

Università degli Studi di Padova

Istituto Nazionale di Fisica Nucleare SEZIONE DI PADOVA

Solving the Strong CP Problem with Modular Invariance

Arsenii Titov

Dipartimento di Fisica "Galileo Galilei", Università di Padova INFN, Sezione di Padova

F. Feruglio, A. Strumia, AT, *JHEP* **07** (2023) 027 [2305.08908] F. Feruglio, M. Parriciatu, A. Strumia, AT, *JHEP* **08** (2024) 214 [2406.01689]

Theory Group Seminar, Genova, 19 February 2025

Finanziato dall'Unione europea NextGenerationEU

Outline

- 1. Strong CP problem
- 2. Existing solutions
- 3. Spontaneous CP violation
 - 3.1. Toy model with 2 quark generations
 - 3.2. Realistic scenario with 3 quark generations
 - 3.3. General conditions for $\bar{\theta}=0$ and $\delta_{\rm CKM}\neq 0$
- 4. QFT realisation with supersymmetry
 - 4.1. U(1) flavour symmetry
 - 4.2. Modular invariance
 - 4.3. Flavour-SM anomalies
- 5. Modular-invariant models
 - 5.1. Models with SM quarks only
 - 5.2. Models with heavy vector-like quarks
- 6. Corrections to $\bar{\theta} = 0$
- 7. Conclusions

The strong CP problem

$$\begin{split} \mathscr{L}_{\text{QCD}} &= \overline{q} \left(i \not{D} - M_q \right) q - \frac{1}{4g_3^2} G^a_{\mu\nu} G^{a,\mu\nu} + \frac{\theta_{\text{QCD}}}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \\ \\ \overline{\theta} &= \theta_{\text{QCD}} + \arg \det M_q \end{split} \quad \text{CPV parameter} \end{split}$$

Neutron EDM d

... and the CPV phase in the CKM matrix $\delta_{\rm CKM} \approx 1.2$

Solution 1: the Axion

Promote $\overline{\theta}$ to a dynamical scalar field a, the axion, which washes out CP violation in QCD

$$\mathscr{L}_{a} = \frac{1}{2} (\partial_{\mu} a)^{2} + \frac{1}{32\pi^{2}} \frac{a}{f_{a}} G \tilde{G} + \dots$$
$$\bar{\theta} = \frac{\langle a \rangle}{f_{a}} \quad \text{with} \quad \langle a \rangle = 0$$

New global $U(1)_{PO}$

Peccei, Quinn, PRL 38 (1977) 1440; PRD 16 (1977) 1791

- spontaneously broken => the axion is a NGB
- anomalous under QCD ($\partial_{\mu}J^{\mu}_{PO} \propto G\tilde{G}$) => the axion is a pNGB

Quality problem

- Corrections of order $(f_a/M_{\rm Pl})^{\#}$ from higher-dimensional operators
- \blacktriangleright U(1)_{PQ} should be an accidental symmetry in a complete model

Solution 2: P or CP is symmetry of UV

 $\theta_{OCD} G \tilde{G}$ is P-odd and C-even => CP-odd

- P or CP is a symmetry of the UV theory
- ▶ Challenge: break P/CP spontaneously such that $\bar{\theta} = 0$ and $\delta_{\text{CKM}} = \mathcal{O}(1)$
- In the SM both P and CP are broken explicitly => BSM extensions

Solution 2.1: P is symmetry of UV

P-invariant theory Beg, Tsao, PRL 41 (1978) 278; Mohapatra, Senjanovic, PLB 79 (1978) 283

- Extended gauge group (e.g. left-right symmetry)
- Mirror fermions

Example: Babu-Mohapatra model $SU(2)_L \times SU(2)_R$ with $L \leftrightarrow R$ and $H_L \sim (\mathbf{2}, \mathbf{1})$ and $H_R \sim (\mathbf{1}, \mathbf{2})$ $q_{L,R}$ are $SU(2)_{L,R}$ doublets and $Q' = Q_L \oplus Q_R$ is vector-like singlet quark

$$\left(\overline{q_L} \ \overline{Q'_L}\right) M_q \begin{pmatrix} q_R \\ Q'_R \end{pmatrix} = \left(\overline{q_L} \ \overline{Q'_L}\right) \begin{pmatrix} \mathbf{0} & y_q \mathbf{v}_L \\ y_q^{\dagger} \mathbf{v}_R & M_{Q'} \end{pmatrix} \begin{pmatrix} q_R \\ Q'_R \end{pmatrix}$$

▶ det $M_q = -y_q y_q^{\dagger} v_L v_R$ is real if v_L and v_R are real => arg det $M_q = 0$

Solution 2.2: CP is symmetry of UV

CP-invariant theory

- CP is broken by the Yukawa interactions
- Promote Yukawa couplings to dynamical variables
- Break CP spontaneously

Example: Nelson-Barr modelsNelson, PLB 136 (1984) 387; Barr, PRL 53 (1984) 329New heavy vector-like quarks Q' and scalars z with CPV complex VEVs $\langle z \rangle$

$$\left(\overline{q_L} \ \overline{Q'_L}\right) M_q \begin{pmatrix} q_R \\ Q'_R \end{pmatrix} = \left(\overline{q_L} \ \overline{Q'_L}\right) \begin{pmatrix} y v_H & \mathbf{0} \\ y' \langle z \rangle & M_{Q'} \end{pmatrix} \begin{pmatrix} q_R \\ Q'_R \end{pmatrix}$$

- ▷ CP is a symmetry => the couplings y, y' and the mass $M_{Q'}$ are real
- ▶ det $M_q = yv_H M_{Q'}$ is real (and positive) => arg det $M_q = 0$
- Light quark mass matrix depends on (multiple) (z) => $\delta_{\rm CKM} \neq 0$

Additional matter, tuning, loop corrections...

Dine, Draper, 1506.05433

$$\mathscr{L}_{\text{Yuk}} = U_i^c Y_{ij}^u(z) Q_j H_u + D_i^c Y_{ij}^d(z) Q_j H_d \qquad i, j = 1, 2$$

- 1. Give each field a charge: $k_{U_i^c}$, $k_{D_i^c}$, k_{Q_i} , k_{H_u} , k_{H_d} and $k_z = +1$
- 2. Assume $Y_{ij}^{u} = z^{k_{U_i^c} + k_{Q_j} + k_{H_u}}$ and $Y_{ij}^{d} = z^{k_{D_i^c} + k_{Q_j} + k_{H_d}}$

$$\mathscr{L}_{\text{Yuk}} = U_i^c Y_{ij}^u(z) Q_j H_u + D_i^c Y_{ij}^d(z) Q_j H_d \qquad i, j = 1, 2$$

1. Give each field a charge: $k_{U_i^c}$, $k_{D_i^c}$, k_{Q_i} , k_{H_u} , k_{H_d} and $k_z = +1$ 2. Assume $Y_{ij}^u = z^{k_{U_i^c} + k_{Q_j} + k_{H_u}}$ and $Y_{ij}^d = z^{k_{D_i^c} + k_{Q_j} + k_{H_d}}$

$$m_{d} = v_{d} Y^{d} = \begin{pmatrix} c_{11}^{d} z^{k_{D_{1}^{c}} + k_{Q_{1}} + k_{H_{d}}} & c_{12}^{d} z^{k_{D_{1}^{c}} + k_{Q_{2}} + k_{H_{d}}} \\ c_{21}^{d} z^{k_{D_{2}^{c}} + k_{Q_{1}} + k_{H_{d}}} & c_{22}^{d} z^{k_{D_{2}^{c}} + k_{Q_{2}} + k_{H_{d}}} \end{pmatrix} \quad c_{ij}^{d} \in \mathbb{R} \text{ by CP}$$

$$\det m_{d} = \left(c_{11}^{d} c_{22}^{d} - c_{12}^{d} c_{21}^{d} \right) z^{d_{d}} \text{ with } d_{d} = \sum_{i=1}^{2} \left(k_{D_{i}^{c}} + k_{Q_{i}} \right) + 2k_{H_{d}}$$

det
$$M_q = \det(m_u \oplus m_d) = \det(c^u c^d) z^d$$
 with $d \equiv d_u + d_d$

 $d = 0 \Rightarrow \det M_q$ is a *z*-independent real constant

$$k_{D^c} = (-1, +1) \qquad k_Q = (-1, +1) \qquad k_{H_d} = 0$$
$$m_d = \begin{pmatrix} c_{11}^d z^{-2} & c_{12}^d \\ c_{21}^d & c_{22}^d z^2 \end{pmatrix} \text{ with } \det m_d = \det c^d$$

In an EFT, singularities occur when would-be heavy states integrated out from the full theory accidentally become massless (EFT breaks down)

Assuming no singularities leads to $c_{11}^d = 0$ and

$$m_d = \begin{pmatrix} 0 & c_{12}^d \\ c_{21}^d & c_{22}^d z^2 \end{pmatrix} \text{ with } \det m_d = -c_{12}^d c_{21}^d \in \mathbb{R}$$

Model with 3 quark generations

$$\mathscr{L}_{\text{Yuk}} = U_i^c Y_{ij}^u \left(z_1, \dots, z_N \right) Q_j H_u + D_i^c Y_{ij}^d \left(z_1, \dots, z_N \right) Q_j H_d \qquad i, j = 1, 2, 3$$

