

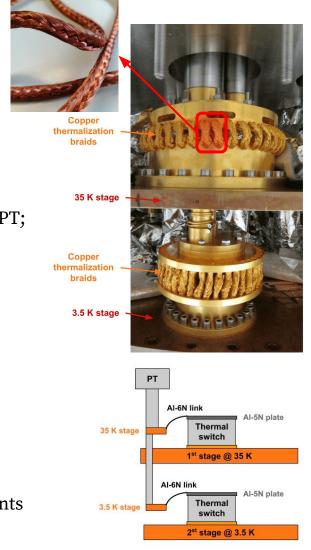
Thermal conductivity measurements of high-purity Al for the CUORE cryogenic upgrade

Simone Quitadamo

PRIN Meeting

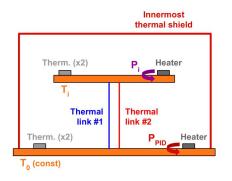
Gran Sasso Science Institute

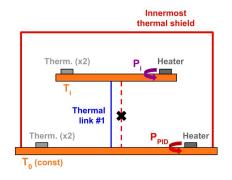
21st February 2025

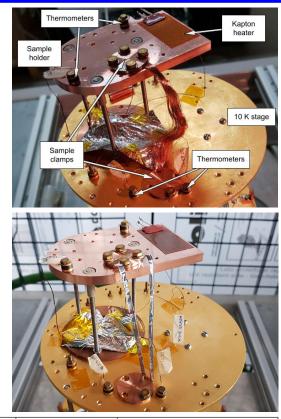

CUORE/CUPID cryogenic upgrade

- Cryogenic upgrade of CUORE cryostat:
 - comply with the thermal requirements for cryostat operation after CUPID installation;
 - improve thermal/mechanical coupling between Pulse Tubes (PT) and cryostat;
 - three main interventions:
 - 1. 5 CUORE Cryomech PT415 \rightarrow 4 Cryomech PT425;
 - 2. install gas-gap thermal switches to isolate the not operative PT;
 - 3. replace PT thermalizations: OFHC-Cu \rightarrow HP-Al.
- Advantages of HP-Al w.r.t. Cu thermalizations:
 - higher thermal conductivity at low temperatures;
 - > Young modulus: $E_{Y}(Al) \sim 69 \text{ GPa} < E_{Y}(Cu) \sim 130 \text{ GPa};$

Al is softer and more flexible than Cu;

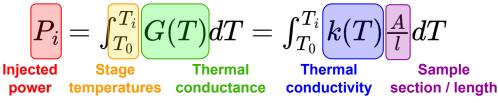

damp vibrations propagation from PT to cryostat and detectors.


• LNGS 2024: campaign of comparative thermal conductivity measurements between OFHC-Cu (from CUORE thermalizations) and HP-Al samples.



Experimental setup Cryostat & Cu/HP-Al samples

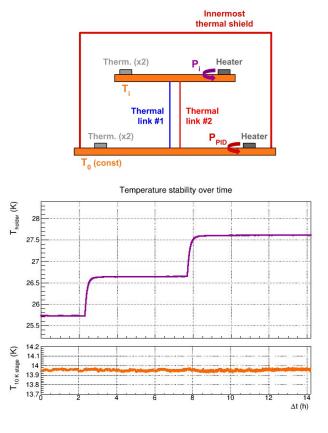
- GM (Gifford-McMahon) cryostat:
 - $T_{base} \sim 11 \text{ K} @ 10 \text{ K} \text{ stage;}$
 - copper sample holder thermally decoupled from 10 K stage;
 - ➤ two thermometers + one heater installed on each stage
 ↓
 stabilize temperature of 10 K stage,
 change temperature of copper holder.
- Cu/HP-Al samples are clamped at 10 K stage and copper holder.
- To verify the measurements reproducibility, each sample is measured twice in consecutive cool-downs:
 - ≻ full Cu braid
- \rightarrow cut half of the Cu braid;
- ▶ two HP-Al strips/wires \rightarrow cut one HP-Al strip/wire.



