainty r, we can distinguish a gravitational noise which is
r times smaller (�G = r�th) within an integration time
t = 1/(r�G). For example, for r = 0.01 and N = 1 we
obtain an integration time ⇠ 2 days. This, in turn, relaxes the
requirement on Q/T by a factor r.

Let us now discuss the feasibility of the proposed measure-
ment. A resonance frequency range below millihertz can be
readily achieved by torsion pendulums, suggesting as mea-
surement scheme a symmetrical torsion balance as depicted in
Fig. 3. Here, the first pair of masses can be thought as fixed, as
its role is only to produce the classical gravity noise, while the
second pair is a proper torsion pendulum; a summary of the
parameters required by the proposed implementation is shown
in Table I. Regarding its feasibility, the biggest challenge is the
extremely low level of dissipation and thermal noise required.
The longest damping time demonstrated so far in torsion pen-
dulums at f ⇠ 0.1 mHz is ⌧ ⇠ 10

8 s, with extrapolation up
to 3⇥10

9 [107], corresponding to a mechanical quality factor
Q ⇡ 10

6. On the other hand, under the optimistic assump-
tion previously discussed, namely that we could distinguish
gravity-induced noise as a fraction r = 0.01 of thermal noise
at T = 10 mK, we would still need Q = 2 ⇥ 10
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means that current experiments are at least 4 orders of mag-
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enabling preparation of the pendulum close to its ground state
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amplitude is probed after a fixed time. This measurement is

repeated multiple times over a total integration time t,
yielding the phonon heating rate �. Provided that the thermal

noise is sufficiently low, the heating rate produced by the
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Most torsion pendulums so far have been operated at room
temperature, with only very few examples of cryogenics ones,
however limited to temperatures above 1 K and to metallic
torsion fibers [108–110]. However, strong suppression of me-
chanical losses is expected at millikelvin temperature: as a
matter of fact, already back to 1977, Braginsky, Thorne and
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implementation. The frequency ⌦, which is close to the

lowest values achievable by torsion pendulums, is
determined by Eq. (28), which requires ⌦ to be as low as

possible. The density ⇢ corresponds to that of osmium, the
heaviest solid material. The radius R of a single mass with
m = 2.55 kg is chosen as a trade-off: the masses must be

macroscopic to suppress the relative effect of
non-gravitational forces and to approach the condition � ⇡ 1,

while remaining compact enough to ensure compatibility
with a cryogenic apparatus. The temperature T is set to the
typical value achievable in a continuous dilution refrigerator
cryostat. The mechanical quality factor Q is assumed to be
achievable at T = 10 mK. The motional detector operates

near the quantum limit with N ⇡ 1, enabling preparation of
the pendulum close to its ground state. We assume the ability

to resolve a fraction r = 0.01 of the thermal noise.

modes at higher frequencies [107], in par with measurements
performed on other crystalline resonators [112, 113]. This
suggests that intrinsic dissipation of crystalline materials at
low temperature can be as low as required by our proposal.
We also point out that operation at millikelvin temperature
will in principle allow suppression of gas damping losses to
the desired levels [111].

In light of these considerations and the broader relevance
to a wide class of precision measurements beyond the specific
topic investigated in this article, a systematic study of dissipa-
tion in torsion pendulums at millikelvin temperatures is both
urgent and timely. Despite the proposal by Braginsky et al.
[111], we are not aware of any experimental attempts to con-
duct such investigations.

Achieving the required Q/T factor is a necessary but not
sufficient condition for conducting the experiment. Other crit-
ical factors include the thermalization of the fiber, the suppres-
sion of environmental noise sources, and the implementation
of a near-quantum-limited angular detector. To ensure that the
thermal noise of the pendulum follows Eq. (25), it is essential
that the temperature of the dissipative element—the fiber—
matches the bath temperature T . This condition is not triv-
ial, as thermalization via conduction in an insulating thin fiber
becomes negligible below 1 K. Consequently, the thermaliza-
tion of the pendulum fiber must rely on the weak conduction
channel provided by residual gas, while ensuring that the pres-
sure remains as low as 10�12 mbar to sufficiently suppress gas

damping [111]. Thus, thermalization of the pendulum is fea-
sible, provided that heat leakage is minimized. This imposes
a stringent constraint on the power dissipated by the measure-
ment apparatus.

Suppression of environmental noise is a well-known chal-
lenge in any precision measurement involving low-frequency
mechanical systems. The proposed experiment will need to
be conducted in an extremely quiet environment, such as a
deep underground site with minimal seismic and Newtonian
noise. If sufficient isolation cannot be achieved on Earth, an
alternative would be to consider performing the experiment
in space. In fact, the lowest acceleration noise to date below
10

�15 g/
p
Hz has been measured in space [114]. An interme-

diate option could be a future laboratory on the Moon, which
would benefit from the virtual absence of seismic and human-
generated noise.

Finally, let us consider the issue of the near-quantum-
limited readout. Optomechanical cavities can operate at the
standard quantum limit and even beyond in low-frequency
macroscopic mechanical resonators, as demonstrated by grav-
itational wave detectors [115]. However, the optical cav-
ity power required to reach the quantum limit is likely in-
compatible with the extremely low absorption levels that
can be tolerated by an apparatus at millikelvin temperature,
thermalized through residual gas. This issue can be cir-
cumvented by employing superconducting [116] or ferro-
magnetic [117] transduction, potentially coupled to a remote
quantum-limited SQUID. Microwave-operated SQUID-based
tunable resonators can, in principle, achieve quantum-limited
performance. While experimental demonstrations in low-
frequency mechanical resonators are still lacking, ongoing re-
search is progressing toward this milestone [118]. A neces-
sary prerequisite is the strong suppression of 1/f noise, a
well-known technical challenge but not a fundamental limi-
tation [119].

In parallel with standard torsion pendulums, other related
approaches could be explored. Levitated systems exhibit-
ing torsion-like behavior can be realized using the Meiss-
ner effect [120]. While current quantum magnetomechan-
ics experiments focus on smaller scales and higher frequen-
cies [117, 118], levitated systems with masses on the order of
kilograms could naturally exhibit libration frequencies in the
millihertz range and potentially achieve extremely low dissi-
pation levels, unconstrained by elastic losses in materials.

VI. CONCLUSION

If gravity is classical in the sense of being a LOCC, then
not only it cannot entangle initially separated quantum sys-
tems [26, 27], but—this is the first main result of this work—it
must also induce diffuse motion in those systems. This fun-
damental feature paves the way for a radically new and sig-
nificantly more accessible class of experiments aimed at test-
ing the nature of gravity. Instead of requiring the engineer-
ing and manipulation of quantum states of massive systems to
assess whether their evolution adheres to the unitary dynam-
ics predicted by quantum gravity or deviates from it, one can

Such parameters are achievable 
in ground-based massive 
cryogenic torsion pendulums, 
or in space experiments similar 
to LISA Pathfinder but 
performed in a cryogenic 
environment and vacuum

Challenging, but within foreseeable technology
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