- No physical $\delta_{\rm CKM}$ in the case of 2 quark generations
- No physical $\delta_{\rm CKM}$ in the case of 3 quark generations and 1 complex scalar z
- At least 2 complex scalars z_1 and z_2 with a relative phase between their VEVs are needed to have $\delta_{\rm CKM} \neq 0$ see e.g. Kanemura et al., 0704.0697

Model with 3 quark generations

$$\mathscr{L}_{\text{Yuk}} = U_i^c Y_{ij}^u \left(z_1, \dots, z_N \right) Q_j H_u + D_i^c Y_{ij}^d \left(z_1, \dots, z_N \right) Q_j H_d \qquad i, j = 1, 2, 3$$

- No physical $\delta_{\rm CKM}$ in the case of 2 quark generations
- ▶ No physical $\delta_{\rm CKM}$ in the case of 3 quark generations and 1 complex scalar z
- At least 2 complex scalars z_1 and z_2 with a relative phase between their VEVs are needed to have $\delta_{\rm CKM} \neq 0$ see e.g. Kanemura et al., 0704.0697

Example (assuming no singularities)

with 2 scalars z_+ and z_{++} with charges $k_{z_+} = +1$ and $k_{z_{++}} = +2$

$$k_{D^c} = (-1, 0, +1) \qquad k_Q = (-1, 0, +1) \qquad k_{H_d} = 0$$
$$m_d = \begin{pmatrix} 0 & 0 & c_{13}^d \\ 0 & c_{22}^d & c_{23}^d z_+ \\ c_{31}^d & c_{32}^d z_+ & c_{33}^d z_+^2 + c_{33}' z_{++} \end{pmatrix}$$
$$\delta_{CKM} \neq 0 \quad \text{if} \quad \arg z_{++} \neq \arg z_+^2$$

General conditions for $\bar{\theta} = 0$ and $\delta_{\text{CKM}} \neq 0$

$$\mathscr{L}_{Yuk} = U_i^c Y_{ij}^u \left(z_1, ..., z_N \right) Q_j H_u + D_i^c Y_{ij}^d \left(z_1, ..., z_N \right) Q_j H_d$$

1. $Y_{ij}^q = \sum_{\alpha_1...\alpha_N} c_{ij,\alpha_1...\alpha_N}^q z_1^{\alpha_1}...z_N^{\alpha_N}$ with z_a being 'scalars' with complex VEVs $\alpha_a \ge 0$ (no singularities)

2.
$$Y_{ij}^q \left(\lambda^{k_1} z_1, \dots, \lambda^{k_N} z_N\right) = \lambda^{k_{ij}^q} Y_{ij}^q \left(z_1, \dots, z_N\right) \quad \forall \lambda \in \mathbb{C} \quad \text{with} \ k_a \ge 0$$

3. det
$$\left[Y_{ij}^q \left(\lambda^{k_1} z_1, \dots, \lambda^{k_N} z_N\right)\right] = \lambda^{d_q} \det \left[Y_{ij}^q (z_1, \dots, z_N)\right]$$
 with $d_q \equiv \sum_i k_{ii}^q$

4. $d \equiv d_u + d_d = 0$

General conditions for $\bar{\theta}=0$ and $\delta_{\rm CKM}\neq 0$

$$\mathscr{L}_{\text{Yuk}} = U_i^c Y_{ij}^u \left(z_1, \dots, z_N \right) Q_j H_u + D_i^c Y_{ij}^d \left(z_1, \dots, z_N \right) Q_j H_d$$

$$k_{ij}^{u} = k_{U_{i}^{c}} + k_{Q_{j}} + k_{H_{u}} \qquad \qquad k_{ij}^{d} = k_{D_{i}^{c}} + k_{Q_{j}} + k_{H_{d}}$$

$$\det\left[Y_{ij}^{u}\left(\lambda^{k_{1}}z_{1},\ldots,\lambda^{k_{N}}z_{N}\right)\right] = \det\left[\lambda^{k_{ij}^{u}}Y_{ij}^{u}(z_{1},\ldots,z_{N})\right] = \lambda^{d_{u}}\det\left[Y_{ij}^{u}(z_{1},\ldots,z_{N})\right]$$

$$d_{u} = \sum_{i=1}^{3} \left(k_{U_{i}^{c}} + k_{Q_{i}} \right) + 3k_{H_{u}} \qquad d_{d} = \sum_{i=1}^{3} \left(k_{D_{i}^{c}} + k_{Q_{i}} \right) + 3k_{H_{d}}$$

$$d = \sum_{i=1}^{3} \left(2k_{Q_i} + k_{U_i^c} + k_{D_i^c} \right) + 3\left(k_{H_u} + k_{H_d} \right) = 0$$

Patterns of Yukawas for $\bar{\theta} = 0$ and $\delta_{\rm CKM} \neq 0$

$$Y = \begin{pmatrix} Y_{11}^{(0)} & Y_{12}^{(p_1 - p_2)} & Y_{13}^{(p_1 - p_3)} \\ Y_{21}^{(p_2 - p_1)} & Y_{22}^{(0)} & Y_{23}^{(p_2 - p_3)} \\ Y_{31}^{(p_3 - p_1)} & Y_{32}^{(p_3 - p_2)} & Y_{33}^{(0)} \end{pmatrix} \quad \text{with} \quad \det Y = \text{const}$$

$$\bullet p_1 = p_2 = p_3 \quad \Rightarrow \quad Y = \begin{pmatrix} Y_{11}^{(0)} & Y_{12}^{(0)} & Y_{13}^{(0)} \\ Y_{21}^{(0)} & Y_{22}^{(0)} & Y_{23}^{(0)} \\ Y_{31}^{(0)} & Y_{32}^{(0)} & Y_{33}^{(0)} \end{pmatrix} = \text{const}$$

$$\bullet p_1 = p_2 \neq p_3 \quad \Rightarrow \quad Y = \begin{pmatrix} Y_{11}^{(0)} & Y_{12}^{(0)} & Y_{13}^{(0)} \\ Y_{11}^{(0)} & Y_{12}^{(p_1 - p_3)}(z) \\ Y_{21}^{(0)} & Y_{22}^{(0)} & Y_{23}^{(p_1 - p_3)}(z) \\ 0 & 0 & Y_{33}^{(0)} \end{pmatrix}$$

$$\bullet p_1 \neq p_2 \neq p_3 \quad \Rightarrow \quad Y = \begin{pmatrix} Y_{11}^{(0)} & Y_{12}^{(p_1 - p_2)}(z) & Y_{13}^{(p_1 - p_3)}(z) \\ 0 & Y_{11}^{(0)} & Y_{12}^{(p_1 - p_2)}(z) & Y_{13}^{(p_1 - p_3)}(z) \\ 0 & 0 & Y_{33}^{(0)} \end{pmatrix}$$

Feruglio, Parriciatu, Strumia, AT, 2406.01689 (see also Penedo, Petcov, 2404.08032)

QFT realisation with SUSY

 Y^q depend on z_a and not on $\overline{z}_a \implies$ SUSY

$$\begin{split} \mathscr{N} &= 1 \text{ global SUSY action} \\ \mathscr{L} &= \int \mathrm{d}^2 \theta \ \mathrm{d}^2 \overline{\theta} \ K \left(e^{2V} \Phi, \Phi^\dagger \right) + \begin{bmatrix} \int \mathrm{d}^2 \theta \ W(\Phi) + \frac{1}{16} \int \mathrm{d}^2 \theta \ f(\Phi) \ \mathscr{G} \ \mathscr{G} + \text{h.c.} \end{bmatrix} \\ & \underset{(\text{kinetic terms, gauge interactions)}}{\overset{\text{Kähler potential } K}{\text{gauge interactions}}} \quad \overset{\text{Superpotential } W}{\overset{\text{Superpotential } W}{\text{(Yukawa interactions)}}} \quad \overset{\text{Gauge kinetic function } f}{f_3 = \frac{1}{g_2^2} - i \frac{\theta_{\text{QCD}}}{8\pi^2}} \end{split}$$

$$\begin{split} \Phi &= \{M, Z\} \\ Z &= \{Z_1, \dots, Z_N\} \quad \text{dimensionless gauge-invariant chiral superfields} \\ M &= \{U_i^c, D_i^c, E_i^c, Q_i, L_i, H_{u,d}\} \text{ matter and Higgs chiral super fields} \end{split}$$

QFT realisation with SUSY

The general conditions 1-4 are realised assuming invariance under

$$Q_i \to \Lambda^{-k_{Q_i}} Q_i \qquad U_i^c \to \Lambda^{-k_{U_i^c}} U_i^c \qquad D_i^c \to \Lambda^{-k_{D_i^c}} D_i^c \qquad Z_a \to \Lambda^{k_{Z_a}} Z_a$$

- The transformations Λ can be either global or local
- ▶ If local, they form a gauge group Γ , either continuous or discrete
- \triangleright Γ can be realised either linearly or non-linearly

QFT realisation with SUSY

The general conditions 1-4 are realised assuming invariance under

$$Q_i \to \Lambda^{-k_{Q_i}} Q_i \qquad U_i^c \to \Lambda^{-k_{U_i^c}} U_i^c \qquad D_i^c \to \Lambda^{-k_{D_i^c}} D_i^c \qquad Z_a \to \Lambda^{k_{Z_a}} Z_a$$

- The transformations Λ can be either global or local
- ▶ If local, they form a gauge group Γ , either continuous or discrete
- \triangleright Γ can be realised either linearly or non-linearly