Material	Purity	Geometry
OFHC-Cu	RRR \sim 400	Braid (section $\sim 2 \text{ mm}^2$)
AI-5N	99.999 %	Wire (Ø ~ 0.5 mm)
Al-6N	99.9999 %	Strip (0.1 mm thick)
		Wire (Ø ~ 1.0 mm)

Thermal conductivity measurements Procedure

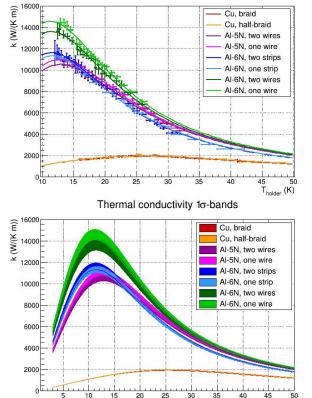
- Measurements procedure:
 - > fix and stabilize the temperature T_0 of 10 K stage;
 - > increase holder temperature T_i through power injection P_i ;
 - thermal conductivity k(T):


> differential measurements between steps *i*, *i*-1:

$$k\left(T = \frac{T_{i-1} + T_i}{2}\right) = \underbrace{\frac{P_i - P_{i-1}}{T_i - T_{i-1}}}_{\text{Holder Geometric}} \underbrace{\frac{\rho \ l \ L}{m}}_{\text{Holder Geometric}}$$

variables factor

• Thermal conduction in metals is driven by electrons:

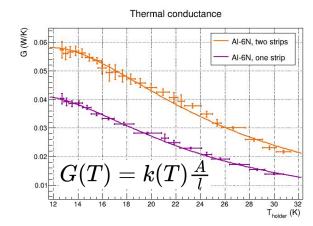

$$k(T) = \frac{1}{\alpha T^2 + \frac{\beta}{T}} \qquad T \leq \theta_{Debye} / 10$$

e^{*} - phonons
scattering
e^{*} - cattering
e^{*} - impurities
scattering
e^{*} - debye (Cu) = 343 K
 θ_{Debye} (Al) = 428 K

Thermal conductivity measurements Results

• Fit results:

Material	Geometry	α (10 ⁻⁷ m/W/K)	β (10 ⁻⁴ K ² m/W)	Т _{реак} (К)
Cu	Braid	2.63 ± 0.04	88.4 ± 1.0	25.63 ± 0.17
	Half braid	2.55 ± 0.06	88.0 ± 1.3	25.83 ± 0.23
AI-5N	Two wires	1.91 ± 0.04	8.14 ± 0.23	12.87 ± 0.16
	One wire	1.88 ± 0.04	7.72 ± 0.17	12.72 ± 0.13
AI-6N	Two strips	2.20 ± 0.04	6.55 ± 0.20	11.41 ± 0.14
	One strip	2.18 ± 0.05	6.85 ± 0.19	11.63 ± 0.14
	Two wires	1.87 ± 0.05	5.61 ± 0.22	11.43 ± 0.19
	One wire	1.81 ± 0.04	5.14 ± 0.20	11.23 ± 0.17

