

Istituto Nazionale di Fisica Nucleare

Positivity Constraints and Their Applications in SMEFT

Xu Li

INFN Genova

19/03/2025

<u>Outline</u>

Review on the SMEFT

- Introduction
- Global fit and inferring UV
- RG running and mixing

- Convex cone approach
- Pheno. of the positivity and inverse problem
- Constraints on anomalous dimension matrix

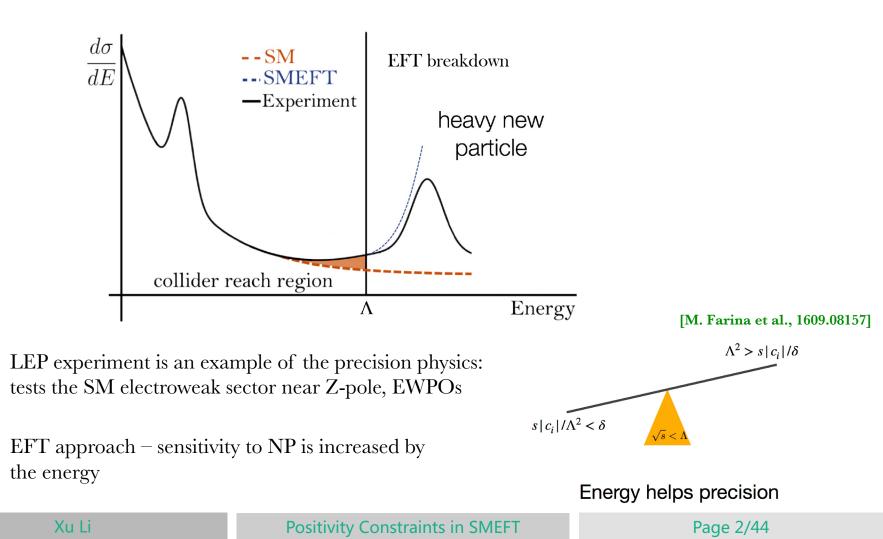
Summary

Why EFT ?

 \geq

 \geq

- > BSM is low scale: direct searches for peaks, probe on-shell NP
- ▶ BSM outside the collider reach region: indirect search, precision physics, EFT



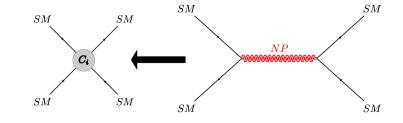
Introduction to SMEFT

SMEFT calculates physical processes by adding high-dimensional operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(5)} O_i^{(5)}}{\Lambda} + \sum_{i} \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \cdots$$

- Construction of the SMEFT basis
- ➢ Bases have been constructed:

What is their relation to NP?



- The Field content and Symmetries of SM
- Remove redundance: integrate by part & Fierz identities
- Equations of motion

• Dim-6:

- [B. Grzadkowski et al., 1008.4884] (Warsaw)
- Dim-7:

[L. Lehman, 1410.4193] [Liao & Ma, 1612.04527]

• Dim-8:

[H.-L. Li et al., 2005.00008] [C. Murphy, 2005.00059]

• Dim-9:

[H.-L. Li et al., 2007.07899] [Liao & Ma, 2007.08125]

Hilbert Series

[Henning et al, 1512.03433] [Marinissen et al, 1512.03433]

• Automation Tools:

Sym2Int [Fonseca, 1703.05221] ABC4EFT [H.-L. Li et al, 2201.04639] AutoEFT [Harlander&Schaaf, 2309.15783]

Tree-level UV dictionary of SMEFT

Dim-5: origin of majorana-type neutrino masses:

$${\cal O}_5 = \epsilon^{ik} \epsilon^{jl} (\ell^T_i C \ell_j) H_k H_l$$

$$\Rightarrow \succ \checkmark \land \land$$

Weinberg operator

Topology

- Field(J, C, W, Y) S_6 (0, 1, 3, 1) F_1 (1/2, 1, 1, 0) F_5 (1/2, 1, 3, 0)
- Dim-6: [C. Arzt et al., 9405214] [J. de Blas et al., 1711.10391] [N. Craiget al., 2001.00017]

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	Ī		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$		
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{\nu}G^{C\mu}_{ ho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\overline{l}_{p}e_{r}\varphi)$		Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$		$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$		$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	<i>€φD</i>	$(\varphi D \varphi) (\varphi D_{\mu}\varphi)$	¢αφ	$(\varphi \varphi)(qp \omega_T \varphi)$		$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
\heartsuit_W	, ,		/237		(2.25	U N	$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
	$X^2 \varphi^2$		$\psi^2 X \varphi$	(1)	$\psi^2 \varphi^2 D$				$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$				$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i \stackrel{\leftrightarrow}{D}{}^{I}_{\mu} \varphi)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$						$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$		$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	ating		
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu u} W^{I \mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$		Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$	TCu_r^β	$\left[(q_s^{\gamma j})^T C l_t^k \right]$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j})\right]$			
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$		$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha}\right]$			
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$		$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^{lpha})^T ight]$			
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$		$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					

▶ Dim-7 and Dim-8 EFT-UV dictionaries have also been obtained recently. [X-X. Li et

[X-X. Li et al., 2307.10380] [H-L. Li al., 2309.15933]

Recent development: one-loop dictionary of dim-6 operators [G. Guedes&P. Olgoso, 2412.14253]

Xu Li

Tree-level UV completion of SMEFT

Dim-5: origin of majorana-type neutrino masses:

$${\cal O}_5 = \epsilon^{ik} \epsilon^{jl} (\ell_i^T C \ell_j) H_k H_l$$

Weinberg operator

 Q_G

 $Q_{\widetilde{G}}$

 Q_W

 $Q_{\widetilde{W}}$

 $Q_{\varphi G}$

 $Q_{\varphi \tilde{G}}$

 $Q_{\varphi W}$

 $Q_{\omega \widetilde{W}}$

 $Q_{\varphi B}$

 $Q_{\varphi \widetilde{B}}$

Topology

Field (J, C, W, Y) S_6 (0, 1, 3, 1) F_1 (1/2, 1, 1, 0) F_5 (1/2, 1, 3, 0)

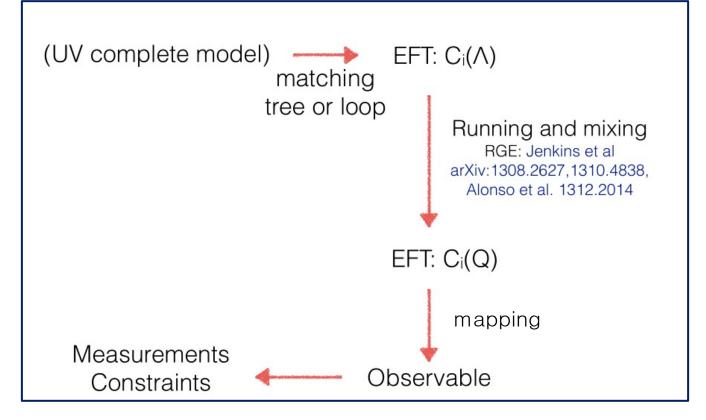
Three type of
Seesaw models

Dim-6: [C. Arzt et al., 9405214] [J. de Blas et al., 1711.10391] [N. Craiget al., 2001.00017]