The invariance of the superpotential

$$W(\Phi) = U_i^c Y_{ij}^u(Z) Q_j H_u + D_i^c Y_{ij}^d(Z) Q_j H_d$$

under these transformations requires

$$Y_{ij}^{u} \left(\Lambda^{k_{Z_{1}}} Z_{1}, \dots, \Lambda^{k_{Z_{N}}} Z_{N} \right) = \Lambda^{k_{U_{i}^{c}} + k_{Q_{j}} + k_{H_{u}}} Y_{ij}^{u} \left(Z_{1}, \dots, Z_{N} \right)$$
$$Y_{ij}^{d} \left(\Lambda^{k_{Z_{1}}} Z_{1}, \dots, \Lambda^{k_{Z_{N}}} Z_{N} \right) = \Lambda^{k_{D_{i}^{c}} + k_{Q_{j}} + k_{H_{d}}} Y_{ij}^{d} \left(Z_{1}, \dots, Z_{N} \right)$$

Linear vs non-linear realisation

Linearly realised Γ

$$\Lambda = \Lambda(\gamma) \qquad \gamma \in \Gamma$$

Z are elementary

$$\begin{cases} M_i \to \Lambda(\gamma)^{-k_{M_i}} M_i \\ Z_a \to \Lambda(\gamma)^{+k_{Z_a}} Z_a \end{cases}$$

The invariance of the Kähler potential

$$K \left(e^{2V} \Phi, \Phi^{\dagger} \right) = \Phi^{\dagger} e^{2V} \Phi$$

$$V = V_{\rm SM} + k V_{\rm BSM} \quad k = \text{diag} \left(-k_{M_i}, k_{Z_a} \right)$$
under Γ implies

$$\begin{cases} V_{\rm SM} \to V_{\rm SM} \\ 2V_{\rm BSM} \to 2V_{\rm BSM} - \ln \Lambda(\gamma) - \ln \bar{\Lambda}(\gamma) \end{cases}$$

Linear vs non-linear realisation

Linearly realised Γ

 $\Lambda = \Lambda(\gamma) \qquad \gamma \in \Gamma$

Z are elementary

 $\begin{cases} M_i \to \Lambda(\gamma)^{-k_{M_i}} M_i \\ Z_a \to \Lambda(\gamma)^{+k_{Z_a}} Z_a \end{cases}$

The invariance of the Kähler potential

$$K \left(e^{2V} \Phi, \Phi^{\dagger} \right) = \Phi^{\dagger} e^{2V} \Phi$$

$$V = V_{\rm SM} + k V_{\rm BSM} \quad k = \text{diag} \left(-k_{M_i}, k_{Z_a} \right)$$
under Γ implies

$$\begin{cases} V_{\rm SM} \to V_{\rm SM} \\ 2V_{\rm BSM} \to 2V_{\rm BSM} - \ln \Lambda(\gamma) - \ln \bar{\Lambda}(\gamma) \end{cases}$$

Non-linearly realised Γ

$$\Lambda = \Lambda(\gamma, \tau) \qquad \gamma \in \Gamma$$

 $Z = Z(\tau)$ are composite

$$\begin{cases} \tau \to \gamma \tau & \text{non-linear transformation} \\ M_i \to \Lambda(\gamma, \tau)^{-k_{M_i}} M_i \\ Z_a(\tau) \to Z_a(\gamma \tau) = \Lambda(\gamma, \tau)^{+k_{Z_a}} Z_a(\tau) \end{cases}$$

$$\begin{split} K &= M^{\dagger} e^{2V} M + K \left(\tau, \tau^{\dagger} \right) \\ V &= V_{\rm SM} + k V_{\rm BSM} \left(\tau, \tau^{\dagger} \right) \end{split}$$

 $K(\tau, \tau^{\dagger}) \rightarrow K(\tau, \tau^{\dagger}) + f_K(\gamma, \tau) + \bar{f}_K(\gamma, \tau^{\dagger})$ (invariant up to Kähler transformation)

U(1) vs modular symmetry

Linearly realised $\Gamma = U(1)$

$$\Lambda = e^{i\alpha}$$

Z are elementary

$$\begin{cases} M_i \to e^{-i k_{M_i} \alpha} M_i \\ Z_a \to e^{+i k_{Z_a} \alpha} Z_a \end{cases}$$

The VEVs of Z_a break spontaneously U(1) and CP

One needs to build U(1) and CP invariant (super)potential realising the desired vacuum alignment

U(1) vs modular symmetry

Linearly realised $\Gamma = U(1)$

 $\Lambda = e^{i\,\alpha}$

Z are elementary

 $\begin{cases} M_i \to e^{-i k_{M_i} \alpha} M_i \\ Z_a \to e^{+i k_{Z_a} \alpha} Z_a \end{cases}$

The VEVs of Z_a break spontaneously U(1) and CP

One needs to build U(1) and CP invariant (super)potential realising the desired vacuum alignment Non-linearly realised modular symmetry

What is this symmetry?

What is τ ?

What are $\Lambda(\gamma, \tau)$ and $Z_a(\tau)$ in this case?

Modular invariance and CP are broken by the VEV of a single field τ

Presence of multiple 'scalars' $Z_a(\tau)$ with CP-violating VEVs is the result of the modular mathematics

Modular invariance

These transformations form an infinite discrete group

Modular group

$$\begin{aligned} & \forall \tau = i: \quad i \xrightarrow{S} - \frac{1}{i} = i \quad \Rightarrow \quad Z_4^S \\ & \forall \tau = \omega \equiv e^{\frac{2\pi i}{3}}: \quad \omega \xrightarrow{ST} - \frac{1}{\omega + 1} = \omega \quad \Rightarrow \quad Z_3^{ST} \times Z_2^{S^2} \\ & \forall \tau = i\infty: \quad i\infty \xrightarrow{T} i\infty + 1 = i\infty \quad \Rightarrow \quad Z^T \times Z_2^{S^2} \end{aligned}$$

Modular forms

Holomorphic functions on $\mathscr{H} = \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$ transforming under Γ as

$$Z(\gamma\tau) = (c\tau + d)^k Z(\tau), \qquad \gamma \in \Gamma$$

k is weight, a non-negative even integer

Normalised Eisenstein series

$$E_k(\tau) = \frac{1}{2\zeta(k)} \sum_{(m,n) \neq (0,0)} \frac{1}{(m+n\tau)^k}$$

Each modular form of weight k can be written as a polynomial in E_4 and E_6

$$Z(\tau) = \sum_{a,b \ge 0} c_{ab} E_4^a(\tau) E_6^b(\tau) \quad \text{with} \quad 4a + 6b = k$$

Modular weight k	0	2	4	6	8	10	12	14
Modular forms	1		E_4	E_6	$E_8 = E_4^2$	$E_{10} = E_4 E_6$	E_4^3, E_6^2	$E_{14} = E_4^2 E_6$

Modular-invariant SUSY theories

 $\mathcal{N} = 1$ global SUSY action

$$\mathscr{L} = \int \mathrm{d}^2\theta \, \mathrm{d}^2\overline{\theta} \, K\left(\tau, e^{2V}M, \tau^{\dagger}, M^{\dagger}\right) + \left[\int \mathrm{d}^2\theta \, W(\tau, M) + \frac{1}{16} \int \mathrm{d}^2\theta \, f(\tau) \, \mathscr{G} \, \mathscr{G} + \text{h.c.}\right]$$

Kähler potential *K* (kinetic terms, gauge interactions)

Superpotential W (Yukawa interactions)

Gauge kinetic function
$$f$$

 $f_3 = \frac{1}{g_3^2} - i \frac{\theta_{\text{QCD}}}{8\pi^2}$

Under modular transformations $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$

 $\begin{cases} \tau \to \frac{a\tau + b}{c\tau + d} & \tau \text{ is promoted to a (dimensionless) superfield} \\ M \to (c\tau + d)^{-k_M} M & \text{matter supermultiplets} & \Lambda(\gamma, \tau) = c\tau + d \\ V \to V - k \ln |c\tau + d| & \text{vector supermultiplets} & 2V_{\text{BSM}} = \ln \left(-i\tau + i\tau^{\dagger}\right) \end{cases}$

Modular symmetry acts non-linearly

Ferrara et al., PLB 225 (1989) 363; PLB 233 (1989) 147; Feruglio, 1706.08749

Modular-invariant SUSY theories

 $\mathcal{N} = 1$ global SUSY action

$$\mathscr{L} = \int \mathrm{d}^2\theta \, \mathrm{d}^2\overline{\theta} \, K\left(\tau, e^{2V}M, \tau^{\dagger}, M^{\dagger}\right) + \left[\int \mathrm{d}^2\theta \, W(\tau, M) + \frac{1}{16} \int \mathrm{d}^2\theta \, f(\tau) \, \mathscr{G} \, \mathscr{G} + \text{h.c.}\right]$$

Kähler potential *K* (kinetic terms, gauge interactions)

Superpotential W (Yukawa interactions)

Modular invariance of the action requires

$$\begin{cases} K(\tau, e^{2V}M, \tau^{\dagger}, M^{\dagger}) \to K(\tau, e^{2V}M, \tau^{\dagger}, M^{\dagger}) + f_{K}(\tau, M) + \overline{f_{K}}\left(\tau^{\dagger}, M^{\dagger}\right) \\ W(\tau, M) \to W(\tau, M) \\ f(\tau) \to f(\tau) \end{cases}$$

Ferrara et al., PLB 225 (1989) 363; PLB 233 (1989) 147; Feruglio, 1706.08749

Modular-invariant SUSY theories

Minimal Kähler potential

$$K = -h^2 \ln\left(-i\tau + i\tau^{\dagger}\right) + \sum_{M} \frac{M^{\dagger} e^{2V} M}{\left(-i\tau + i\tau^{\dagger}\right)^{k_M}}$$

