BACK-SIDE ILLUMINATED SIPM PROTOTYPES: FIRST CHARACTERISATION

ALICE-EPIC meeting

Presented by: Edoardo Rovati

on behalf of the IBIS_NEXT Bologna group

BACKSIDE ILLUMINATED SIPM IN BOLOGNA

PCB	Epitaxial thickness	Trench	1 ^{rst} Split	2 nd Split	3 rd Split	4 th Split
1	Thin	Medium +	В	$\backslash \backslash$	E	Е
2	Thin	Medium -	В	В	E	E

RESULTS FROM BOLOGNA

What we do?

IV-characterization in climatic chamber and now w/ LED

DARK CURRENT CHARACTERIZATION

36

38

40

 10^{-1}

 10^{-10}

30

32

34

 \mathbf{O}

LED OFF

Voltage (V)

44

LED ON

DARK CURRENT CHARACTERIZATION

ARRHENIUS PLOT

ARRHENIUS PLOT

ARRHENIUS PLOT

There's a transition around $\simeq -3^{\circ}C$

 $T_{1/2}$ is the T required to halve the current.

Useful to determine activation energy of SiPM

Dark current (A)

 10^{-8}

10⁻⁹

10^{−10} ⊦

ACTIVATION ENERGY

QUENCHING RESISTANCE

rd current (A)

Fowai

QUENCHING RESISTANCE

rd current (A) Fowa

QUENCHING RESISTANCE FOR ANODE 1 AND 2

(WD)

R_{quencning}

Foward current

We sort out activation energy and temperature dependence at fixed OV

A 00 M 15.0 APPENDER AND APPENDENCE \mathbf{O}

We plan to do:

Cryogenic measurements

DCR and signal studies

Laser and irradiation studies

ADDENDED AND ADDENDED AND ADDENDED ADDENDED ADDENDED ADDENDED ADDENDED ADDENDED ADDENDED ADDENDED ADDENDED ADDE

STATEMENT AND THE ADD STORE AND STOR

P) ((P)

THANK YOU FOR YOUR ATTENTION

