

Illuminating the Universe with the Cosmic Microwave Background

Marina Migliaccio Università di Roma "Tor Vergata"

marina.migliaccio@roma2.infn.it

Genova, 2 April 2025

the History of the Universe as we know it

Cosmic Microwave Background radiation is released

Most ancient light and a unique picture of the early-Universe

Photons propagate across the Universe "almost" unimpeded, can interact with structures gravitationally or by scattering

Cosmic Microwave Background

The most precise black-body in nature

, З К	3000 K
13.8 Gyr	380000 yr
z = 0	z = 1100

Active experimental campaign from the ground, stratospheric balloons, and space.

Temperature anisotropies

Temperature anisotropies

Polarization

Linear polarization is generated by Thomson scattering of a radiation field with quadrupolar anisotropy

- Decompose the 2D polarization field in:
 - E-modes (grad-like): generated by scalar and tensor perturbations
 - B-modes (curl-like): scalar perturbations have no handiness
 → generated by tensor perturbations = gravitational waves

PLANCK LEGACY

Gravitational Lensing

Deflection of the CMB photons trajectory induced by the large-scale structure gravitational field. A subtle effect that can be measured statistically with high angular resolution, low-noise observations. CMB temperature fluctuations are remapped by the deflection angle.

$$T(\hat{n}) \to T(\hat{n} + \hat{d})$$

$$\hat{d} = -2 \int d\chi \frac{\chi^* - \chi}{\chi^* \chi} \nabla \Psi(\chi \hat{n}, \eta_0 - \chi)$$

Gravitational Lensing

Main impact on CMB observables

- Smooths peaks and troughs in the CMB power spectra
- Induces non-Gaussianities
- Generates a B-mode polarization from E-modes

Map of the mass distribution in the Universe integrated along the line of sight

Planck Collaboration 2018

Sensitive to late-time expansion, geometry, and clustering of matter

PLANCK LEGACY

- Spatially-flat expanding Universe.
- Dynamics are described by General Relativity.
- Constituents are cold dark matter, dark energy (cosmological constant Λ), baryons and radiation (photons + 3 neutrino species).
- The primordial seeds of cosmic structures are Gaussian distributed, almost scale-invariant fluctuations as predicted by inflation.
- No deviations to the standard ACDM model are favored.
- Concordance with BBN, BAO, RSD, SNIa.
- Mild tension with some weak lensing surveys on clustering.
- Disagreement with local measurements of the Hubble constant.

Planck 2018 results. I.

_	Parameter	Planck alone	
	$\Omega_{ m b} h^2$	0.02237 ± 0.00015	68% limits
	$\Omega_{\rm c}h^2$	0.1200 ± 0.0012	base ACDM model
	$100\theta_{\rm MC}$	1.04092 ± 0.00031	
	τ	0.0544 ± 0.0073	
	$\ln(10^{10}A_s)$	5.044 ± 0.014	
_	n _s	0.9649 ± 0.0042	
	$H_0 \ldots \ldots \ldots \ldots$	67.36 ± 0.54	
	Ω_{Λ}	0.6847 ± 0.0073	
	$\Omega_{\rm m}$	0.3153 ± 0.0073	
	$\Omega_{\rm m} h^2 \ldots \ldots$	0.1430 ± 0.0011	
	$\Omega_{ m m}h^3$	0.09633 ± 0.00030	
	$\sigma_8 \ldots \ldots \ldots \ldots$	0.8111 ± 0.0060	
	$\sigma_8(\Omega_{ m m}/0.3)^{0.5}$	0.832 ± 0.013	
	Z_{re}	7.67 ± 0.73	
	Age [Gyr]	13.797 ± 0.023	
	r_* [Mpc] \ldots	144.43 ± 0.26	
	$100\theta_*\ldots\ldots$	1.04110 ± 0.00031	
	$r_{\rm drag}$ [Mpc]	147.09 ± 0.26	
	Z _{eq}	3402 ± 26	
	k_{eq} [Mpc ⁻¹]	0.010384 ± 0.000081	
	Ω_K	-0.0096 ± 0.0061	
	$\Sigma m_{\nu} [eV] \dots$	< 0.241	95% limits
	$N_{ m eff}$	$2.89^{+0.36}_{-0.38}$	extended models
	$r_{0.002}$	< 0.101	

Atacama Cosmology Telescope March 2025

(Louis et al. 2025 & Calabrese et al. 2025)

No statistically significant preference for departures from the baseline ΛCDM model.