Superpotential

$$W = Y_{ij}^u(\tau) U_i^c Q_j H_u + Y_{ij}^d(\tau) D_i^c Q_j H_d$$

 τ -dependent Yukawa couplings

$$\begin{split} Y^q_{ij}(\tau) &\to (c\tau + d)^{k^q_{ij}} Y^q_{ij}(\tau) \quad \text{with} \quad k^{u(d)}_{ij} = k_{U^c_i(D^c_i)} + k_{Q_j} + k_{H_{u(d)}} \\ &\text{are modular forms!} \\ \hline Y^q_{ij}(\tau) &= c^q_{ij} \, Z_{k^q_{ij}}(\tau) \quad \text{with} \quad c^q_{ij} \in \mathbb{R} \quad \text{because of CP} \end{split}$$

Gauge kinetic function

$$f = \frac{1}{g_3^2}$$
 $\theta_{\rm QCD} = 0$ because of CP

Modular invariance and CP

Fields

$$\tau \xrightarrow{\mathrm{CP}} - \tau^{\dagger}$$
 and $M \xrightarrow{\mathrm{CP}} M^{\dagger}$

Modular forms

$$Z(\tau) \xrightarrow{\text{CP}} Z(-\tau^*) = Z(\tau)^*$$

Novichkov, Penedo, Petcov, AT, 1905.11970; Baur, Nilles, Trautner, Vaudrevange, 1901.03251

Determinant of quark mass matrix

$$M_{u} = v_{u} Y^{u} \qquad M_{d} = v_{d} Y^{d}$$

$$\det M_{q} = \det M_{u} \det M_{d} \propto \det Y^{u} \det Y^{d}$$

$$Y^{q}(\tau) = \begin{pmatrix} Z_{k_{11}^{q}} & Z_{k_{12}^{q}} & Z_{k_{13}^{q}} \\ Z_{k_{21}^{q}} & Z_{k_{22}^{q}} & Z_{k_{23}^{q}} \\ Z_{k_{31}^{q}} & Z_{k_{32}^{q}} & Z_{k_{33}^{q}} \end{pmatrix} \implies \det Y^{q}(\tau) \text{ is a modular form of weight } k_{det}^{q}$$

$$k_{det}^{u} = k_{11}^{u} + k_{22}^{u} + k_{33}^{u} = \dots = \sum_{i=1}^{3} \left(k_{U_{i}^{c}} + k_{Q_{i}} \right) + 3k_{H_{u}}$$

And det $Y^{u}(\tau)$ det $Y^{d}(\tau)$ is a modular form of weight k_{det}

$$k_{\text{det}} = k_{\text{det}}^{u} + k_{\text{det}}^{d} = \sum_{i=1}^{3} \left(2k_{Q_i} + k_{U_i^c} + k_{D_i^c} \right) + 3 \left(k_{H_u} + k_{H_d} \right)$$
$$k_{\text{det}} = 0 \quad \Rightarrow \quad \det Y^u(\tau) \det Y^d(\tau) = \text{(real) constant}$$

Matter fields and canonical normalisation

Gauge quantum numbers

	Q	U^c	D^c	L	E^{c}	H_u	H_d
$\mathrm{SU}(3)_c$	3	$\overline{3}$	$\overline{3}$	1	1	1	1
$\mathrm{SU}(2)_L$	2	1	1	2	1	2	2
$\mathrm{U}(1)_Y$	$\frac{1}{6}$	$-\frac{2}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	1	$\frac{1}{2}$	$-\frac{1}{2}$

Canonical normalisation

$$K \supset \frac{M^{\dagger}M}{(-i\tau + i\tau^{\dagger})^{k_{M}}} = M_{\text{can}}^{\dagger}M_{\text{can}} \qquad M_{\text{can}} = \{\phi_{\text{can}}, \psi_{\text{can}}\}$$
$$\psi_{\text{can}} \rightarrow \left(\frac{c\tau + d}{c\tau^{\dagger} + d}\right)^{-\frac{k_{M}}{2}}\psi_{\text{can}} = e^{-ik_{M}\alpha(\tau)}\psi_{\text{can}} \qquad \alpha(\tau) = \arg(c\tau + d)$$

Modular symmetry acts on canonically normalised fields as a τ -dependent phase rotation (with $\tau = \tau(x)$)

Modular-SM anomalies

Conditions for modular-gauge anomaly cancellation

$$SU(3)_{c}: A \equiv \sum_{i=1}^{3} \left(2k_{Q_{i}} + k_{U_{i}^{c}} + k_{D_{i}^{c}} \right) = 0$$

$$SU(2)_{L}: \sum_{i=1}^{3} \left(3k_{Q_{i}} + k_{L_{i}} \right) + k_{H_{u}} + k_{H_{d}} = 0$$

$$U(1)_{Y}: \sum_{i=1}^{3} \left(k_{Q_{i}} + 8k_{U_{i}^{c}} + 2k_{D_{i}^{c}} + 3k_{L_{i}} + 6k_{E_{i}^{c}} \right) + 3\left(k_{H_{u}} + k_{H_{d}} \right) = 0$$

Simplest solution

$$k_Q = k_{U^c} = k_{D^c} = k_L = k_{E^c} = (-k, 0, k)$$
 and $k_{H_u} + k_{H_d} = 0$

Cancellation of modular-QCD anomaly along with $k_{H_u} + k_{H_d} = 0$ implies

$$k_{\text{det}} = \sum_{i=1}^{3} \left(2k_{Q_i} + k_{U_i^c} + k_{D_i^c} \right) + 3\left(k_{H_u} + k_{H_d} \right) = 0$$

Simplest example: quarks

Simplest non-trivial example giving $k_{\rm det} = 0$ and A = 0

$$k_Q = k_{U^c} = k_{D^c} = (-6, 0, 6)$$
 and $k_{H_u} = k_{H_d} = 0$

Yukawa matrices

$$Y^{q} = \begin{pmatrix} 0 & 0 & c_{13}^{q} \\ 0 & c_{22}^{q} & c_{23}^{q} E_{6} \\ c_{31}^{q} & c_{32}^{q} E_{6} & c_{33}^{q} E_{4}^{3} + c_{33}^{\prime q} E_{6}^{2} \end{pmatrix} \Rightarrow Y^{q}|_{can} = \begin{pmatrix} 0 & 0 & c_{13}^{q} \\ 0 & c_{22}^{q} & c_{23}^{q} (2 \mathrm{Im}\tau)^{3} E_{6} \\ c_{31}^{q} & c_{32}^{q} (2 \mathrm{Im}\tau)^{3} E_{6} & (2 \mathrm{Im}\tau)^{6} [c_{33}^{q} E_{4}^{3} + c_{33}^{\prime q} E_{6}^{2}] \end{pmatrix}$$
$$\det Y^{q}|_{can} = -c_{13}^{q} c_{22}^{q} c_{31}^{q} \in \mathbb{R}$$

Fixing $\tau = 1/8 + i$ and $\tan \beta = 10$

$$c_{ij}^{u} \approx 10^{-3} \begin{pmatrix} 0 & 0 & 1.56 \\ 0 & -1.86 & 0.87 \\ 1.29 & 4.14 & 3.51, 1.40 \end{pmatrix} \qquad c_{ij}^{d} \approx 10^{-3} \begin{pmatrix} 0 & 0 & 1.55 \\ 0 & -2.59 & 4.59 \\ 0.378 & 0.710 & 0.734, 1.76 \end{pmatrix}$$

reproduce the quark masses, mixing angles and $\delta_{\rm CKM}$ at the GUT scale of $2\times 10^{16}\,{\rm GeV}$

Simplest example: leptons

 $k_L = k_{E^c} = (-6, 0, 6)$

Weinberg operator $\mathscr{C}_{ij}^{\nu}(L_iH_u)(L_jH_u)$ for neutrino masses

Charged lepton Yukawa matrix and coefficient of the Weinberg operator

$$Y^{e} = \begin{pmatrix} 0 & 0 & c_{13}^{e} \\ 0 & c_{22}^{e} & c_{23}^{e} E_{6} \\ c_{31}^{e} & c_{32}^{e} E_{6} & c_{33}^{e} E_{4}^{3} + c_{33}^{\prime e} E_{6}^{2} \end{pmatrix} \qquad \mathscr{C}^{\nu} = \begin{pmatrix} 0 & 0 & c_{13}^{\nu} \\ 0 & c_{22}^{\nu} & c_{23}^{\nu} E_{6} \\ c_{13}^{\nu} & c_{23}^{\nu} E_{6} & c_{33}^{\nu} E_{4}^{3} + c_{33}^{\prime \nu} E_{6}^{2} \end{pmatrix}$$

Fixing $\tau = 1/8 + i$ and $\tan \beta = 10$

$$c_{ij}^{e} = 10^{-3} \begin{pmatrix} 0 & 0 & 1.29 \\ 0 & 5.95 & 0.35 \\ -2.56 & 1.47 & 1.01, 1.32 \end{pmatrix} \qquad c_{ij}^{\nu} = \frac{1}{10^{16} \text{ GeV}} \begin{pmatrix} 0 & 0 & 3.4 \\ 0 & 7.1 & 1.2 \\ 3.4 & 1.2 & 0.19, 0.95 \end{pmatrix}$$

reproduce the lepton masses and mixings, including $\delta_{
m PMNS}$

Models with larger modular weights

Finite modular groups

Principle congruence subgroups of SL(2,Z) of level
$$N = 2, 3, 4, \dots$$

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,Z), \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$