Fermion extension Scalar extension Vertor extension $(\bar{L}L)(\bar{L}L)$ $(\bar{R}R)(\bar{R}R)$ $(\bar{L}L)(\bar{R}R)$ and $\varphi^4 D^2$ $\psi^2 \varphi^3$ X^3 φ^6 $(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$ $(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$ Q_{ee} $(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$ Q_{ll} Q_{le} $f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\mu}G^{C}_{\mu}$ Q_{φ} $(\varphi^{\dagger}\varphi)^{3}$ $(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$ $Q_{e\varphi}$ $Q_{qq}^{(1)}$ $(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$ $(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$ $(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$ Q_{uu} Q_{lu} $f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\mu}G^{C}_{\rho}$ $Q_{\omega\square}$ $Q_{u\varphi}$ $(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$ $(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$ $Q_{qq}^{(3)}$ $(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ $(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$ $(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$ Q_{ld} Q_{dd} $\varepsilon^{IJK}W^{I\nu}W^{J\rho}W^{K}$ $Q_{\varphi D}$ $\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$ $Q_{d\varphi}$ $(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$ $Q_{lq}^{(1)}$ $(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$ $(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$ Q_{qe} $(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$ Q_{eu} $\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{F}_{\rho}$ $Q_{lq}^{(3)}$ $Q_{qu}^{(1)}$ $(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ $(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$ $(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$ Q_{ed} $X^2 \varphi^2$ $\psi^2 X \varphi$ $\psi^2 \varphi^2 D$ $Q_{ud}^{(1)}$ $Q_{qu}^{(8)}$ $(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$ $(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$ $(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$ $Q_{\varphi l}^{(1)}$ $\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$ Q_{eW} $Q_{ud}^{(8)}$ $(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$ $Q_{qd}^{\left(1\right)}$ $(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$ $Q_{\varphi l}^{(3)}$ $(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\overline{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$ Cañ not be UV- $Q_{ad}^{(8)}$ $B_{\mu\nu}$ $(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\,\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$ $Q_{\varphi e}$ $\widetilde{\omega}G'$ $(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$ *B*-violating completed at $Q_{\varphi q}^{(1)}$ $\widetilde{\varphi} W^I_{\mu}$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$ Q_{ledg} $(\bar{l}_{p}^{j}e_{r})(\bar{d}_{s}q_{t}^{j})$ Q_{duq} $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_n^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$ $Q_{\varphi q}^{(3)}$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$ $\delta B_{\mu\nu}$ $Q_{quqd}^{(1)}$ tree-level $(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$ $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$ Q_{qqu} $Q_{\varphi u}$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$ $(\overline{q_p}\sigma^{\mu\nu}T^Ad_r)\varphi G^A_{..}$ $\varphi^{\dagger}\varphi B_{\mu\nu}B$ $Q_{quqd}^{(8)}$ $(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$ $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$ Q_{qqq} $\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$ Q_{dW} $(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$ $Q_{\varphi d}$ $Q_{lequ}^{(1)}$ $\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$ $Q_{\varphi WB}$ $(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$ Q_{duu} $\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$ $i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$ Q_{dB} $Q_{\varphi ud}$ $(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$ $Q_{\omega \widetilde{W}B}$

- Dim-7 and Dim-8 EFT-UV dictionaries have also been obtained recently. [X-X. Li et al., 2307.10380] [H-L. Li et al., 2309.15933]
- Recent development: one-loop dictionary of dim-6 operators [G. Guedes&P. Olgoso, 2412.14253]

The UV perspective



- ➤ SMEFT pheon. in 3 steps
 - 1. Matching
 - 2. Running Wilson [J. Aebischer et al, 1804.05033] DsixTools [J. F.-Martin et al, 2010.16341]
 - **3. Mapping** Tools: FeynRules, MG5_aMC, Pythia etc

Xu Li

Tree-level:

• Full tree-level matchings up to dim-7 are known, of new physics model with genera scalar, spinor, and vector field content and arbitrary interactions. [de Blas et al, 1711.10391]

[X-X. Li et al., 2307.10380]

> One-loop:

- Diagrammatic methods: MatchMakerEFT using QGRAF&FORM [A. Carmona et al, 2112.10787]
- Functional methods: Matchete based on Covariant Derivative Expansion(CDE) [J. F.-Martín et al, 2212.04510]
- Matching to dim-6 is automatic, but higher order is not available.

On-shell matching development:

- The off-shell matching approach at high dimensional faces challenges such as an excessive number of operators and difficulties in simplification
 - On-shell approach avoid the problem of operators reduction

[XL&Zhou, 2309.10851] [M. Chala et al, 2411.12798]

> Two-loop:

• Partial results obtained based on the CDE method [J. F.-Martínet al, 2311.13630]

[J. F.-Martínet al, 2412.12270]

Why Renormalization of SMEFT

 \geq EFT is renormalizable order by order in $1/\Lambda$.

"Non-renormalizable theories... are as renormalizable as renormalizable theories", Weinberg 2009

- \geq Scale separation: coefficients are matched to **BSM** at scale Λ , but are probed at much lower scales
- Collider observables span a wide range of energies, therefore running and mixing effects of the \geq theory are needed.

 - $Flavour \sim m_b$
- For some processes, the RG-induced effects offer comparable/stronger bound compared to the \succ tree-level constraints [Aoude et al, 2212.05067] [Heinrich and Lang, 2409.19578]

Renormalization of SMEFT

RG mixing

 $\frac{dC_i(\mu)}{d\log\mu} = \frac{\alpha}{\pi}\gamma_{ij}C_j(\mu)$

Anomalous dimension matrix

- Important for scale uncertainty.
- assumptions about some coefficients being zero at low scales are not valid

> One-loop:

• Diagrammatic methods:

Anomalous dimensions are known for all operators up to dim-7. [Chankow&Plucien, 9306333] [Manohar&Trott, 1308.2627] [R. Boughezal et al,2408.15378]

• Functional methods:

Master formula for bosonic dimension-six operators using super-heat-kernel expansion. [Buchalla et al, 1904.07840]

Beyond one-loop:

- Two- and three-loop anomalous dimensions of CP-violating gluonic operator. [de Vries et al,1907.04923]
- Two-loop dim-5 anomalous dimensions is completed recently [A. Ibarra et al, 2411.08011]
- Two-loop RGE for dim-6 operators is in progress [L. Born et al, 2410.07320] [G. Duhr et al, 2503.01954]

RG accuracy in SMEFT

	Dim-5	Dim-6	Dim-7	Dim-8
One-loop	\checkmark	~	~	
Two-loop		~	×	*

- > The dim-8 anomalous dimension matrix (ADM) has not been fully obtained
- ➤ The difficulty in calculating the dim-8 ADM:
 - 1. Very large operator set
 - 2. Time-consuming reduction process

(for the same reason, the UV dictionary remains incomplete)

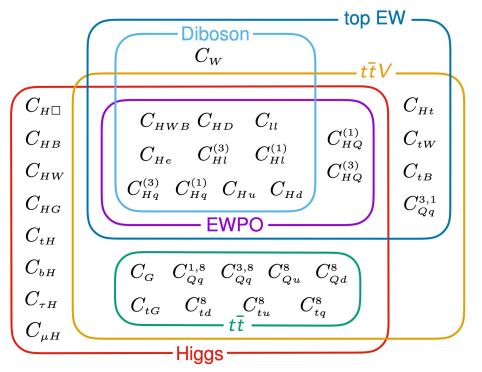
Positivity will help to understand dim-8 ADM

Global analysis of SMEFT

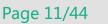
- Wilson coefficients in SMEFT are highly correlated and only global analysis can give meaningful results.
 - 1. One operator influences different observables
 - 2. One observable can be influenced by many operators
- Datasets: EWPOs, diboson, Higgs, Top, ...
- The Global-fit likelihood:

$$-2\log \mathcal{L} = \frac{1}{n_{dat}} \sum_{i,j=1}^{n_{dat}} (\sigma_{i,SMEFT}(c) - \sigma_{i,exp}) (cov^{-1})_{ij} (\sigma_{j,SMEFT}(c) - \sigma_{j,exp})$$
$$\mathcal{O}(1/\Lambda^2) \text{ or } \mathcal{O}(1/\Lambda^4)$$