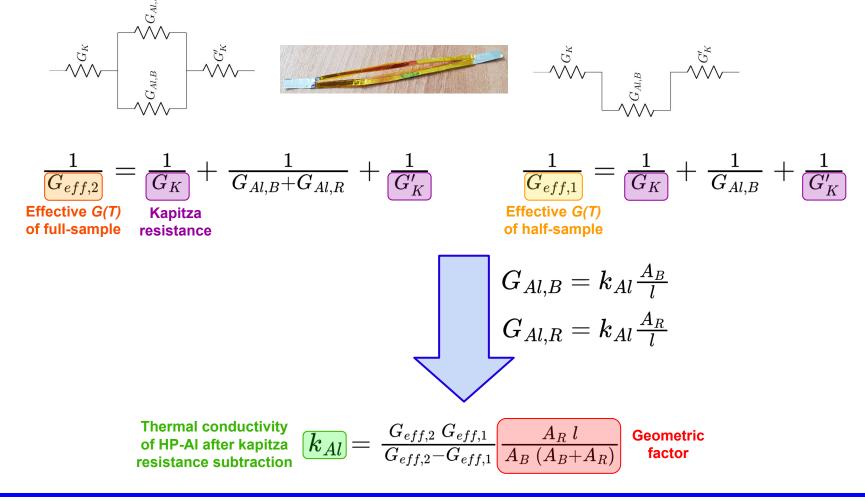

Thermal conductivity

- > electrons-impurities scattering term β decreases in higher purity materials;
- ▶ k(t) evaluated over full/half samples are in agreement (max. discrepancies < 6.7% ~ 1.5 σ @ 12 K);
- > $k(T, HP-Al) \sim 11-17 \cdot k(T, Cu) @ 3.5 \text{ K}$, $k(T, HP-Al) \sim 2-2.4 \cdot k(T, Cu) @ 35 \text{ K}$;
- → discrepancy in k(T, Al-6N) evaluated for strip and wire geometries → due to Kapitza resistance?

T_{holder} (K)

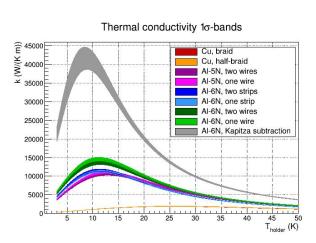
Kapitza resistance subtraction Sample & procedure

- HP-Al samples were oxidized \rightarrow insulating Al₂O₃ layer \rightarrow Kapitza boundary thermal resistance.
- Measure thermal conductance G(T) before and after cutting one strip:
 - ➤ monotonic increasing conductances ratio $G_{\text{two strips}}(T) / G_{\text{one strip}}(T), \text{ from } \sim 1.43 @ 12 \text{ K to } \sim 1.65 @ 30 \text{ K};$
 - ▶ variation of the sample geometry factor: ~1.7;
 ↓ *G(T)* ratio can not be addressed only by the geometry factor;
 ↓
 non negligible contribution from Kapitza resistance in HP-Al samples.



Kapitza resistance subtraction Procedure

• Full-sample thermal circuit:


• Half-sample thermal circuit:

Kapitza resistance subtraction Fit results

• Fit results:

Material	Geometry	α (10 ⁻⁷ m/W/K)	β (10 ⁻⁴ K ² m/W)	Т _{реак} (К)
Cu	Braid	2.63 ± 0.04	88.4 ± 1.0	25.63 ± 0.17
	Half braid	2.55 ± 0.06	88.0 ± 1.3	25.83 ± 0.23
AI-5N	Two wires	1.91 ± 0.04	8.14 ± 0.23	12.87 ± 0.16
	One wire	1.88 ± 0.04	7.72 ± 0.17	12.72 ± 0.13
AI-6N	Two strips	2.20 ± 0.04	6.55 ± 0.20	11.41 ± 0.14
	One strip	2.18 ± 0.05	6.85 ± 0.19	11.63 ± 0.14
	Two wires	1.87 ± 0.05	5.61 ± 0.22	11.43 ± 0.19
	One wire	1.81 ± 0.04	5.14 ± 0.20	11.23 ± 0.17
	Kapitza resistance subtraction	1.07 ± 0.02	1.40 ± 0.14	8.68 ± 0.29

> $k(T, Al-6N) \sim 61 \cdot k(T, Cu) @ 3.5 K$, $k(T, Al-6N) \sim 4 \cdot k(T, Cu) @ 35 K$.