Finite modular groups

Models with finite modular symmetries

$$\begin{cases} M \to (c\tau + d)^{-k_M} \rho_M(\gamma) M \\ Z \to (c\tau + d)^{k_Z} \rho_Z(\gamma) Z \end{cases}$$

Feruglio, 1706.08749

 $\pmb{\rho}$ is a unitary representation of the finite modular group Γ_N

Invariance of the superpotential $W \sim Z_{ijk}(\tau) M_i M_j M_k$ under Γ and Γ_N requires

$$\begin{cases} k_{Z_{ijk}} = k_{M_i} + k_{M_j} + k_{M_k} \\ \rho_Z \otimes \rho_{M_i} \otimes \rho_{M_j} \otimes \rho_{M_k} \supset \mathbf{1}_0 \end{cases}$$

Models with finite modular symmetries

$$\begin{cases} M \to \left(c\tau + d\right)^{-k_M} \rho_M(\gamma) M \\ Z \to \left(c\tau + d\right)^{k_Z} \rho_Z(\gamma) Z \end{cases}$$

Feruglio, 1706.08749

 $\pmb{\rho}$ is a unitary representation of the finite modular group Γ_N

Invariance of the superpotential $W \sim Z_{ijk}(\tau) M_i M_j M_k$ under Γ and Γ_N requires

$$\begin{cases} k_{Z_{ijk}} = k_{M_i} + k_{M_j} + k_{M_k} \\ \rho_Z \otimes \rho_{M_i} \otimes \rho_{M_j} \otimes \rho_{M_k} \supset \mathbf{1}_0 \end{cases}$$

Penedo, Petcov, 2404.08032

Multi-dim irreps $\rho \sim \mathbf{r}$, $\mathbf{r} > 1$ for SM quarks do not allow to simultaneously

- realise the proposed mechanism for $\bar{\theta}=0$
- successfully describe quark masses and mixings

For the mechanism to work, SM quarks must furnish 1D irreps $ho \sim \mathbf{1}_0, \, \mathbf{1}_1, \, \mathbf{1}_2, \dots$

Models with finite modular symmetries

Minimal models (6 Lagrangian parameters per sector)

Penedo, Petcov, 2404.08032

$$Y^{q} = \begin{pmatrix} c_{11}^{q} & 0 & c_{13}^{q} Z_{1*}^{(k')} + c_{13}^{\prime q} Z_{1*}^{\prime (k')} \\ 0 & c_{22}^{q} & c_{23}^{q} Z_{1*}^{(k)} \\ 0 & 0 & c_{33}^{q} \end{pmatrix}$$

(up to weak basis transformations)

Modular weights are large

String compactifications favour smaller weights

(For models based on modular A_4 see also Petcov, Tanimoto, 2404.00858)

Minimal models (I and II)

All Γ'_N (k, k') = (10, 12), (12, 14), (14, 16)

S_3 only	(10', 12), (10, 18'), (10', 18), (12, 12'), (12, 14'), (12, 16'), (12', 16), (12, 20'), (12', 20), (14', 16), (14, 18'), (14', 18), (14, 22'), (14', 22), (16, 16'), (16', 18), (16', 18'), (16, 20'), (16', 20), (18, 20'), (18', 20'), (20, 20'), (20', 22), (20', 22')
A./	
A_4	$(8^{\circ}, 12), (8^{\circ}, 18), (10^{\circ}, 12), (10, 16^{\circ}),$
only	(10', 16), (10, 20''), (10', 20), (12, 12'),
	(12, 12''), (12, 14'), (12, 14''), (12, 16''),
	(12', 16), (12'', 16'), (12, 18'), (12, 18''),
	(12', 18), (12'', 18), (12, 22''), (12', 22),
	(12'' 22') (14 16') (14' 16) (14' 16')
	(12', 22'), (14, 10'), (14', 10), (14', 10'), (14', 10'), (14'', 16''), (14'', 16'')), (14'', 16''), (14'', 16'')), (14'', 16'')), (14'', 16'')), (14'', 16'')), (14'', 16'')), (14''', 16'')), (14''', 16'')), (14''', 16'')), (14''', 16'')), (14''', 16'')), (14''', 16'')))
	$(14^{\circ}, 16), (14^{\circ}, 16^{\circ}), (14^{\circ}, 18), (14, 20^{\circ}), (14^{\circ}, 22), (14^{\circ}, 2$
	(14, 20''), (14', 20), (14', 20''), (14'', 20),
	(14'', 20'), (14, 24''), (14'', 24'), (16, 16''),
	(16', 16''), (16, 18'), (16, 18''), (16', 18'),
	(16', 18''), (16'', 18), (16'', 20'), (16, 22''),
	(16', 22''), (16'', 22), (16'', 22'),
	(16'', 26'), (18, 18'), (18, 18''), (18', 20),
	(18', 20'), (18', 20''), (18'', 20), (18'', 20'),
	(18'', 20''), (18, 22''), (18', 22), (18'', 22'),
	(18', 24''), (18'', 24'), (20, 22''), (20', 22''),
	(20'', 22''), (22, 22''), (22', 22''), (20'', 22''), (22', 22''), (22', 22''), (22', 22''), (22', 22''), (22'', 22'')), (22'', 22''), (22'', 22'')), (22'', 22''), (22'', 22''))), (22'', 22'')), (22'', 22''))))))))))))))))))))))))))))))
	(22'' 24') (22'' 24'') (22'' 26')
	(22, 2+), (22, 2+), (22, 20)

Heavy quarks and singularities

Heavy quarks are not needed for the mechanism to work, but assume they exist

$$k_q = (-6, -2, 0, +2, +6)$$
 and $k_{H_u} = k_{H_d} = 0$

Light chiral quarks Heavy vector-like quarks

▶ In the full theory $f_{\rm UV} \in \mathbb{R}$ and $\det M_{\rm all} \in \mathbb{R} \implies \bar{\theta}_{\rm UV} = 0$

$$\begin{split} M_{\rm all} &= \begin{pmatrix} M_{LL} & M_{LH} \\ M_{HL} & M_{HH} \end{pmatrix} \\ M_{\rm light} &\approx M_{LL} - M_{LH} M_{HH}^{-1} M_{HL} \qquad M_{\rm heavy} \approx M_{HH} \\ & \text{Singularities where det } M_{\rm heavy}(\tau) = 0 \\ & \text{(breakdown of EFT)} \end{split}$$

$$\det M_{\text{all}} = \det M_{\text{light}} \det M_{\text{heavy}}$$
$$\det M_{\text{light}} \rightarrow (c\tau + d)^{k_{\text{light}}} \det M_{\text{light}} \qquad \det M_{\text{heavy}} \rightarrow (c\tau + d)^{k_{\text{heavy}}} \det M_{\text{heavy}}$$
$$k_{\text{all}} = k_{\text{light}} + k_{\text{heavy}} = 0$$

EFT of light quarks

In the EFT of light quarks

$$\bar{\theta}_{\rm IR} = \theta_{\rm QCD} + \arg \det M_{\rm light} = -8\pi^2 \,{\rm Im} f_{\rm IR} + \arg \det M_{\rm light}$$

The EFT has anomalous field content with $k_q = (-6, -2, 0)$

Anomaly is cancelled by a new contribution to the gauge kinetic function arising from the integration over the heavy quarks

$$f_{\rm IR} = f_{\rm UV} - \frac{1}{8\pi^2} \ln \det M_{\rm heavy}$$

Thus

$$\bar{\theta}_{\text{IR}} = \arg \det M_{\text{heavy}} + \arg \det M_{\text{light}} = \arg \det M_{\text{all}} = 0$$

Extensions of Nelson-Barr models

Heavy vector-like SU(2)_L singlet quarks for review see Alves et al., 2304.10561

$$D'_{\alpha} \sim (\mathbf{3}, \mathbf{1}, -1/3)$$
 $D'_{\alpha}^{c} \sim (\mathbf{\bar{3}}, \mathbf{1}, +1/3)$ $\alpha = \{1, ..., P\}$
 $W_{\text{UV}} = y_{ij}^{d} Q_{i} D_{j}^{c} H_{d} + y_{i\beta}^{'d} Q_{i} D'_{\beta}^{c} H_{d} + N_{\alpha i}^{d} D_{\alpha}^{'} D_{i}^{c} + M_{\alpha \beta}^{d} D_{\alpha}^{'} D_{\beta}^{'c}$
 $\mathcal{M}_{d} = \frac{Q}{D'} \begin{pmatrix} m^{d} & n^{d} \\ N^{d} & M^{d} \end{pmatrix}$ $m^{d} = v_{d} y^{d}$ $n^{d} = v_{d} y'^{d}$
 $\left[m_{\text{IR}}^{q} = K_{Q}^{-1/2 T} \left[m^{q} - n^{q} \left(M^{q} \right)^{-1} N^{q} \right] K_{q^{c}}^{-1/2} \right]$
 $K_{Q}^{T} = \mathbf{1} + (m^{q} N^{q\dagger} + n^{q} M^{q\dagger}) (M^{q} M^{q\dagger} + N^{q} N^{q\dagger})^{-2} (N^{q} m^{q\dagger} + M^{q} n^{q\dagger})$
 $K_{q^{c}} = \mathbf{1} + N^{q\dagger} (M^{q} M^{q\dagger})^{-1} N^{q}$
Nelson-Barr limit: $\mathcal{M}_{q} = \begin{pmatrix} m^{q} & 0 \\ N^{q}(Z) & M^{q} \end{pmatrix}$ and $m_{\text{IR}}^{q} = K_{Q}^{-1/2 T} m^{q} K_{q^{c}}$