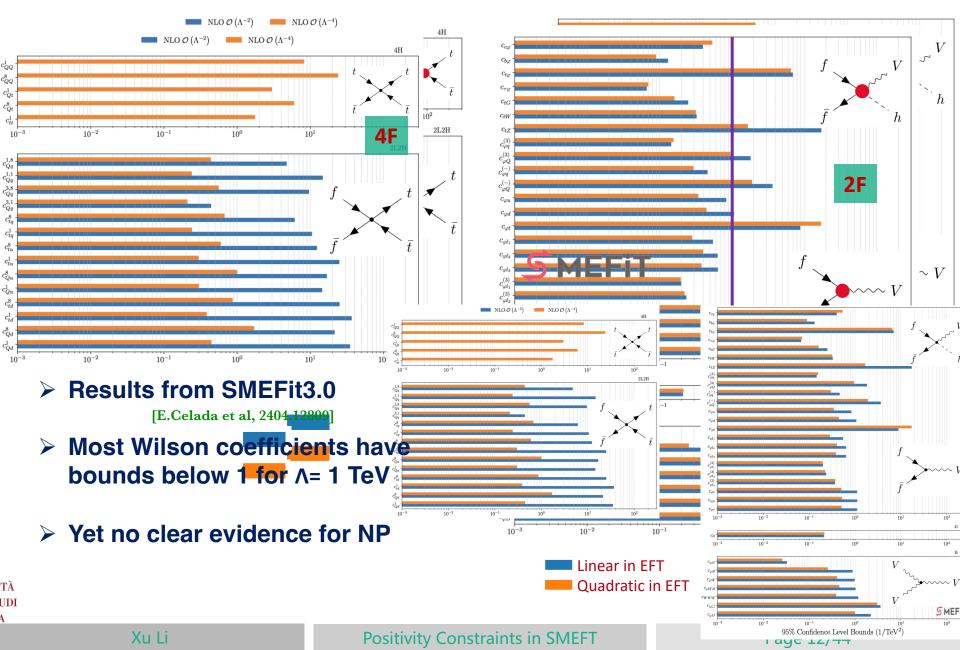
Positivity Constraints in SMEFT



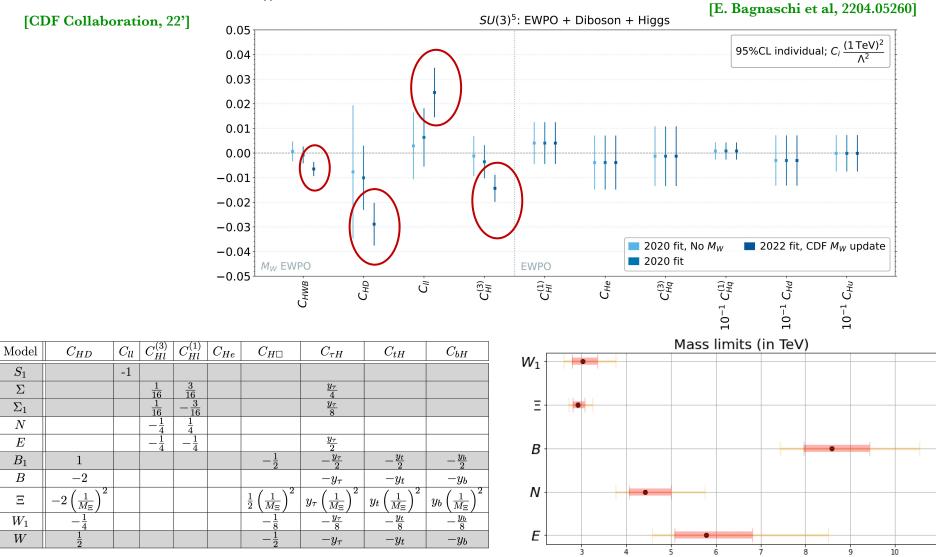
operator sets contributing to the individual datasets at LO [J. Ellis et al., 2012.02779]



Global angle is sMEFT



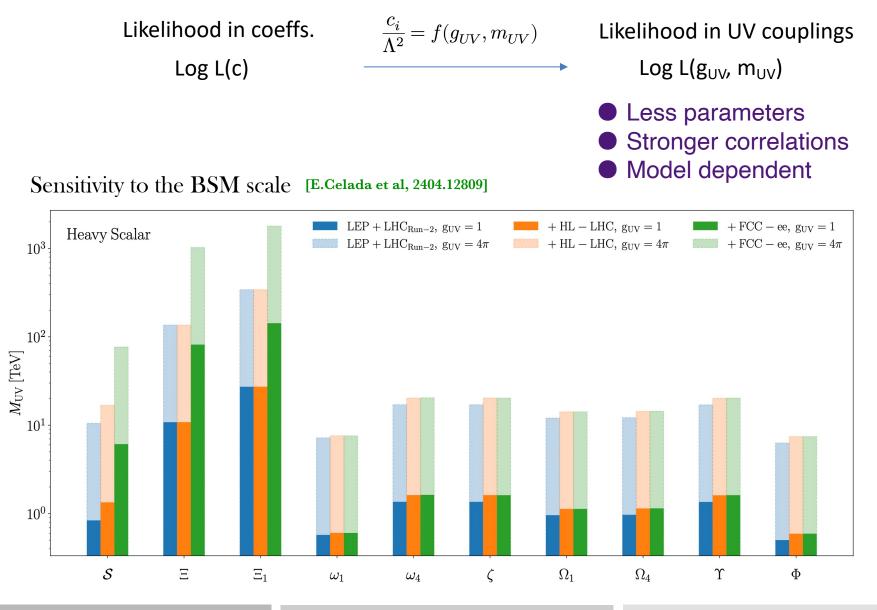
CDF measurement of $m_{\rm W}$



Positivity Constraints in SMEFT

Page 13/44

Inverse problem: inferring UV



Xu Li

Positivity Constraints in SMEFT

Page 14/44

<u>Outline</u>

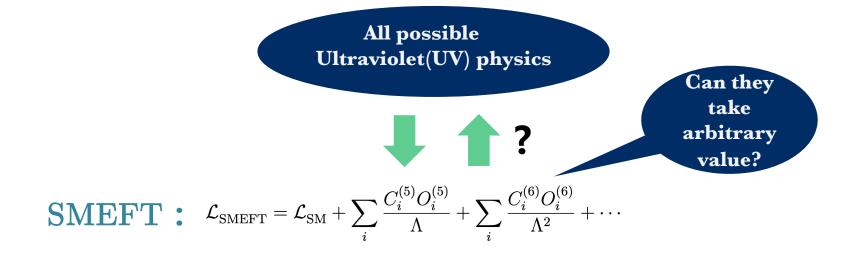
Review on the SMEFT

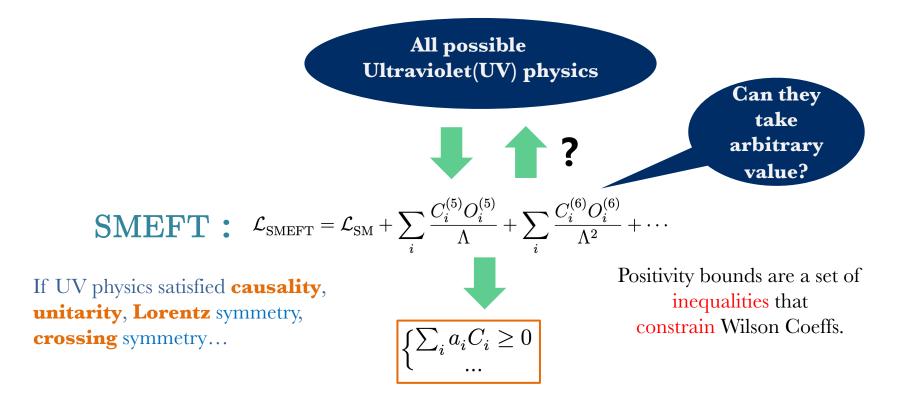
- Introduction
- Global fit and inferring UV
- RGE running and mixing