Mentioning just a result

- $H_0 = 66.11 \pm 0.79 \text{ km/s/Mpc}$

* partial list

Upcoming experiments will be targeting

- \rightarrow Polarization
- → Secondary Anisotropies

CMB Polarization: the hunt for primordial B-modes

B-modes from primordial Gravitational Waves

- Provide direct evidence for cosmic inflation
- Insight into the quantum nature of gravity
- Knowledge on when inflation happened and its energy scale

$$V^{1/4} \sim 10^{16} \times \left(\frac{r}{0.01}\right)^{1/4} GeV$$

r = tensor-to-scalar ratio

• Making a discovery or ruling out well-motivated inflationary models

r < 0.028 95% CL

Planck PR4 + BICEP/Keck 2018 + LIGO/Virgo 2021

CMB Polarization: the hunt for primordial B-modes

Image Credit: J. Errard

CMB Polarization: the hunt for primordial B-modes

LiteBIRD

Lite (light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection

Will deliver much more than r ! Probing Cosmic Inflation with LiteBIRD (arXiv:2202.02773) At least 50x improvement over current constraints

- For r = 0, total uncertainty of δ r < 0.001
- For r = 0.01, 5σ detection of the reionization (2 < ℓ < 10) and recombination (11 < ℓ < 200) peaks independently

* partial list

Galaxies are sparse tracers of the large-scale distribution of dark matter in the Universe

Map of the mass distribution in the Universe integrated along the line of sight

Galaxies are sparse tracers of the large-scale distribution of dark matter in the Universe

 \Rightarrow CMB lensing and other luminous tracers must be correlated !

Cross-correlation with CMB lensing

Now detected from radio frequencies to γ -rays

- Powerful confirmation of General Relativity on cosmological scales.
- Novel estimators for late-time expansion and clustering of matter.
- Break degeneracy between cosmological and astrophysical parameters.
- Maximise the return of information in constraining the cosmological parameters.
- Robustness to poorly known astrophysical and instrumental systematic effects that affect each probe separately.

$$C_{\ell}^{\kappa G} = \frac{2}{\pi} \int_0^{\infty} dz \, W^{\kappa}(z) \int_0^{\infty} dz' \, W^G(z') \int_0^{\infty} dk \, k^2 \, j_{\ell}[k \, \chi(z)] \, j_{\ell}[k \, \chi(z')] \, P(k, z, z')$$

CMB Lensing Kernel for a flat Universe

$$W^{\kappa} = \frac{3 \ \Omega_m}{2} \ \frac{H_0^2}{H(z)} \ (1+z) \ \chi(z) \ \frac{\chi(z_*) - \chi(z)}{\chi(z_*)}$$

Galaxy Kernel

$$W^G = b(z) \ N(z)$$

$$C_{\ell}^{\kappa G} = \frac{2}{\pi} \int_0^{\infty} dz \, W^{\kappa}(z) \int_0^{\infty} dz' \, W^G(z') \int_0^{\infty} dk \, k^2 \, j_{\ell}[k \, \chi(z)] \, j_{\ell}[k \, \chi(z')] \, P(k, z, z')$$

CMB Lensing Kernel for a flat Universe

$$W^{\kappa} = \frac{3 \ \Omega_m}{2} \ \frac{H_0^2}{H(z)} \ (1+z) \ \chi(z) \ \frac{\chi(z_*) - \chi(z)}{\chi(z_*)}$$

Galaxy Kernel

 $W^G = b(z) N(z)$

Abundance of galaxies is not well known at high-redshift.

$$C_{\ell}^{\kappa G} = \frac{2}{\pi} \int_0^{\infty} dz \, W^{\kappa}(z) \int_0^{\infty} dz' \, W^G(z') \int_0^{\infty} dk \, k^2 \, j_{\ell}[k \, \chi(z)] \, j_{\ell}[k \, \chi(z')] \, P(k, z, z')$$

CMB Lensing Kernel for a flat Universe

(z)

$$W^{\kappa} = \frac{3 \ \Omega_m}{2} \ \frac{H_0^2}{H(z)} \ (1+z) \ \chi(z) \ \frac{\chi(z_*) - \chi(z)}{\chi(z_*)}$$

Galaxy Kernel

 \boldsymbol{z}

 W^G

Abundance of galaxiesis not well known at high-redshift.