In particular, $\delta_{
m CKM}$ originates from wave-function renormalisation factors K_Q and K_{q^c} 36

Model with VLQs based on $\Gamma_2 \cong S_3$

Feruglio, Parriciatu, Strumia, AT, 2406.01689

	ç	SM quarks	S	Extra vector-like quarks				
	Q	D^{c}	U^{c}	D'^c	D'	$U^{\prime c}$	U'	
$\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$	$2_{1/6}$	$1_{1/3}$	$1_{-2/3}$	$1_{1/3}$	$1_{-1/3}$	$1_{-2/3}$	$1_{2/3}$	
Flavor symmetry Γ_2	$2\oplus1_0$	${f 2} \oplus {f 1}_1$	$2\oplus1_0$	$2\oplus1_0$	$2\oplus1_1$	$2\oplus1_0$	${f 2} \oplus {f 1}_0$	
Modular weights k_{Φ}	-2	-2	-2	+2	+2	+2	+2	

$$m^{d} = 0_{3\times3} \qquad n^{d} = n_{d} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \alpha_{d} \end{pmatrix} \qquad N^{d} = N_{d} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \beta_{d} \end{pmatrix} \qquad M^{d} = M_{d} \begin{pmatrix} -Z_{1}^{(4)} + \gamma_{d1}Z_{3}^{(4)} & Z_{2}^{(4)} \\ Z_{2}^{(4)} & Z_{1}^{(4)} + \gamma_{d1}Z_{3}^{(4)} & \gamma_{d2}Z_{2}^{(4)} \\ \gamma_{d3}Z_{2}^{(4)} & -\gamma_{d3}Z_{1}^{(4)} & 0 \end{pmatrix}$$

 $(Z_1^{(4)}(\tau), Z_2^{(4)}(\tau))^T \sim \mathbf{2} \qquad Z_3^{(4)}(\tau) \sim \mathbf{1}_0 \quad \text{level } N = 2 \text{ modular forms of weight } k = 4$ $\det \mathcal{M}_d = \det \left[m^d - n^d \left(M^d \right)^{-1} N_d \right] \det M^d = -\det \left[n_d N_d \right] = -n_d^3 N_d^3 \alpha_d \beta_d \in \mathbb{R}$

In the full theory: $\bar{\theta}_{UV} = \arg \det \left(\mathscr{M}_u \mathscr{M}_d \right) = 0$ In the EFT: $\bar{\theta}_{IR} = -8\pi^2 \operatorname{Im} f_{IR} + \arg \det \left(m_{IR}^u m_{IR}^d \right) = \arg \det \left(\mathscr{M}_u \mathscr{M}_d \right) = 0$ $f_{IR} = f_{UV} - \frac{1}{8\pi^2} \ln \det \left(M^u M^d \right)$

Model with VLQs based on $\Gamma_2 \cong S_3$

Feruglio, Parriciatu, Strumia, AT, 2406.01689

\sim								
		SM quarks	S	Extra vector-like quarks				
	Q	D^{c}	U^{c}	D'^c	D'	$U^{\prime c}$	U'	
$\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$	$2_{1/6}$	$1_{1/3}$	$1_{-2/3}$	$1_{1/3}$	$1_{-1/3}$	$1_{-2/3}$	$1_{2/3}$	
Flavor symmetry Γ_2	$2\oplus1_0$	$2\oplus 1_1$	$2\oplus1_0$	$2\oplus1_0$	$2\oplus1_1$	$2\oplus1_0$	$2\oplus1_0$	
Modular weights k_{Φ}	-2	-2	-2	+2	+2	+2	+2	

		Output values					
Modulus		Up se	ector	Down sector		m_u/m_c	1.46×10^{-3}
$\operatorname{Re} \tau$	-0.4347	α_u	13.71	$lpha_d$	13.30	m_c/m_t	2.68×10^{-3}
$\operatorname{Im} \tau$	1.646	eta_u	-0.0723	eta_d	-4.681	m_d/m_s	4.99×10^{-2}
		γ_{u0}	0.1087			m_s/m_b	1.42×10^{-2}
		γ_{u1}	-0.2442	γ_{d1}	1.105	$\sin^2 heta_{12}$	5.06×10^{-2}
		γ_{u2}	-0.0216	γ_{d2}	-0.2165	$\sin^2 heta_{13}$	$1.03 imes 10^{-5}$
		γ_{u3}	-62.38	γ_{d3}	-0.0460	$\sin^2 heta_{23}$	1.25×10^{-3}
		N_u/M_u	1.515	N_d/M_d	0.6220	δ/π	0.391
		$n_u \; [\text{GeV}]$	24.82	$n_d \; [\text{GeV}]$	0.3411	χ^2	0.47

Low weights $|k_M| \leq 2$ (favoured by string theory compactifications)

15 dimensionless parameters to describe 8 dimensionless observables

0

M _{Pl}		
$\Lambda_{\rm flavour/CP}$		
$\Lambda_{ m SUSY}$		
m _{SUSY}		
V		

$M_{\rm D1}$								
TT PI	SUSY unbroken							
$ \Lambda_{\rm flavour/CP} \qquad \qquad \verb Modular invariance determines completely (up to real coupling the functional dependence W(\tau) \end{tabular} $								
	It is not the case for K, but $\bar{\theta}$ is insensitive to K							
	No-renormalisation theorems Ellis, Ferrara, Nanopoulos, PLB 114 (1982) 231							
$\Lambda_{ m SUSY}$	SUSY breaking corrections							
	In general, can be large							
m _{SUSY}	Small if $\Lambda_{\rm flavour/CP} \gg \Lambda_{\rm SUSY}$ (as e.g. in gauge mediation) and soft SUSY terms respect the flavour structure of the SM							
V	$\bar{\theta} \lesssim \frac{M_t^4 M_b^4 M_c^2 M_s^2}{v^{12}} J_{\rm CP} \tan^6 \beta \sim 10^{-28} \tan^6 \beta$							
	SM corrections are negligible							

Conclusions

- ▷ General conditions for $\bar{\theta} = 0$ and $\delta_{\rm CKM} \neq 0$ in theories with spontaneous GP
- Can be implemented with an anomaly-free local flavour symmetry (and SUSY)

Conclusions

- Beneral conditions for $\bar{\theta} = 0$ and $\delta_{\rm CKM} \neq 0$ in theories with spontaneous ${\cal GP}$
- Can be implemented with an anomaly-free local flavour symmetry (and SUSY)
- Modular invariance is inherent to toroidal compactifications in string theory
- It can be consistently implemented in a SUSY QFT
- The VEV of the modulus τ is the only source of spontaneous \mathcal{P}

Conclusions

- Beneral conditions for $\bar{\theta} = 0$ and $\delta_{\rm CKM} \neq 0$ in theories with spontaneous ${\cal GP}$
- Can be implemented with an anomaly-free local flavour symmetry (and SUSY)
- Modular invariance is inherent to toroidal compactifications in string theory
- It can be consistently implemented in a SUSY QFT
- The VEV of the modulus τ is the only source of spontaneous \mathcal{P}

$$\bar{\theta} = \theta_{\rm QCD} + \arg \det M_q$$

- $\triangleright \ \theta_{\rm QCD} = 0 \ {\rm because}$ the UV theory is CP-conserving
- ▶ $arg \det M_q = 0$ because of anomaly-free modular symmetry
- Heavy VLQs are not needed, but can help to lower modular weights
- Corrections to $\bar{\theta} = 0$ are small under certain assumptions on SUSY breaking

1. CP is a symmetry => $\theta_{\rm QCD} = 0$ (and real Lagrangian couplings)

- 2. Modular invariance/anomaly cancellation $\Rightarrow \arg \det M_q = 0$
- 3. CP is broken spontaneously by the VEV of a single complex scalar field, the modulus $\tau \implies \delta_{\rm CKM} = \mathcal{O}(1)$
- 4. Quark mass hierarchies and mixing angles are reproduced by $\mathcal{O}(1)$ parameters
- 5. Corrections to $\bar{\theta} = 0$ are small under certain assumptions on SUSY breaking

Phenomenology and cosmology

- Couplings to matter are suppressed by $1/h (1/M_{Pl} \text{ in SUGRA})$
- No couplings to gauge bosons in the exact SUSY limit

- ▶ $m_{\tau} \gtrsim 10$ TeV not to spoil BBN
- Fermionic component of τ could be LSP and maybe DM

Scalar potential $V(\tau) = V(-\tau^*) \Rightarrow$ CP-conjugated minima (domain walls are inflated away if CP breaking occurs before inflation)

CPon dark matter

$$\mathscr{L}_{\text{Yuk}} = U_i^c Y_{ij}^u(z) Q_j H_u + D_i^c Y_{ij}^d(z) Q_j H_d \qquad i, j = 1, 2$$

Assume

$$m_d = v_d Y^d = \begin{pmatrix} d_{11} z^{k_{11}^d} & d_{12} z^{k_{12}^d} \\ d_{21} z^{k_{21}^d} & d_{22} z^{k_{22}^d} \end{pmatrix} \qquad d_{ij} \in \mathbb{R} \text{ by CP invariance}$$