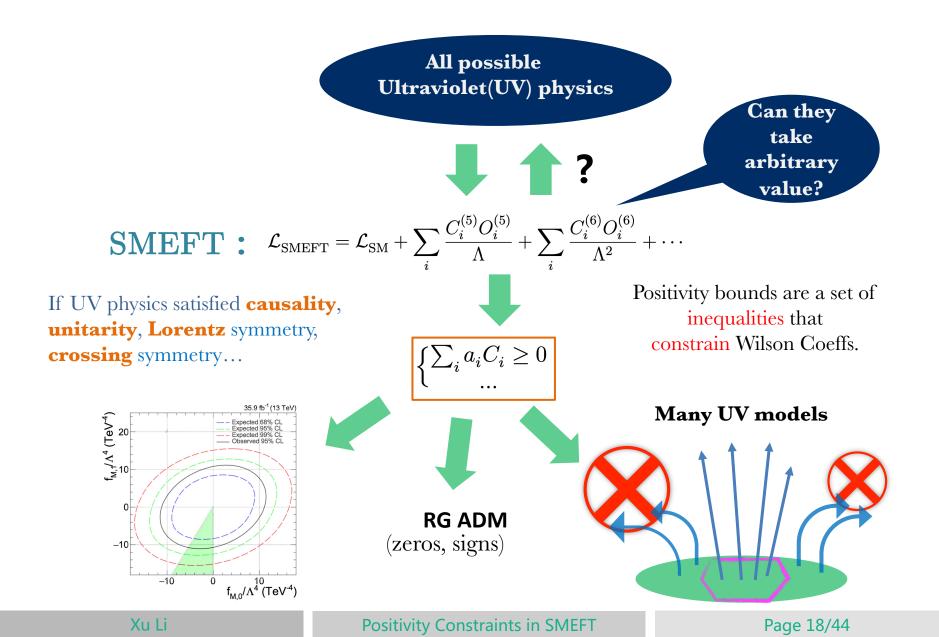
Positivity bounds

- Convex cone approach
- Pheno. of the positivity and inverse problem
- Constraints on anomalous dimension matrix

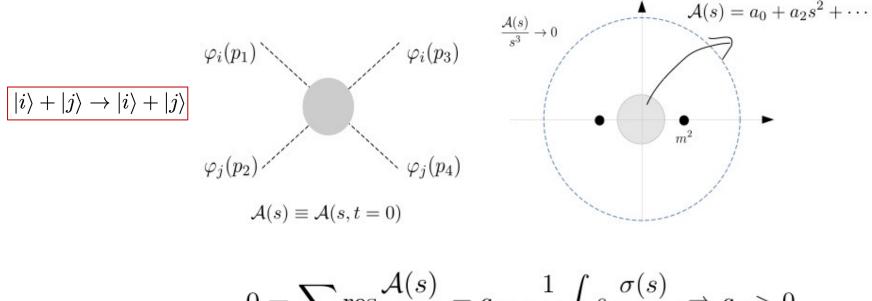
Summary







➤ 2-to-2 tree forward amplitude (spin-0): [A. Adams, et al. JHEP 10 (2006) 014]



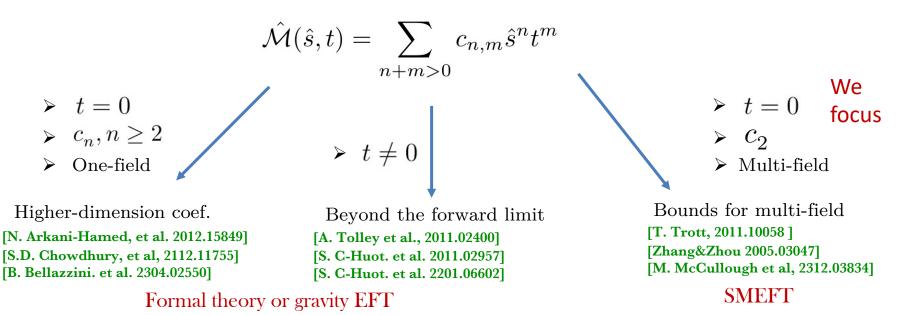
$$0 = \sum \operatorname{res}_{\frac{\pi}{s^3}} = a_2 - \frac{\pi}{\pi} \int s \frac{\pi}{(m^2)^3} \Rightarrow a_2 > 0$$

 \blacktriangleright Apply it to SMEFT, the leading energy dependence only, s², comes from Dim-8 operators

➤ To extract dim-8 effect, we consider:

$$M \equiv \frac{d^2 \mathcal{A}(s,0)}{ds^2}$$

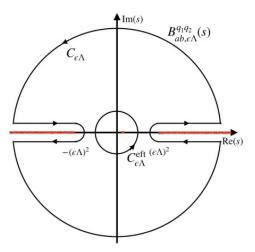
General 2-to-2 scattering of massless scalars at tree-level:

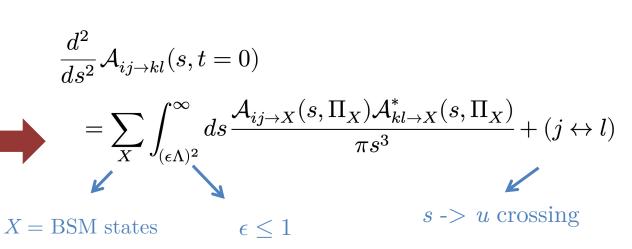


Elastic approach

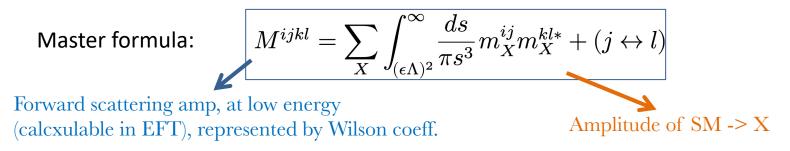
Superposition elastic: $M(|u\rangle + |v\rangle \rightarrow |u\rangle + |v\rangle) = u^{i}v^{j}u^{k*}v^{l*}M^{ijkl} \ge 0$ with $|u\rangle = u^{i}|i\rangle, |v\rangle = v^{j}|j\rangle$

Convex cone approach(this talk focus)





[Q. Bi, et al, JHEP 06(2019) 137]



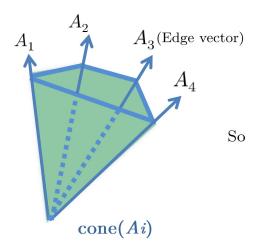
[Zhang&Zhou 2005.03047]

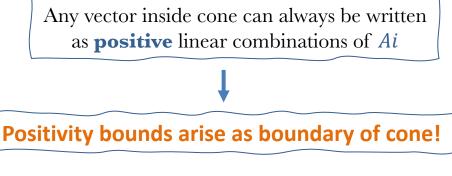
Master formula:

$$M^{ijkl} = \sum_X \int_{(\epsilon\Lambda)^2}^{\infty} \frac{ds}{\pi s^3} m_X^{ij} m_X^{kl*} + (j \leftrightarrow l)$$

 M^{ijkl} is positive linear combinations of $m_{X}^{ij}m_{X}^{kl}+m_{X}^{il}m_{X}^{kj}$

1. M^{ijkl} is a convex cone





[Q. Bi, et al, JHEP 06(2019) 137] [B. Fuks, et al, CPC 45 (2021) 2, 023108]

Edge vectors -> Extremal rays (ER)

2. X couple to i and j, X(UV) belong to the direct product space of i and j

$$\mathbf{r}_i \otimes \mathbf{r}_j = \mathbf{X}_1 \oplus \mathbf{X}_2 \oplus \dots$$

$$M^{ijkl} = \sum_X \int_{(\epsilon\Lambda)^2}^{\infty} \frac{d\mu}{\pi} \frac{m_X^{\ ij} m_X^{\ kl}}{(\mu - M^2/2)^3} + (j \leftrightarrow l)$$

$$M^{ijkl} = \int_{(\epsilon\Lambda)^2}^{\infty} d\mu \sum_{X \ in \ \mathbf{X}_r} \frac{|\langle X|\mathcal{M}|\mathbf{X}_r\rangle|^2}{\pi(\mu - M^2/2)^3} P_r^{i(j|k|l)}$$

$$\begin{array}{c} M(ij \rightarrow X^{\alpha}) \\ = \langle X | \mathcal{M} | \mathbf{X}_r \rangle C^{r,\alpha}_{i,j} \end{array} \end{array}$$