Galaxy Bias $C^{gg} = b^2 C^{mm}$

$$C_{\ell}^{\kappa G} = \frac{2}{\pi} \int_0^{\infty} dz \, W^{\kappa}(z) \int_0^{\infty} dz' \, W^G(z') \int_0^{\infty} dk \, k^2 \, j_{\ell}[k \, \chi(z)] \, j_{\ell}[k \, \chi(z')] \, P(k, z, z')$$

CMB Lensing Kernel for a flat Universe

(z)

$$W^{\kappa} = \frac{3 \ \Omega_m}{2} \ \frac{H_0^2}{H(z)} \ (1+z) \ \chi(z) \ \frac{\chi(z_*) - \chi(z)}{\chi(z_*)}$$

Unbiased tracer of the mass distribution along the line of sight.

Galaxy Kernel

 \boldsymbol{z}

 W^G

Abundance of galaxiesis not well known at high-redshift.

Galaxy Bias $C^{gg} = b^2 C^{mm}$

Cross-correlation with CMB lensing

Combining gg and κ g is very effective in breaking degeneracies between cosmological parameters and astrophysical parameters

$$C_{\ell}^{gg} \propto b_g^2 \sigma_8^2$$

 $C_{\ell}^{\kappa g} \propto b_g \sigma_8^2$

Constraining

- \rightarrow Late-time expansion and clustering of matter
- → Properties of the sources (abundance, bias, evolution with time, ...)

Cross-correlating CMB lensing with radio sources

Anomalously large signal detected at large scales in the clustering of TGSS radio sources:

- Failure of the standard cosmological model?
- Mismodelling of source properties?
- Uncorrected systematic effects in the data?

Our proposal

→ Use the cross-correlation with Planck CMB lensing to investigate the origin of the signal excess

Cross-correlating CMB lensing with radio sources

- First measurement of the cross-correlation between Planck CMB lensing convergence and TGSS sources (12σ detection)
- > In the cross spectrum κg , the excess power with respect to NVSS is significantly reduced \rightarrow Supports the hypothesis of a systematic origin

- Models do not reproduce the radio sources clustering signal at large scales.
- Future data (SKA and its precursors) and models of radio sources properties will allow to better answer these questions.

European Space Agency

Launched in July 2023

Visible to Near-Infrared (with spectroscopy) space telescope operating in L2

Map position, distance and shape of billions of galaxies out to 10 billion light years $z \sim 2$ across > 1/3 of the sky

Euclid Mission Primary Objective: The Dark Universe

Understand the origin of the Universe's accelerated expansion

Probe the properties and nature of Dark Energy, Dark Matter, and Gravity by tracing their observational effects

At least 2 independent and complementary probes to unsure control of systematic residuals to an unprecedented level of accuracy

Euclid preparation

XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis

There is a dedicated CMBX Science Working Group

COMBINATION of Euclid data with CMB measurements will provide the largest lever arm of epochs, ranging from recombination to structure formation and the late-time accelerated expansion of the Universe.

Up to 3x - 10x improvement on ΛCDM and extended model parameters wrt to Euclid alone

Ilic et al. (MM) 2022

Fig. 6. Ratio of predicted 1σ uncertainties (see end of Sect. 5.2) showing how constraints are tightened after adding CMB lensing (blue) or all CMB probes (orange) when compared to the *Euclid*-only constraints (black outer rim), assuming a pessimistic *Euclid* scenario and SO-like CMB data, for four selected cosmological models (*from top to bottom, left to right*: flat ACDM; flat $w_0 w_a$ CDM; non-flat ACDM; and flat $w_0 w_a \gamma$ CDM).

Gravitational Redshift: A photon gains energy when falling into a potential well (*blueshift*), while it loses energy climbing out (*redshift*).

ISW effect: time-varying gravitational potentials along the photon path induce CMB temperature fluctuations (Sachs & Wolfe 1967).

- In a CDM Universe, there is an exact compensation between decay rate due to expansion and growth rate of the density perturbations \rightarrow linear gravitational potentials stay constant ($\dot{\Phi} = 0$)
- The effect is a manifestation of the late-time accelerated expansion (Φ ≠ 0), induced by Dark Energy, Modified Gravity, or of deviations from flat-ΛCDM perturbation growth (e.g. curvature, DM interactions, massive neutrinos)