Full quark mass matrix $M_q = m_d \oplus m_u$ has

$$\det M_q = \left(d_{11}d_{22}z^{k_{11}^d + k_{22}^d} - d_{12}d_{21}z^{k_{12}^d + k_{21}^d}\right) \left(u_{11}u_{22}z^{k_{11}^u + k_{22}^u} - u_{12}u_{21}z^{k_{12}^u + k_{21}^u}\right)$$

We want det M_q to be a positive constant

$$\det M_q \propto z^d \quad \forall \quad d_{ij}, u_{ij} \text{ if} \\ k_{11}^d + k_{22}^d = k_{12}^d + k_{21}^d \qquad k_{11}^u + k_{22}^u = k_{12}^u + k_{21}^u \\ \det M_q = (d_{11}d_{22} - d_{12}d_{21}) (u_{11}u_{22} - u_{12}u_{21}) z^d \qquad d = \sum_{i=1}^2 (k_{ii}^d + k_{ii}^u) \\ d = 0 \quad \Rightarrow \quad \det M_q \text{ is a } z\text{-independent real constant}$$

Interesting class of solutions to

$$k_{11}^d + k_{22}^d = k_{12}^d + k_{21}^d \qquad \qquad k_{11}^u + k_{22}^u = k_{12}^u + k_{21}^u$$

is given by

$$k_{ij}^{d} = k_{D_{i}^{c}} + k_{Q_{j}} + k_{H_{d}} \qquad \qquad k_{ij}^{u} = k_{U_{i}^{c}} + k_{Q_{j}} + k_{H_{u}}$$

 $\begin{aligned} k_{\Phi} \text{ are determined up to additive constants } \Delta_{\Phi}, \Phi &= \{U^c, D^c, Q, H_{u/d}\}: \\ k_{H_q} \to k_{H_q} + \Delta_{H_q} \qquad k_{Q_i} \to k_{Q_i} + \Delta_Q \qquad k_{D_i^c(U_i^c)} \to k_{D_i^c(U_i^c)} - \Delta_{H_{d(u)}} - \Delta_Q \end{aligned}$

 k_{Φ} can be interpreted as charges (modular weights) in models with U(1) (modular) flavour symmetry. For example, in the case of U(1)

$$\Phi_{i} \to e^{-ik_{\Phi_{i}}\alpha} \Phi_{i} \qquad z \to e^{+ik_{z}\alpha} z$$
$$\mathscr{L}_{Yuk} \supset D_{i}^{c} Q_{j} H_{d} z^{k_{ij}^{d}} \qquad (k_{z} = +1)$$
$$d = \sum_{i=1}^{2} \left(k_{ii}^{d} + k_{ii}^{u} \right) = \sum_{i=1}^{2} \left(k_{D_{i}^{c}} + k_{U_{i}^{c}} + 2k_{Q_{i}} \right) + 2 \left(k_{H_{d}} + k_{H_{u}} \right) = 0$$

Example

$$\begin{aligned} k_{D_1^c} &= k_{U_1^c} = -k_{Q_1} > 0 \qquad k_{D_2^c} = k_{U_2^c} = -k_{Q_2} < 0 \qquad k_{H_{u,d}} = 0 \\ m_d &= \begin{pmatrix} d_{11} & d_{12} z^k \\ d_{21} z^{-k} & d_{22} \end{pmatrix} \qquad m_u = \begin{pmatrix} u_{11} & u_{12} z^k \\ u_{21} z^{-k} & u_{22} \end{pmatrix} \qquad k = k_{D_1^c} + k_{Q_2} > 0 \end{aligned}$$

The elements $m_{q\,21}$ are singular in the limit $z \rightarrow 0$

In an EFT, singularities occur when would-be heavy states integrated out from the full theory accidentally become massless (EFT breaks down)

If no such states exist in the full theory, $d_{21} = u_{21} = 0$ and

$$m_d = \begin{pmatrix} d_{11} & d_{12} z^k \\ 0 & d_{22} \end{pmatrix} \qquad m_u = \begin{pmatrix} u_{11} & u_{12} z^k \\ 0 & u_{22} \end{pmatrix} \qquad k = k_{D_1^c} + k_{Q_2} > 0$$

Modular group

Homogeneous modular group

$$\begin{split} \Gamma &= \left\langle S, \ T \mid S^4 = (ST)^3 = I \right\rangle \cong \mathrm{SL}(2,\mathbb{Z}) \\ S &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \\ \tau \stackrel{S}{\to} -\frac{1}{\tau} \qquad \tau \stackrel{T}{\to} \tau + 1 \\ \text{duality} \qquad \text{discrete shift symmetry} \end{split}$$

Inhomogeneous modular group

$$\overline{\Gamma} = \left\langle S, T \mid S^2 = (ST)^3 = I \right\rangle \cong \mathrm{PSL}(2,\mathbb{Z}) = \mathrm{SL}(2,\mathbb{Z})/\{I, -I\}$$

In other words, $SL(2,\mathbb{Z})$ matrices γ and $-\gamma$ are identified

$$\tau \xrightarrow{\gamma} \gamma \tau = \frac{a\tau + b}{c\tau + d}$$
 $\qquad \qquad \tau \xrightarrow{-\gamma} (-\gamma) \tau = \frac{-a\tau - b}{-c\tau - d} = \gamma \tau$

Modular forms

Holomorphic functions on $\mathscr{H} = \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$ transforming under Γ as

$$f(\gamma\tau) = (c\tau + d)^k f(\tau), \qquad \gamma \in \Gamma$$

k is weight, a non-negative even integer

$$\gamma = -I \implies f(\tau) = (-1)^k f(\tau) \implies k \text{ is even}$$

Modular forms are periodic and admit q-expansions

$$\gamma = T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \Rightarrow \quad f(\tau + 1) = f(\tau) \quad \Rightarrow \quad f(\tau) = \sum_{n=0}^{\infty} a_n q^n, \quad q = e^{2\pi i \tau}$$

Modular forms of weight k form a linear space \mathcal{M}_k of finite dimension

$$\dim \mathcal{M}_{k} = \begin{cases} 0 & \text{if } k \text{ is negative or odd} \\ \lfloor k/12 \rfloor & \text{if } k = 2 \pmod{12} \\ \lfloor k/12 \rfloor + 1 & \text{if } k \neq 2 \pmod{12} \end{cases}$$

Modular forms of level 1: E4 and E6

$$E_4(\tau) = 1 + 240 \sum_{n=1}^{\infty} \frac{n^3 q^n}{1 - q^n} = 1 + 240q + 2160q^2 + 6720q^3 + 17520q^4 + \mathcal{O}(q^5)$$
$$E_6(\tau) = 1 - 540 \sum_{n=1}^{\infty} \frac{n^5 q^n}{1 - q^n} = 1 - 504q - 16632q^2 - 122976q^3 - 532728q^4 + \mathcal{O}(q^5)$$

0.4

0.6

Modular forms of level 2

Dedekind eta function

$$\eta(\tau) = q^{\frac{1}{24}} \prod_{n=1}^{\infty} \left(1 - q^n \right) \qquad q \equiv e^{2\pi i \tau}$$

$$Z_{1}^{(2)} = \frac{2i}{\pi} \left[\frac{\eta'(\tau/2)}{\eta(\tau/2)} + \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} - 8\frac{\eta'(2\tau)}{\eta(2\tau)} \right] = 1 + 24q + 24q^{2} + 96q^{3} + 24q^{4} + \mathcal{O}\left(q^{5}\right)$$

$$Z_{2}^{(2)} = \frac{2\sqrt{3}i}{\pi} \left[\frac{\eta'(\tau/2)}{\eta(\tau/2)} - \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} \right] = 8\sqrt{3}q^{1/2} \left(1 + 4q + 6q^{2} + 8q^{3} + \mathcal{O}\left(q^{4}\right) \right)$$

$$\begin{pmatrix} Z_1^{(2)} \\ Z_2^{(2)} \end{pmatrix} \sim \mathbf{2} \quad \text{of} \quad \Gamma_2 \cong S_3$$

$$\left\{ Z_1^{(4)}, Z_2^{(4)}, Z_3^{(4)} \right\} = \left\{ Z_2^{(2)^2} - Z_1^{(2)^2}, 2Z_1^{(2)}Z_2^{(2)}, Z_1^{(2)^2} + Z_2^{(2)^2} \right\}$$
$$\begin{pmatrix} Z_1^{(4)} \\ Z_2^{(4)} \end{pmatrix} \sim \mathbf{2} \qquad Z_3^{(4)} \sim \mathbf{1}_0 \quad \text{of} \quad \Gamma_2 \cong S_3$$

Group properties of $\Gamma_2 \cong S_3$

$$\Gamma_2 = \left\langle S, T \mid S^2 = (ST)^3 = T^2 = I \right\rangle$$
$$\mathcal{S}_2 = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix} \qquad \mathcal{T}_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline S_3 & {\bf 1}_0 & {\bf 1}_1 & {\bf 2} \\ \hline \mathscr{S} & 1 & -1 & \mathscr{S}_2 \\ \hline \mathscr{T} & 1 & -1 & \mathscr{T}_2 \end{array}$$

Tensor products

 $\mathbf{1}_1 \otimes \mathbf{1}_1 = \mathbf{1}_0 \qquad \mathbf{1}_1 \otimes \mathbf{2} = \mathbf{2} \qquad \mathbf{2} \otimes \mathbf{2} = \mathbf{1}_0 \oplus \mathbf{1}_1 \oplus \mathbf{2}$