Summary

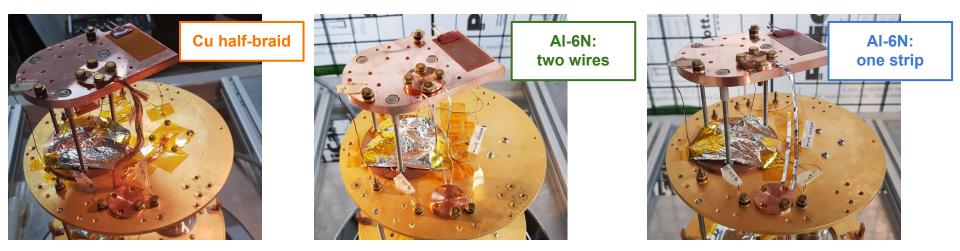
- Comparative thermal conductivity measurements of:
 - non-high-purity Cu from CUORE PT thermalizations;
 - high-purity Al-5N and Al-6N.
- HP-Al features superior thermal conductivity w.r.t. Cu:
 - ➤ measured (including Kapitza resistance contribution): $k(T, HP-Al) \sim 11-17 \cdot k(T, Cu) @ 3.5 \text{ K} , \quad k(T, HP-Al) \sim 2-2.4 \cdot k(T, Cu) @ 35 \text{ K};$
 - ➢ estimated (after Kapitza resistance decoupling): $k(T, Al-6N) \sim 61 \cdot k(T, Cu) @ 3.5 \text{ K} , k(T, Al-6N) \sim 4 \cdot k(T, Cu) @ 35 \text{ K};$
 - > HP-Al is a viable option for the PT thermalizations in CUORE/CUPID cryostat.
- Future activities:
 - > extend k(T) measurements at T < 11 K

commissioning of PT cryostat (T_{base} < 2.5 K) at LNGS;

> procedure to remove Al_2O_3 layer and prepare Al samples in O_2 -free atmosphere to prevent re-oxidation.

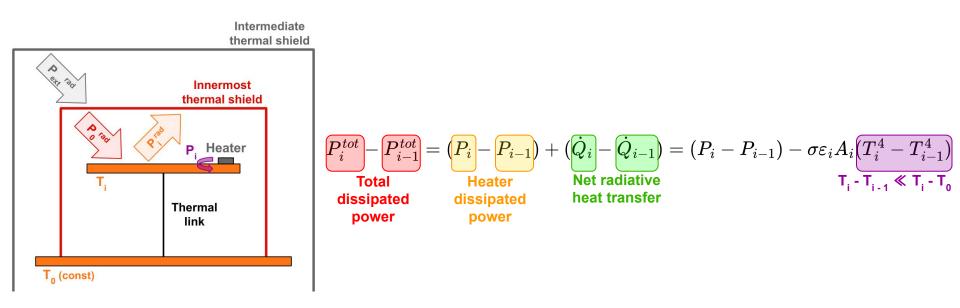
Backup slides

10


Experimental setup Cu, HP-Al samples

• Geometric parameters of Cu and HP-Al samples:

Material	Geometry	Mass <i>m</i> (g)	Total lenght <i>L</i> (cm)	Unclamped length / (cm)	Section size	<i>A/I</i> (m)
Cu	Full braid	2.357	16	11	∼ 2 mm ²	1.49 · 10 ⁻⁵
	Half braid	1.151	16	11	-	0.73 · 10 ⁻⁵
AI-5N	Red wire	0.077	15	11	Ø ~ 0.5 mm	1.72 · 10 ⁻⁶
	Blue wire	0.075	15	11	Ø ~ 0.5 mm	1.68 · 10 ⁻⁶
AI-6N	Red strip	0.126	15	11	3 x 0.1 mm ²	2.81 · 10 ⁻⁶
	Blue strip	0.121	15	11	3 x 0.1 mm ²	2.69 · 10 ⁻⁶
	Red wire	0.314	15	11	Ø ~ 1.0 mm	7.02 · 10 ⁻⁶
	Blue wire	0.316	15	11	Ø ~ 1.0 mm	7.07 · 10 ⁻⁶
	Red sub-strip	-	15	11	3.5 x 0.1 mm ²	3.01 · 10 ⁻⁶
	Blue sub-strip	-	15	11	2.5 x 0.1 mm ²	2.15 · 10 ⁻⁶


Experimental setup Sample installations

Thermal conductivity measurements Differential measurements

• Thermodynamic equilibrium:

13