Cannot be directly detected in the pattern of CMB temperature anisotropies because of cosmic variance

$$\delta_T(\mathbf{n}_2) = \frac{T(\mathbf{n}_2) - \bar{T}}{\bar{T}} = -2\int e^{-\tau(z)} \frac{d\Phi}{dz}(\mathbf{n}_2, z) dz$$

$$\delta_g(\mathbf{n}_1) = \frac{N_g(\mathbf{n}_1) - \bar{N}_g}{\bar{N}_g} = \int b(z) \frac{dN}{dz}(z) \delta_m(\mathbf{n}_1, z) dz$$

 δ_m related to Φ via the Poisson equation

$$\delta_T(\mathbf{n}_2) = \frac{T(\mathbf{n}_2) - \bar{T}}{\bar{T}} = -2\int e^{-\tau(z)} \frac{d\Phi}{dz}(\mathbf{n}_2, z) dz$$

$$\delta_g(\mathbf{n}_1) = \frac{N_g(\mathbf{n}_1) - \bar{N}_g}{\bar{N}_g} = \int b(z) \frac{dN}{dz}(z) \delta_m(\mathbf{n}_1, z) dz$$

 δ_m related to Φ via the Poisson equation

→ ISW effect can only be measured by crosscorrelating CMB temperature anisotropies with tracers of the large-scale structure (Crittenden & Turok, 1996)

$$C^{\mathrm{Tg}}(\vartheta) = \left\langle \delta_T(\mathbf{n}_1) \delta_g(\mathbf{n}_2) \right\rangle$$

Firstly, detected by Boughn & Crittenden in 2004, since then measured at increasing significance (for a review <u>Planck 2013 results. XIX</u>)

$$\delta_T(\mathbf{n}_2) = \frac{T(\mathbf{n}_2) - \bar{T}}{\bar{T}} = -2\int e^{-\tau(z)} \frac{d\Phi}{dz}(\mathbf{n}_2, z) dz$$

$$\delta_g(\mathbf{n}_1) = \frac{N_g(\mathbf{n}_1) - \bar{N}_g}{\bar{N}_g} = \int b(z) \frac{dN}{dz}(z) \delta_m(\mathbf{n}_1, z) dz$$

 δ_m related to Φ via the Poisson equation

→ ISW effect can only be measured by crosscorrelating CMB temperature anisotropies with tracers of the large-scale structure (Crittenden & Turok, 1996)

$$C^{\mathrm{Tg}}(\vartheta) = \left\langle \delta_T(\mathbf{n}_1) \delta_g(\mathbf{n}_2) \right\rangle$$

Firstly, detected by Boughn & Crittenden in 2004, since then measured at increasing significance (for a review <u>Planck 2013 results. XIX</u>)

With **Euclid** × **Planck** TG expected to be measured with S/N \simeq 4 reaching S/N \simeq 4.6 with LiteBIRD including polarization data

Optimal extraction of the iSW signal with Euclid:

- large number of galaxies
- ➤ wide coverage in sky area and redshift
- ▹ high-degree of correlation
- tomographic information

Primordial Non-Gaussianity with CMB cross-correlations

- Inflationary models predict different levels of deviations from Gaussianity in the distribution of density fluctuations.
- Local type non-Gaussianity introduces correlations between short-scale modes (which form halos) and long-scale modes in the primordial potential, parameterized with the amplitude f_{NL}
 - ightarrow Scale-dependent galaxy bias
 - $b(z) \rightarrow b(z) \left[1 + f_{NL} \beta(k, z)\right]$
- From Planck $f_{NL} = 0.9 \pm 5.1$ bispectrum of the anisotropy fields
- Using b(k, z) From BOSS $f_{NL} = -12 \pm 21$ and DESI quasars $f_{NL} = \frac{12}{10} \pm 28$
- Large-angular scales in galaxy clustering are difficult to map and more affected by systematic effects → importance of κG and TG

Credit: G. Piccirilli

• LiteBIRD will be unique in mapping the large angular scales $\rightarrow \sigma(f_{NL}) \sim 40$ with only κG (Lonappan et al. (MM) 2024), improved constraints from LiteBIRD+Planck with κG , TG, GG in prep.

Future of CMB Cosmology

- $\checkmark\,$ CMB has played a crucial role in shaping the ACDM model.
- ✓ It will remain an extremely active field in the coming decades (polarization, secondary anisotropies, spectral distortions, ...)
- CMB cross-correlations are booming: transitioning from the detection regime to powerful cosmological probe.

- Origin of the universe
- Dark Matter
- Dark Energy, Modified Gravity and Growth of Structures
- Reionization and First Sources
- Astrophysics (Galactic Science, Feedback and intergalactic medium, Dusty star-forming galaxies)