Clebsch-Gordan coefficients

$$\begin{pmatrix} \gamma_{\mathbf{1}_{1}} \otimes \beta_{\mathbf{2}} \end{pmatrix}_{\mathbf{2}} = (-\gamma \beta_{2}, \gamma \beta_{1})^{T} (\alpha_{\mathbf{2}} \otimes \beta_{\mathbf{2}})_{\mathbf{1}_{0}} = \alpha_{1}\beta_{1} + \alpha_{2}\beta_{2} (\alpha_{\mathbf{2}} \otimes \beta_{\mathbf{2}})_{\mathbf{1}_{1}} = \alpha_{1}\beta_{2} - \alpha_{2}\beta_{1} (\alpha_{\mathbf{2}} \otimes \beta_{\mathbf{2}})_{\mathbf{2}} = (\alpha_{2}\beta_{2} - \alpha_{1}\beta_{1}, \alpha_{1}\beta_{2} + \alpha_{2}\beta_{1})^{T}$$

More on modular-gauge anomalies

 $M \to M' = \Lambda(\gamma, \tau)^{-k_M} M$

Jacobian *J*: $\mathscr{D}M' = J \mathscr{D}M$

Arkani-Hamed, Murayama, hep-th/9707133

$$\log J = -\frac{i}{64\pi^2} \int d^4x \, d^2\theta \, \left[\sum_M T(M) \, k_M \right] \, W^a W^a \, \ln \Lambda$$

T(M) is the Dynkin index of the rep of M: tr $(t_a t_b) = T(M) \delta_{ab}$

$$\sum_{M} T(M) k_{M} = 0$$

$$\begin{aligned} &\mathrm{SU}(3)_{c}: \quad \sum_{i} \left(2k_{Q_{i}} + k_{U_{i}^{c}} + k_{D_{i}^{c}} \right) = 0 \\ &\mathrm{SU}(2)_{L}: \quad \sum_{i} \left(3k_{Q_{i}} + k_{L_{i}} \right) + k_{H_{u}} + k_{H_{d}} = 0 \\ &\mathrm{U}(1)_{Y}: \quad \sum_{i} \left(k_{Q_{i}} + 8k_{U_{i}^{c}} + 2k_{D_{i}^{c}} + 3k_{L_{i}} + 6k_{E_{i}^{c}} \right) + 3\left(k_{H_{u}} + k_{H_{d}} \right) = 0 \end{aligned}$$

Modular invariance and SUGRA

 $\mathcal{N}=1$ SUGRA action depends on

$$G = \frac{K}{M_{\rm Pl}^2} + \log \left| \frac{W}{M_{\rm Pl}^3} \right|^2$$

For G to be invariant, both K and W have to transform

$$K \to K + M_{\text{Pl}}^2 \left(F + F^{\dagger} \right)$$
 and $W \to e^{-F} W$

In the case of modular transformations

$$F = \frac{h^2}{M_{\rm Pl}^2} \log(c\tau + d)$$

$$W \rightarrow (c\tau + d)^{-k_W} W$$
 with $k_W = \frac{h^2}{M_{\rm Pl}^2} > 0$

The superpotential is a modular function, having singularities at some values of τ

$$k_W \rightarrow 0$$
 rigid SUSY limit

Modular invariance and SUGRA

$$W = Y_{ij}^{u}(\tau) U_{i}^{c} Q_{j} H_{u} + Y_{ij}^{d}(\tau) D_{i}^{c} Q_{j} H_{d}$$

$$Y_{ij}^{q}(\tau) \to (c\tau + d)^{k_{ij}^{q}} Y_{ij}^{q}(\tau) \quad \text{with} \quad k_{ij}^{u(d)} = k_{U_{i}^{c}(D_{i}^{c})} + k_{Q_{j}} + k_{H_{u(d)}} - k_{W}$$

Furthermore, the Kähler transformation must be accompanied by a U(1) rotation

$$\psi
ightarrow e^{rac{F-F^{\dagger}}{4}}\psi \qquad \qquad \lambda
ightarrow e^{-rac{F-F^{\dagger}}{4}}\lambda \qquad h$$

how gaugino enters the game

$$\psi_{\rm can} \to \left(\frac{c\tau + d}{c\tau^{\dagger} + d}\right)^{\frac{k_W}{4} - \frac{k_{\Phi}}{2}} \psi_{\rm can} \qquad \qquad \lambda \to \left(\frac{c\tau + d}{c\tau^{\dagger} + d}\right)^{-\frac{k_W}{4}} \lambda$$

Modular-QCD anomaly modifies as

$$A = \sum_{i=1}^{3} \left(2k_{Q_i} + k_{U_i^c} + k_{D_i^c} - 2k_W \right) + Ck_W$$

C = 3 is quadratic Casimir of **8** of SU(3)_C

Gluino mass

$$\bar{\theta} = \theta_{\text{QCD}} + \arg \det M_q + C \arg M_3$$

Assume $k_{det} = 0$ and the quark contribution to A vanishes. Then

$$\bar{\theta} = \theta_{\rm QCD} + C \arg M_3$$

Gluino mass requires SUSY breaking

$$M_{3} = \frac{g_{3}^{2}}{2} e^{K/2M_{\rm Pl}^{2}} K^{i\bar{j}} D_{\bar{j}} W^{\dagger} f_{i}$$

Assuming $D_{\tau}W = 0$ and no additional phases from SUSY breaking

$$\arg M_3 = -\arg W$$

 $W = \dots + \frac{c_0 M_{\text{Pl}}^3}{\eta(\tau)^{2k_W}} \quad \text{and} \quad f = \dots + \frac{Ck_W}{4\pi^2} \log \eta(\tau)$ $\bar{\theta} = -8\pi^2 \text{Im}f - C \arg W = 0$

More on modular invariance in SUGRA

$$\det M_q \to \left(\frac{c\tau + d}{c\tau^{\dagger} + d}\right)^{\frac{k_{\text{det}}}{2}} \det M_q \qquad k_{\text{det}} = \sum_{i=1}^3 \left(2k_{Q_i} + k_{U_i^c} + k_{D_i^c} - 2k_W\right) + 3\left(k_{H_u} + k_{H_d}\right)$$
$$M_3 \to \left(\frac{c\tau + d}{c\tau^{\dagger} + d}\right)^{\frac{k_W}{2}} M_3 \quad \text{(gluino mass arises only if SUSY is broken)}$$

Theories based on finite modular groups

 $\mathcal{N} = 1$ rigid SUSY matter action

$$\mathcal{S} = \int \mathrm{d}^4 x \, \mathrm{d}^2 \theta \, \mathrm{d}^2 \overline{\theta} \, K(\tau, \overline{\tau}, \psi, \overline{\psi}) + \int \mathrm{d}^4 x \, \mathrm{d}^2 \theta \, W(\tau, \psi) + \int \mathrm{d}^4 x \, \mathrm{d}^2 \overline{\theta} \, \overline{W}(\overline{\tau}, \overline{\psi})$$

Ferrara, Lust, Shapere, Theisen, PLB **225** (1989) 363 Ferrara, Lust, Theisen, PLB **233** (1989) 147

Yukawa couplings are modular forms!

Quark masses and mixings

At the GUT scale of 2×10^{16} GeV, assuming MSSM with tan $\beta = 10$ and SUSY breaking scale of 10 TeV

m_{u}/m_{c}	$(1.93 \pm 0.60) \times 10^{-3}$
m_c/m_t	$(2.82 \pm 0.12) \times 10^{-3}$
m_d/m_s	$(5.05 \pm 0.62) \times 10^{-2}$
m_s/m_b	$(1.82 \pm 0.10) \times 10^{-2}$
$\sin^2 \theta_{12}$	$(5.08 \pm 0.03) \times 10^{-2}$
$\sin^2 \theta_{13}$	$(1.22 \pm 0.09) \times 10^{-5}$
$\sin^2 \theta_{23}$	$(1.61 \pm 0.05) \times 10^{-3}$
δ/π	0.385 ± 0.017

 $m_t = 87.46 \text{ GeV}$ $m_b = 0.9682 \text{ GeV}$

> Antusch, Maurer, 1306.6879 Yao, Lu, Ding, 2012.13390

Lepton masses and mixings

NuFIT 5.2 (2022)

		Normal Ord	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 6.4)$
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.303\substack{+0.012\\-0.012}$	$0.270 \rightarrow 0.341$	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.341$
lata	$ heta_{12}/^{\circ}$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$
ric ($\sin^2 heta_{23}$	$0.451^{+0.019}_{-0.016}$	$0.408 \rightarrow 0.603$	$0.569\substack{+0.016\\-0.021}$	$0.412 \rightarrow 0.613$
sphe	$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$
utmo	$\sin^2 heta_{13}$	$0.02225^{+0.00056}_{-0.00059}$	$0.02052 \rightarrow 0.02398$	$0.02223\substack{+0.00058\\-0.00058}$	$0.02048 \rightarrow 0.02416$
SK a	$\theta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.94$
with	$\delta_{ m CP}/^{\circ}$	232^{+36}_{-26}	$144 \rightarrow 350$	276^{+22}_{-29}	$194 \rightarrow 344$
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.41_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.03$	$7.41_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.03$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.507^{+0.026}_{-0.027}$	$+2.427 \rightarrow +2.590$	$-2.486^{+0.025}_{-0.028}$	$-2.570 \rightarrow -2.406$

Esteban et al., 2007.14792 and www.nu-fit.org

$$\begin{split} m_e/m_\mu &= 0.0048 \pm 0.0002 \\ m_\mu/m_\tau &= 0.0565 \pm 0.0045 \end{split}$$