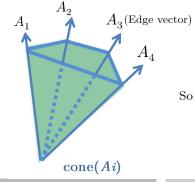
C is the CG coefficients for the direct sum decomposition of $\mathbf{r}_i \otimes \mathbf{r}_j$

The only necessary information is

Xu Li

Projector: $P_r^{i(j|k|l)} \equiv \sum_{\alpha} C_{i,j}^{r,\alpha} (C_{k,l}^{r,\alpha})^*$ M^{ijkl} is a convex co

one: cone
$$\left(\left\{P_r^{i(j|k|l)}\right\}\right)$$



Edge vectors \rightarrow Extremal rays (ER) \rightarrow 1-particle extension

UV state X lives in the irrep r

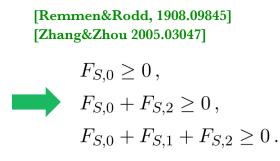
Positivity Constraints in SMEFT

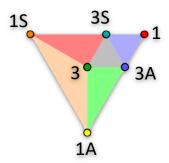
Page 23/44

Positivity bounds in the SMEFT

4-Higgs operators $2\otimes 2 = 1\oplus 3$

 $O_{S,0} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\mu}\Phi)^{\dagger}D^{\nu}\Phi],$ $O_{S,1} = [(D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi] \times [(D_{\nu}\Phi)^{\dagger}D^{\nu}\Phi],$ $O_{S,2} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\nu}\Phi)^{\dagger}D^{\mu}\Phi].$

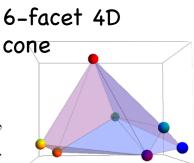




4-W operators $3 \otimes 3 = 1 \oplus 3 \oplus 5$

 $O_{T,0} = \operatorname{Tr}[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}]\operatorname{Tr}[\hat{W}_{\alpha\beta}\hat{W}^{\alpha\beta}]$ $O_{T,2} = \operatorname{Tr}[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}]\operatorname{Tr}[\hat{W}_{\beta\nu}\hat{W}^{\nu\alpha}]$ $O_{T,1} = \operatorname{Tr}[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}]\operatorname{Tr}[\hat{W}_{\mu\beta}\hat{W}^{\alpha\nu}]$ $O_{T,10} = \operatorname{Tr}[\hat{W}_{\mu\nu}\tilde{W}^{\mu\nu}]\operatorname{Tr}[\hat{W}_{\alpha\beta}\tilde{W}^{\alpha\beta}]$ [Q. Bi, et al, 1902.08977] [K. Yamashita, et al, 2009.04490]

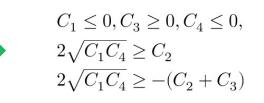
$F_{T,2} \ge 0,$ $4F_{T,1} + F_{T,2} \ge 0,$ $F_{T,2} + 8F_{T,10} \ge 0,$ $8F_{T,0} + 4F_{T,1} + 3F_{T,2} \ge 0,$ $12F_{T,0} + 4F_{T,1} + 5F_{T,2} + 4F_{T,10} \ge 0,$ $4F_{T,0} + 4F_{T,1} + 3F_{T,2} + 12F_{T,10} \ge 0.$



4-electron operators

$$\begin{split} O_1 &= \partial^{\alpha} (\bar{e} \gamma^{\mu} e) \partial_{\alpha} (\bar{e} \gamma_{\mu} e) \ , \\ O_2 &= \partial^{\alpha} (\bar{e} \gamma^{\mu} e) \partial_{\alpha} (\bar{l} \gamma_{\mu} l) \ , \\ O_3 &= D^{\alpha} (\bar{e} l) \ D_{\alpha} (\bar{l} e), \\ O_4 &= \partial^{\alpha} (\bar{l} \gamma^{\mu} l) \ \partial_{\alpha} (\bar{l} \gamma_{\mu} l) \ , \end{split}$$

[B. Fuks, et al, 2009.02212]

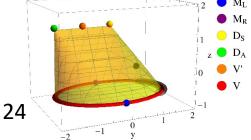


More bounds see: [C. Zhang, 2112.11665] [XL&Chala, arXiv: 2309.16611]

Xu Li

Positivity Constraints in SMEFT

4D "circular cone"

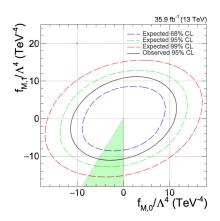


Page 24/44

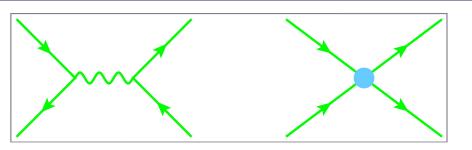
- Since positivity imposes constraints on dim-8 coeffs., we should identify observables that are sensitive to dim-8 operators.
 - 1. ZZ and Zγ production [Bellazzini&Riva, 1806.09640]
 - 2. Quartic gauge-boson coupling (aQGC) [Q. Bi, et al. 1902.08977][K. Yamashita et al, 2009.04490]
 - 3. $e+e-to \gamma \gamma$ []. Gu, et al. 2011.03055]
 - 4. Higher angular coeffs. in DY

[S.Alioli, et al. 2003.11615] [XL et al. 2204.13121]

- 5. e+e-to e+e-
 - [B. Fuks, et al, 2009.02212]
- In the ideal case, we are able to infer UV information from convex cone viewpoint based on pheno. studies



<u>e+e- scattering</u>



UV states and interactions

ScalarVector $D \equiv \mathbf{2}_{1/2}$ $M_L \equiv \mathbf{1}_1$ $M_R \equiv \mathbf{1}_2$ $V \equiv \mathbf{1}_0$ $V' \equiv \mathbf{2}_{-3/2}$ $\mathcal{L}_{int} = g_{Di} \bar{L} e D_i + g_{M_L i} \bar{L}^c \epsilon L M_{L i} + g_{M_R i} \bar{e}^c e M_{R i}$ $V = \mathbf{1}_0$ $V' \equiv \mathbf{1}_0$

 $+ g_{Vi} \Big(\bar{L} \gamma^{\mu} L + \kappa_i \bar{e} \gamma^{\mu} e \Big) V_{i\mu} + g_{V'i} (\bar{e}^c \gamma^{\mu} L) V_i^{\prime \dagger}$ + h.c.,

Projectors:

$$\begin{split} \vec{c}_D^{~(8)} &= (0,0,1,0), \\ \vec{c}_{M_L}^{~(8)} &= (0,0,0,-1), \\ \vec{c}_{M_R}^{~(8)} &= (-1,0,0,0), \\ \vec{c}_{V'}^{~(8)} &= (0,0,-1,2), \\ \vec{c}_{V(\kappa)}^{~(8)} &= (-\kappa^2/2,-\kappa,0,-1/2). \end{split}$$

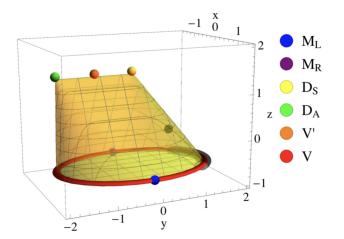
$$\begin{split} O_1 &= \partial^{\alpha} (\bar{e}\gamma^{\mu} e) \partial_{\alpha} (\bar{e}\gamma_{\mu} e) ,\\ O_2 &= \partial^{\alpha} (\bar{e}\gamma^{\mu} e) \partial_{\alpha} (\bar{l}\gamma_{\mu} l) ,\\ O_3 &= D^{\alpha} (\bar{e}l) \ D_{\alpha} (\bar{l}e) ,\\ O_4 &= \partial^{\alpha} (\bar{l}\gamma^{\mu} l) \ \partial_{\alpha} (\bar{l}\gamma_{\mu} l) ,\\ - O_5 &= D^{\alpha} (\bar{l}\gamma^{\mu} \tau^I l) \ D_{\alpha} (\bar{l}\gamma_{\mu} \tau^I l) , \end{split}$$

In ee \rightarrow ee, C₅ does not give an independent contribution:

 $\vec{C}^{(8)} = (C_1, C_2, C_3, C_4)$

bounds

$$\begin{split} &C_1 \leq 0, \\ &C_4 + C_5 \leq 0, \\ &C_5 \leq 0, \\ &C_3 \geq 0, \\ &2\sqrt{C_1(C_4 + C_5)} \geq C_2, \\ &2\sqrt{C_1(C_4 + C_5)} \geq -(C_2 + C_3). \end{split}$$

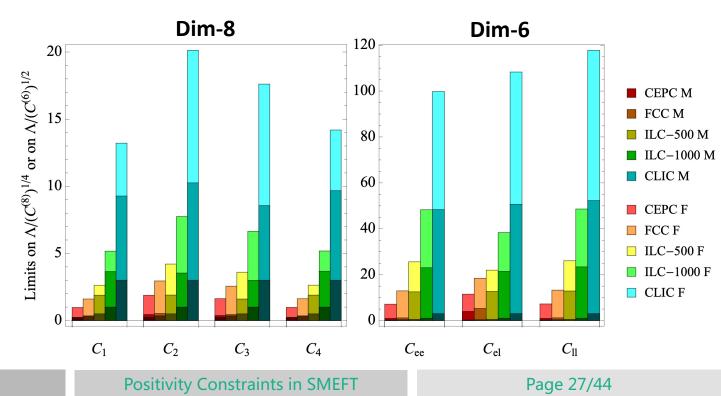


Page 26/44

<u>e+e- scattering at future lepton collider</u>

	Scenario	Beam polarization	Ru	uns (luminosity @ en	$ergy), [ab^{-1}] @ [Government]{Government}{Governme$	${ m GeV}]$
		$P(e^-,e^+)$	1	2	3	4
	CEPC	None	2.6@161	5.6@240		
Different future collider	FCC-ee	None	10@161	5@240	0.2@350	1.5@365
operation runs	ILC-500	$(-80\%, 30\%) \ (80\%, -30\%)$	0.9@250 0.9@250	$0.135@350 \\ 0.045@350$	1.6@500 $1.6@500$	
	ILC-1000	$(-80\%, 30\%) \ (80\%, -30\%)$	0.9@250 0.9@250	$0.135@350 \\ 0.045@350$	1.6@500 $1.6@500$	1.25@1000 $1.25@1000$
	CLIC	$(-80\%,0\%) \ (80\%,0\%)$	$0.5@380 \\ 0.5@380$	$2@1500 \\ 0.5@1500$	4@3000 1@3000	

Limits on the new physics characterization scale, (the darkest color the largest center-of-mass energy of each collider project)



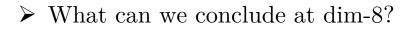
Inverse problem: dim-6 case

- Scalar Vector Assume D-type scalar extension, $g_D = 0.8$, $M_D = 2$ TeV $D \equiv \mathbf{2}_{1/2}$ $M_L \equiv \mathbf{1}_1$ $M_R \equiv \mathbf{1}_2$ $V \equiv \mathbf{1}_0$ $V' \equiv \mathbf{2}_{-3/2}$ $\mathcal{L}_{\text{int}} = g_{Di} \bar{L} e D_i + g_{M_L i} \bar{L}^c \epsilon L M_{Li} + g_{M_R i} \bar{e}^c e M_{Ri}$ $+ g_{Vi} \left(\bar{L} \gamma^{\mu} L + \kappa_i \bar{e} \gamma^{\mu} e \right) V_{i\mu} + g_{V'i} (\bar{e}^c \gamma^{\mu} L) V_i^{\prime \dagger}$ + h.c.,What can we observe at ILC(1 TeV run)?global fit result \rightarrow $C_{ee} = 0 \pm 0.0024,$ $C_{el} = -0.08 \pm 0.0035,$ $C_{ll} = 0 \pm 0.0023$, $C_2 = 0 \pm 0.0077,$ $C_1 = 0 \pm 0.0074,$ $C_3 = 0.04 \pm 0.020$ $C_4 = 0 \pm 0.0071.$ What to conclude at dim-6? Individual case: SM is extended by one-particle $-C_{el} = \frac{g_D^2}{2M_D^2} \longrightarrow M_D/g_D \in [2.45, 2.56] \text{ TeV}$ Great! But we can not exclude other possibilities
- Marginalized case: SM is extended by more particles

$$-C_{el} = \frac{g_D^2}{2M_D^2} - \frac{g_{V'}^2}{M_{V'}^2} = 0.08 \pm 0.0035 \text{ TeV}^{-2}$$
 useless

 \geq

Excluding UV states in dim-8



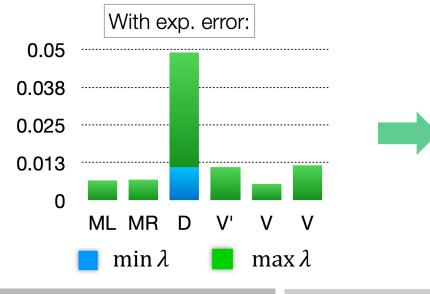
$$\vec{C}^{(8)} = \sum_{X} w_X \vec{c}_X^{(8)}, \quad \text{with } w_X = \sum_i w_{Xi} \ge 0$$

➤ Strategy to exclude UV:

$$\lambda_{\max} \equiv \max_{\lambda} \left[ec{C}^{(8)} - \lambda ec{c}_{X'}^{(8)} \in \mathcal{C}; \ \chi^2 \left(ec{C}, ec{C}_0
ight) \le \chi_c^2
ight]$$

The maximal prob. that X' doesn't break positivity and explains data

The upper bounds on
$$\lambda_{\max} \ge \frac{g_i^2}{M_i^4}$$



 $M_D/\sqrt{g_D} \in [2.1, 3.1]$ TeV Great!

not only obtain limit, but also exclude other particles

$$\begin{split} \vec{c}_D^{\ (8)} &= (0,0,1,0), \\ \vec{c}_{M_L}^{\ (8)} &= (0,0,0,-1), \\ \vec{c}_{M_R}^{\ (8)} &= (-1,0,0,0), \\ \vec{c}_{V'}^{\ (8)} &= (0,0,-1,2), \\ \vec{c}_{V(\kappa)}^{\ (8)} &= (-\kappa^2/2,-\kappa,0,-1/2). \end{split}$$

$$\begin{split} C_{ee} &= 0 \pm 0.0024, \qquad C_{el} = -0.08 \pm 0.0035, \\ C_{ll} &= 0 \pm 0.0023, \\ C_1 &= 0 \pm 0.0074, \qquad C_2 = 0 \pm 0.0077, \\ C_3 &= 0.04 \pm 0.020, \qquad C_4 = 0 \pm 0.0071. \end{split}$$

Remarks

1. Dim-6 measurement, solving inverse problem can correctly obtain $M_D/g_D \in [2.45, 2.56]$ TeV by assuming one-particle extension

2. But we cannot solve the inverse problem when considering extensions with more particles, as their contributions cancel each other out

3. Dim-8 measurement would universally exclude all alternative models, independent of any model assumptions.

4. It can be understood that in dim-8 space, each UV state contributes positively and will not be canceled out

Constraints on ADM

Observation: There are zeros in mixing of specific operators of different classes

$$\mathcal{O}_{e^{2}\phi^{2}D^{3}}^{(1)} = i(\bar{e}\gamma^{\mu}D^{\nu}e)(D_{(\mu}D_{\nu)}\phi^{\dagger}\phi) + \text{h.c.} \qquad \mathcal{O}_{B^{2}\phi^{2}D^{2}}^{(1)} = (D^{\mu}\phi^{\dagger}D^{\nu}\phi)B_{\mu\rho}B_{\nu}^{\rho}$$

$$\mathcal{O}_{e^{2}\phi^{2}D^{3}}^{(2)} = i(\bar{e}\gamma^{\mu}D^{\nu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + \text{h.c.} \qquad \mathcal{O}_{B^{2}\phi^{2}D^{2}}^{(1)} = (D^{\mu}\phi^{\dagger}D^{\nu}\phi)B_{\mu\rho}B_{\nu}^{\rho}$$

$$\mathbb{P}_{\mu}^{(1)} = i(\bar{e}\gamma^{\mu}D^{\nu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + \text{h.c.}$$

$$\mathcal{O}_{e^{2}\phi^{2}D^{3}}^{(1)} = i(\bar{e}\gamma^{\mu}D^{\nu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + \text{h.c.}$$

$$\mathbb{P}_{\mu}^{(1)} = i(\bar{e}\gamma^{\mu}D^{\nu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + \text{h.c.}$$

$$\mathcal{O}_{e^{2}\phi^{2}D^{3}}^{(1)} = i(\bar{e}\gamma^{\mu}D^{\nu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + \text{h.c.}$$

$$\mathcal{O}_{\mu}^{(1)} = i(\bar{e}\gamma^{\mu}D^{\nu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + \text{h.c.}$$

$$\mathcal{O}_{\mu}^{(1)} = i(\bar{e}\gamma^{\mu}D^{\nu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + \text{h.c.}$$

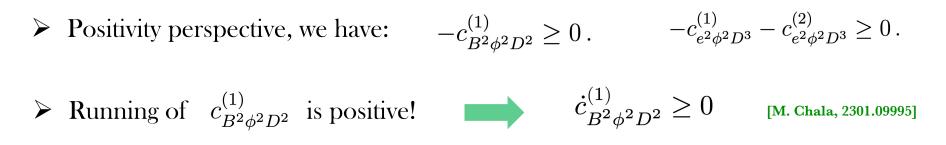
$$\mathbb{P}_{\mu}^{(1)} = i(\bar{e}\gamma^{\mu}D^{\nu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + \text{h.c.}$$

$$\mathcal{O}_{\mu}^{(1)} = i(\bar{e}\gamma^{\mu}D^{\nu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + i(\bar{e}\gamma^{\mu}D^{\mu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + i(\bar{e}\gamma^{\mu}D^{\mu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + i(\bar{e}\gamma^{\mu}D^{\mu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + i(\bar{e}\gamma^{\mu}D^{\mu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + i(\bar{e}\gamma^{\mu}D^{\mu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + i(\bar{e}\gamma^{\mu}D^{\mu}e)(\phi^{\dagger}D_{(\mu}D_{\nu}\Phi) + i(\bar{e}\gamma^{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D_{\mu}D^{\mu}e)(\phi^{\dagger}D^{\mu}e)(\phi^{\dagger}D^{\mu}e)(\phi^{\dagger}D^{\mu}e)(\phi^{\dagger}D^{\mu}e)(\phi^{\dagger}D^{\mu}e)(\phi^{\dagger}D^{\mu}e)(\phi^{\dagger}D^{\mu}e)(\phi^{\dagger}D^{\mu}e)(\phi^{\dagger}D^{\mu}e)(\phi^{\dagger}D^{\mu}e)(\phi^{\mu}D^{\mu}e)$$

 \succ It is not so clear how to anticipate them, not even with amplitude methods

 \succ It can be understood from the positivity perspective.

Constraints on ADM



➤ The positivity should be satisfied in any UV

> The beta function can only be linear in the coefficients combinations:

$$\dot{c}^{(1)}_{B^2\phi^2D^2} = \alpha \Big(c^{(1)}_{e^2\phi^2D^2} + c^{(2)}_{e^2\phi^2D^2} \Big) \quad \text{with } \alpha < 0$$

$$\underbrace{\mathcal{O}_{e^2\phi^2D^3}^{(1)} - \mathcal{O}_{e^2\phi^2D^3}^{(2)}}_{\widetilde{\mathcal{O}}_{e^2\phi^2D^3}} \xrightarrow{\mathcal{O}_{B^2\phi^2D^2}^{(1)}}$$

We not only determine the zero value, and but also fix the sign of α !

In general:

- ▶ From positivity, some tree-level O_i obey $c_i \ge 0$
- ➤ If O_i involves fields not present in O_j or C_j not constrained by positivity, then $\gamma_{ij} = 0$

Xu Li

Positivity Constraints in SMEFT

Page 32/44

	(1)	(2)	(3)	~(1)	~(2)	~(1)	~(2)	~(3)	~(4)		(1)	(2)	(1)	(2)	-
	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(1)}_{l^2\phi^2D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	$c_{e^4D^2}$	$c^{(1)}_{l^4D^2}$	$c^{(2)}_{l^4D^2}$	$c^{(1)}_{l^2 e^2 D^2}$	$c^{(2)}_{l^2e^2D^2}$	
$c^{(1)}_{B^2 \phi^2 D^2}$	+	+	+	0	_	0	_	0	-	0	0	0	0	0	
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	_	0	_	0	0	0	0	0	
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	×	×	0	-	0	_	_	0	0	0	-	
$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	+	+	+	0	-	\times	×	×	×	0	_	_	0	-	
$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	+	+	+	0	—	\times	×	\times	×	0	_	—	0	—	
$c_{e^2B^2D}$	0	0	0	0	_	0	0	0	0	_	0	0	0	_	
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	_	0	_	_	0	_	
$C_{e^2W^2D}$	0	0	0	0	—	0	0	0	0	0	0	0	0	—	
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	—	0	-	0	_	—	0	0	
$c^{(2)}_{l^2 e^2 D^2}$	0	0	0	0	-	0	-	0	_	_	_	-	×	×	

with SU(3), see [XL&Chala, 2309.16611]

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(1)}_{l^2\phi^2D^3}$	$ ilde{c}^{(2)}_{l^2\phi^2D^3}$	$ ilde{c}^{(3)}_{l^2\phi^2D^3}$	$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	$c_{e^4D^2}$	$c^{(1)}_{l^4D^2}$	$c^{(2)}_{l^4D^2}$	$c^{(1)}_{l^2e^2D^2}$	$c^{(2)}_{l^2e^2D^2}$
$c^{(1)}_{B^2\phi^2D^2}$	$rac{g^2}{3}$	$\frac{g^2}{2}$	$\frac{g^2}{6}$	0	-	0	-	0	-	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	_	0	_	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	×	×	0	_	0	_	_	0	0	0	-
$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	+	+	+	0	—	×	×	×	×	0	_	_	0	-
$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	+	+	+	0	—	×	×	×	×	0	—	—	0	-
$c_{e^2B^2D}$	0	0	0	0	_	0	0	0	0	_	0	0	0	_
$c_{l^2B^2D}$	0	0	0	0	0	0	_	0	_	0	_	_	0	_
$C_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	—	0	—	0	_	—	0	0
$c^{(2)}_{l^2 e^2 D^2}$	0	0	0	0	-	0	-	0	_	_	_	-	×	×

with SU(3), see [XL&Chala, 2309.16611]

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2\phi^2D^3}$	$ ilde{c}^{(1)}_{l^2\phi^2D^3}$	$ ilde{c}^{(2)}_{l^2\phi^2D^3}$	$ ilde{c}^{(3)}_{l^2\phi^2D^3}$	$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	$c_{e^4D^2}$	$c^{(1)}_{l^4D^2}$	$c^{(2)}_{l^4D^2}$	$c^{(1)}_{l^2e^2D^2}$	$c^{(2)}_{l^2e^2D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	$rac{g^2}{3}$	$rac{g^2}{2}$	$\frac{g^2}{6}$	0	-	0	-	0	-	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	_	0	_	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2\phi^2D^3}$	+	+	+	×	×	0	$-\frac{4 Y ^2}{3}$	0	-	_	0	0	0	-
$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	+	+	+	0	—	×	×	×	×	0	_	-	0	-
$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	+	+	+	0	—	×	×	\times	×	0	—	_	0	—
$c_{e^2B^2D}$	0	0	0	0	_	0	0	0	0		0	0	0	_
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	_	0	_	_	0	-
$c_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	—	0	—	—	0	0
$c^{(2)}_{l^2e^2D^2}$	0	0	0	0	-	0	-	0	_	_	_	-	×	×

with SU(3), see [XL&Chala, 2309.16611]

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2\phi^2D^3}$	$ ilde{c}^{(1)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2\phi^2D^3}$	$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	$c_{e^4D^2}$	$c^{(1)}_{l^4D^2}$	$c^{(2)}_{l^4D^2}$	$c^{(1)}_{l^2e^2D^2}$	$c^{(2)}_{l^2e^2D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	$rac{g^2}{3}$	$\frac{g^2}{2}$	$\frac{g^2}{6}$	0	_	0	-	0	-	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	_	0	_	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2\phi^2D^3}$	+	+	+	$g^2- Y $	2 \times	0	$-\frac{4 Y ^2}{3}$	0	-	_	0	0	0	-
$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	+	+	+	0	-	×	×	×	×	0	_	_	0	-
$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	+	+	+	0	-	×	×	×	×	0	_	—	0	-
$c_{e^2B^2D}$	0	0	0	0	_	0	0	0	0	_	0	0	0	_
$c_{l^2B^2D}$	0	0	0	0	0	0	_	0	_	0	_	_	0	-
$c_{e^2W^2D}$	0	0	0	0	—	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	—	0	_	—	0	0
$c^{(2)}_{l^2e^2D^2}$	0	0	0	0	_	0	-	0	_	_	_	-	×	×

with SU(3), see [XL&Chala, 2309.16611]

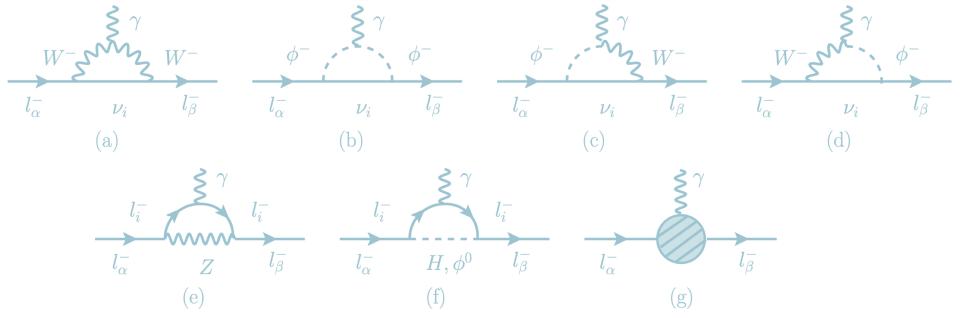
- SMEFT is a useful tool for precise physics study in searching for NP, significant advancements have been made in both phenomenology and theory.
- Positivity structures arise at the dim-8 level in EFT coefficient space, as a consequence of axiomatic QFT principles.
- Positivity application in SMEFT is a lively field, but the phenomenological relevance of dim-8 physics still to be fully understood
- The positivity bounds can be used to study inverse problem, infer UV information based on the geometry perspective
- Positivity bounds on dimension-8 interactions restrict different aspects of (certain) their anomalous dimensions (zeros, signs, inequalities)

Istituto Nazionale di Fisica Nucleare

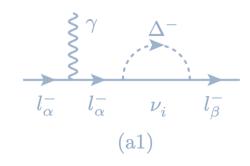
Thanks for your attention

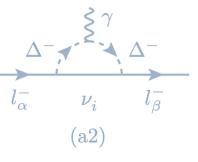
This talk collects the following references:

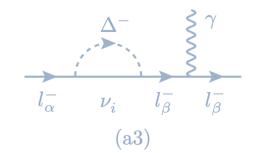
- Cen Zhang's talk @ Positivity and the Bootstrap Workshop "Positivity bounds in SMEFT and the inverse problem", 2021 online
- Mikael Chala's talk @ 5th NPKI workshop "Understanding the quantum structure of the dimension-8 SMEFT", 2023, Busan

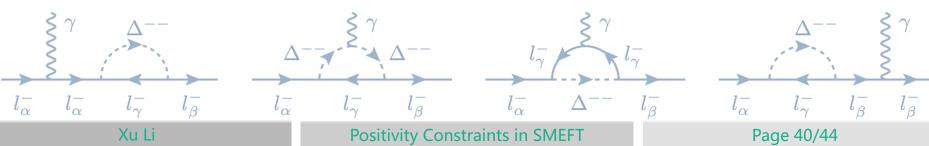


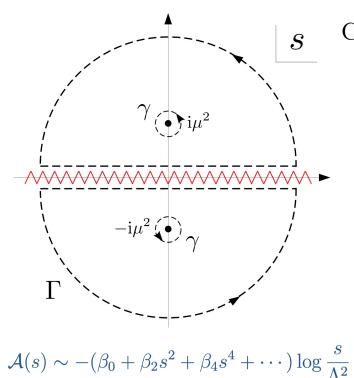
Backup











Consider the simplified EFT with only $\mathrm{U}(1)$ symmetry

$$\Sigma(\mu) \equiv \frac{1}{2\pi i} \int_{\gamma} \frac{\mathcal{A}(s)s^3}{(s^2 + \mu^4)^3} = \frac{1}{2\pi i} \int_{\Gamma} \frac{\mathcal{A}(s)s^3}{(s^2 + \mu^4)^3},$$

= $\frac{1}{4\mu^4} \begin{bmatrix} \beta_0 - 3\beta_2\mu^4 + 5\beta_4\mu^8 + \cdots \end{bmatrix} \ge 0$
higher g_1 higher μ

for
$$\mu \leq \mu'$$
 and $g_1 \leq g'_1$
$$\underbrace{\frac{4}{3}\Sigma(\mu) \approx -\beta_2 \geq 0}$$

 $\gamma_{ij}c_j^{(8)} + \gamma'_{ijk}c_j^{(6)}c_k^{(6)}$

1. We have $\gamma_{ij}c_j^{(8)} \leq 0$ provided the γ' vanishes 2. The c_i 's own anomalous dimension will not be constrained 3. If $c_j^{(8)}$ is not constrained, $\gamma_{ij} = 0$

- If all dim-8 coefficients are consistent with 0, all states can be excluded to above certain scales
 - Not possible at dim-6

 $\begin{array}{ll} \text{maximum} & \lambda \\ \text{subject to} & \vec{C} - \lambda \vec{C}_k \in \mathbf{C} \\ & \text{and} & \chi^2 \left(\vec{C}, \vec{C}_{\text{EXP}} \right) \leq \chi_c^2 \end{array}$

X	$\lambda_{ m max}$	$M_X/\sqrt{g_X}$
D	0.0076	$\geq 3.4 { m ~TeV}$
M_L	0.0053	$\geq 3.7~{\rm TeV}$
M_R	0.0054	$\geq 3.7~{\rm TeV}$
V'	0.0056	$\geq 3.7~{\rm TeV}$
$V \ ({ m with} \ \kappa = 1)$	0.0041	$\geq 4.0~{\rm TeV}$
V (with $\kappa = -1$)	0.0041	$\geq 4.0 { m ~TeV}$

